Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Efficient bicarbonate removal and recovery of ammonium bicarbonate as CO2 utilization using flow-electrode capacitive deionization

Full metadata record
DC Field Value Language
dc.contributor.authorHan, S.-
dc.contributor.authorJeon, S.-I.-
dc.contributor.authorLee, J.-
dc.contributor.authorAhn, J.-
dc.contributor.authorLee, C.-
dc.contributor.authorLee, J.-
dc.contributor.authorYoon, J.-
dc.date.accessioned2022-01-20T05:40:56Z-
dc.date.available2022-01-20T05:40:56Z-
dc.date.created2022-01-20-
dc.date.issued2022-03-01-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://scholarworks.bwise.kr/hongik/handle/2020.sw.hongik/24343-
dc.description.abstractThe use of wastewater for CO2 mineralization is a promising strategy that not only addresses environmental issues (i.e., preventing greenhouse gas emissions and algal blooms by CO2 removal), but also produces economic benefits (i.e., recovery of carbonate-based minerals). In this study, we propose an innovative flow-electrode capacitive deionization (FCDI) system for efficient bicarbonate ion (HCO3−) removal and ammonium bicarbonate (NH4HCO3) enrichment from synthetic swine wastewater, which commonly contains excessive ammonium ions (NH4+) and HCO3−. The effects of different operational parameters for HCO3− removal and enrichment were investigated. At optimal operating conditions, we achieved approximately 1.61 M of NH4HCO3 concentrated solution with 97.2% of purity in 30 h with a C removal rate of 1.01 kg C m−2 d−1 and energy consumption of 2.87 kWh kg−1C. This is a removal rate of approximately 2–5 times greater than other electrochemical systems and 25% less energy consumption. In addition, the feasibility of the NH4HCO3 enrichment via the FCDI system was also verified by X-ray diffraction (XRD) analysis and Raman spectroscopy. This work provides an efficient strategy for NH4HCO3 enrichment from swine wastewater and a great potential to expand the scope of CO2 utilization. © 2021-
dc.language영어-
dc.language.isoen-
dc.publisherElsevier B.V.-
dc.titleEfficient bicarbonate removal and recovery of ammonium bicarbonate as CO2 utilization using flow-electrode capacitive deionization-
dc.typeArticle-
dc.contributor.affiliatedAuthorLee, J.-
dc.identifier.doi10.1016/j.cej.2021.134233-
dc.identifier.scopusid2-s2.0-85121702442-
dc.identifier.wosid000772781400004-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.431-
dc.relation.isPartOfChemical Engineering Journal-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume431-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.subject.keywordPlusWASTE-WATER-
dc.subject.keywordPlusDESALINATION-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusNITROGEN-
dc.subject.keywordPlusCAPTURE-
dc.subject.keywordAuthorAmmonium bicarbonate-
dc.subject.keywordAuthorCO2 utilization-
dc.subject.keywordAuthorEnrichment-
dc.subject.keywordAuthorFlow-electrode capacitive deionization-
dc.subject.keywordAuthorSwine wastewater-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science and Technology > Department of Biological and Chemical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Jae han photo

Lee, Jae han
Science & Technology (Biological and Chemical Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE