Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

External force field-induced crystallization of amorphous materials: A molecular dynamics study

Full metadata record
DC Field Value Language
dc.contributor.authorPark, S-
dc.contributor.authorKim, HJ-
dc.contributor.authorLee, JS-
dc.contributor.authorChoi, YK-
dc.date.accessioned2022-02-17T03:41:27Z-
dc.date.available2022-02-17T03:41:27Z-
dc.date.created2022-02-17-
dc.date.issued2005-10-
dc.identifier.issn1089-3954-
dc.identifier.urihttps://scholarworks.bwise.kr/hongik/handle/2020.sw.hongik/25148-
dc.description.abstractThis is the first investigation on the possibility of the isothermal crystallization induced by an external force field using molecular dynamics simulation. External cyclic forces with a DC bias are superimposed on the intermolecular forces, which govern the global behavior of molecules. It is discovered that field-enhanced movements of susceptor molecules can induce crystallization effectively without heating problem, the crystallization process becomes more efficient when the external cyclic force is shifted by a DC bias, a radial distribution function is a sufficient tool to observe the progress of the crystallization, and the optimal values for the external forces are close to the averaged intermolecular forces.-
dc.language영어-
dc.language.isoen-
dc.publisherTAYLOR & FRANCIS INC-
dc.subjectLENNARD-JONES SYSTEM-
dc.subjectCRYSTAL NUCLEATION-
dc.subjectSILICON-
dc.subjectAMORPHIZATION-
dc.subjectSIMULATION-
dc.subjectINTERFACE-
dc.titleExternal force field-induced crystallization of amorphous materials: A molecular dynamics study-
dc.typeArticle-
dc.contributor.affiliatedAuthorPark, S-
dc.contributor.affiliatedAuthorKim, HJ-
dc.identifier.doi10.1080/10893950500357764-
dc.identifier.scopusid2-s2.0-29044436613-
dc.identifier.wosid000234653900001-
dc.identifier.bibliographicCitationMICROSCALE THERMOPHYSICAL ENGINEERING, v.9, no.4, pp.317 - 329-
dc.relation.isPartOfMICROSCALE THERMOPHYSICAL ENGINEERING-
dc.citation.titleMICROSCALE THERMOPHYSICAL ENGINEERING-
dc.citation.volume9-
dc.citation.number4-
dc.citation.startPage317-
dc.citation.endPage329-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaThermodynamics-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryThermodynamics-
dc.relation.journalWebOfScienceCategoryEngineering, Mechanical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Characterization & Testing-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusLENNARD-JONES SYSTEM-
dc.subject.keywordPlusCRYSTAL NUCLEATION-
dc.subject.keywordPlusSILICON-
dc.subject.keywordPlusAMORPHIZATION-
dc.subject.keywordPlusSIMULATION-
dc.subject.keywordPlusINTERFACE-
dc.subject.keywordAuthorexternal force field-
dc.subject.keywordAuthorcrystallization-
dc.subject.keywordAuthoramorphous-
dc.subject.keywordAuthorMD simulation-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Materials Science and Engineering Major > 1. Journal Articles
College of Engineering > Department of Mechanical and System Design Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE