Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Solution-Processable Ag-Mediated ZnO Nanowires for Scalable Low-Temperature Fabrication of Flexible Devices

Full metadata record
DC Field Value Language
dc.contributor.authorChoi, H.-
dc.contributor.authorKim, K.-
dc.contributor.authorKim, M.-
dc.contributor.authorKim, J.D.-
dc.contributor.authorCho, I.-
dc.contributor.authorKim, I.-
dc.contributor.authorChae, H.-
dc.contributor.authorHan, I.-
dc.contributor.authorKim, H.-
dc.contributor.authorSeo, J.H.-
dc.contributor.authorBaac, H.W.-
dc.contributor.authorPark, I.-
dc.contributor.authorOk, J.G.-
dc.date.accessioned2022-03-18T04:41:49Z-
dc.date.available2022-03-18T04:41:49Z-
dc.date.created2022-03-18-
dc.date.issued2022-03-22-
dc.identifier.issn2637-6113-
dc.identifier.urihttps://scholarworks.bwise.kr/hongik/handle/2020.sw.hongik/26740-
dc.description.abstractWe present a scalable and vacuum-free hybrid nanoarchitecturing strategy demonstrated by the solution-processable Ag-mediated ZnO nanowire (termed SPAZN) growth on transparent and flexible substrates at low temperature. The SPAZN protocol enables selective hydrothermal ZnO nanowire (ZNW) growth on a nanoporous Ag framework obtainable from mild annealing of ionic Ag ink coating. The ZNW morphology and density can be readily controlled by tuning the SPAZN processing parameters including Ag ink concentration, coating condition, and hydrothermal growth temperature based on the underpinnings of the Ag-morphology-mediated ZNW growth mechanism proposed. We exemplify a transparent plastic gas sensor as one of many promising applications. © 2021 American Chemical Society. All rights reserved.-
dc.language영어-
dc.language.isoen-
dc.publisherAmerican Chemical Society-
dc.titleSolution-Processable Ag-Mediated ZnO Nanowires for Scalable Low-Temperature Fabrication of Flexible Devices-
dc.typeArticle-
dc.contributor.affiliatedAuthorSeo, J.H.-
dc.identifier.doi10.1021/acsaelm.2c00035-
dc.identifier.scopusid2-s2.0-85125348623-
dc.identifier.wosid000795896500003-
dc.identifier.bibliographicCitationACS Applied Electronic Materials, v.4, no.3, pp.910 - 916-
dc.relation.isPartOfACS Applied Electronic Materials-
dc.citation.titleACS Applied Electronic Materials-
dc.citation.volume4-
dc.citation.number3-
dc.citation.startPage910-
dc.citation.endPage916-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusGAS SENSOR-
dc.subject.keywordPlusNANOCOMPOSITE-
dc.subject.keywordPlusARCHITECTURES-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordAuthorAg-morphology-mediated hydrothermal growth-
dc.subject.keywordAuthorflexible device-
dc.subject.keywordAuthorgas sensor-
dc.subject.keywordAuthorlow-temperature solution process-
dc.subject.keywordAuthormetallic nanostructure-
dc.subject.keywordAuthornanowire-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical and System Design Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Seo, Jung Hwan photo

Seo, Jung Hwan
Engineering (Mechanical & System Design Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE