Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A Laser-Micromachined PCB Electrolytic Micropump Using an Oil-Based Electrolyte Separation BarrierA Laser-Micromachined PCB Electrolytic Micropump Using an Oil-Based Electrolyte Separation Barrier

Other Titles
A Laser-Micromachined PCB Electrolytic Micropump Using an Oil-Based Electrolyte Separation Barrier
Authors
Baek, S.Kim, H.Hwang, H.Kaba, A.M.Kim, H.Chung, M.Kim, J.Kim, D.
Issue Date
1-Jan-2023
Publisher
SpringerOpen
Keywords
Electrolytic micropump; Fluorinated oil; Immiscible phases; Laser machining; Pressure-sensitive tape; Printed circuit board (PCB)
Citation
Biochip Journal, v.17, no.2, pp 244 - 262
Pages
19
Journal Title
Biochip Journal
Volume
17
Number
2
Start Page
244
End Page
262
URI
https://scholarworks.bwise.kr/hongik/handle/2020.sw.hongik/31081
DOI
10.1007/s13206-023-00100-8
ISSN
1976-0280
2092-7843
Abstract
We report a laser-micromachined electrolytic PCB micropump with an oil separation barrier. As advances in terms of miniaturization and performance from our previous mesoscale PCB electrolytic pump (Kim et al. in Sens Actuators A Phys 277:73–84, 2018), we employed a simple yet rapid tape-based laser-machining technique called tape-liner-supported plastic laser micromachining and pattern transfer to fabricate a microfluidic coverslip for a PCB electrode chip. Using our microfabrication technique, the coverslip is bonded to a PCB chip to form an enclosed microscale pump with a high machining precision and no need for alignment of intermediate adhesive tapes with structural layers as commonly done in previous tape-bonding work. The completed micropump demonstrated excellent pumping performance: flow rate up to 24.49 ml/min and backpressure up to 394 kPa. Electrochemical activation of electrodes consisting of a train of voltage pulses and sweeps improves the pumping performance. In order to prevent unwanted interspersion between the electrolyte and working fluid, various separation diaphragms were previously employed, but at the cost of limited working volume and flow rate as the diaphragms were permanently anchored to the pump body. Here we propose to use an oil plug as an untethered (mobile) separation barrier. After a systematic study of properties of common oils, we tested fluorinated oil (HFE-7500), hexadecane, and tetradecane as the candidate barrier materials. HFE-7500 was chosen because its interface was stable and did not degrade pumping performance for the flow-rate range of 8.47 μl/min–2.48 ml/min. We expect our micropump with the oil plug to be used as an excellent pressure source for integrated lab-on-a-chip devices, especially lab-on-a-PCBs. © 2023, The Korean BioChip Society.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Chemical Engineering Major > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Chung, Min sub photo

Chung, Min sub
Engineering (Chemical Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE