Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Ebola virus disease outbreak in Korea: use of a mathematical model and stochastic simulation to estimate risk

Full metadata record
DC Field Value Language
dc.contributor.authorKo, Youngsuk-
dc.contributor.authorLee, Seok-Min-
dc.contributor.authorKim, Soyoung-
dc.contributor.authorKi, Moran-
dc.contributor.authorJung, Eunok-
dc.date.available2020-07-10T02:36:32Z-
dc.date.created2020-07-06-
dc.date.issued2019-11-24-
dc.identifier.issn2092-7193-
dc.identifier.urihttps://scholarworks.bwise.kr/hongik/handle/2020.sw.hongik/832-
dc.description.abstractOBJECTIVES: According to the World Health Organization, there have been frequent reports of Ebola virus disease (EVD) since the 2014 EVD pandemic in West Africa. We aim to estimate the outbreak scale when an EVD infected person arrives in Korea. METHODS: Western Africa EVD epidemic mathematical model SEIJR or SEIJQR was modified to create a Korean EVD outbreak model. The expected number of EVD patients and outbreak duration were calculated by stochastic simulation under the scenarios of Best case, Diagnosis delay, and Case missing. RESULTS: The 2,000 trials of stochastic simulation for each scenario demonstrated the following results: The possible median number of patients is 2 and the estimated maximum number is 11 when the government intervention is proceeded immediately right after the first EVD case is confirmed. With a 6-day delay in diagnosis of the first case, the median number of patients becomes 7, and the maximum, 20. If the first case is missed and the government intervention is not activated until 2 cases of secondary infection occur, the median number of patients is estimated at 15, and the maximum, at 35. CONCLUSIONS: Timely and rigorous diagnosis is important to reduce the spreading scale of infection when a new communicable disease is inflowed into Korea. Moreover, it is imperative to strengthen the local surveillance system and diagnostic protocols to avoid missing cases of secondary infection.-
dc.language영어-
dc.language.isoen-
dc.publisherKOREAN SOC EPIDEMIOLOGY-
dc.subjectTRANSMISSION-
dc.titleEbola virus disease outbreak in Korea: use of a mathematical model and stochastic simulation to estimate risk-
dc.typeArticle-
dc.contributor.affiliatedAuthorLee, Seok-Min-
dc.identifier.doi10.4178/epih.e2019048-
dc.identifier.scopusid2-s2.0-85079085717-
dc.identifier.wosid000513695800001-
dc.identifier.bibliographicCitationEPIDEMIOLOGY AND HEALTH, v.41-
dc.relation.isPartOfEPIDEMIOLOGY AND HEALTH-
dc.citation.titleEPIDEMIOLOGY AND HEALTH-
dc.citation.volume41-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.identifier.kciidART002556939-
dc.description.journalClass1-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.relation.journalResearchAreaPublic, Environmental & Occupational Health-
dc.relation.journalWebOfScienceCategoryPublic, Environmental & Occupational Health-
dc.subject.keywordPlusTRANSMISSION-
dc.subject.keywordAuthorEbolavirus-
dc.subject.keywordAuthorTheoretical models-
dc.subject.keywordAuthorDisease outbreaks-
dc.subject.keywordAuthorStochastic processes-
dc.subject.keywordAuthorRepublic of Korea-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Department of General Studies > Department of General Studies > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Seok Min photo

Lee, Seok Min
Department of General Studies (Department of General Studies)
Read more

Altmetrics

Total Views & Downloads

BROWSE