
Author’s Proof

Before checking your proof, please read the instructions below

• Carefully read the entire proof and mark all corrections in the appropriate place, using the Adobe Reader commenting tools

(Adobe Help). Do not use the Edit tool, as direct edits could be missed (the PDF was blocked for editing to prevent this); annotate

your corrections instead.

• Provide your corrections in a single PDF file or post your comments in the Production Forum making sure to reference the

relevant query/line number. Upload or post all your corrections directly in the Production Forum to avoid any comments

being missed.

• We do not accept corrections via email or in the form of edited manuscripts.

• Do not provide scanned or handwritten corrections.

• Before you submit your corrections, please make sure that you have checked your proof carefully as once you approve it, you

won’t be able to make any further corrections.

• To ensure timely publication of your article, please submit your corrections within 48 hours. We will inform you if we need

anything else; do not contact us to confirm receipt.

• Note that the column alignment at the bottom of each page is not ensured during this Author's Proof stage. The columns will be

correctly aligned in the final PDF publication. You may therefore notice small differences in the structure of the Author's Proof PDF

versus the final publication.
Do you need help? Visit our Production Help Center for more information. If you can’t find an answer to

your question, contact your Production team directly by posting in the Production Forum.

NOTE FOR CHINESE-SPEAKING AUTHORS: If you’d like to see a Chinese translation, click on the � symbol

next to each query. Only respond in English as non-English responses will not be considered. Translated

instructions for providing corrections can be found here.
Quick checklist
☐ Author names - Complete, accurate and consistent with your previous publications.

☐ Affiliations - Complete and accurate. Follow this style when applicable: Department, Institute, University, City, Country.

☐ Tables - Make sure the meaning/alignment of your Tables is correct with the applied formatting style.

☐ Figures - Make sure we are using the latest versions.

☐ Funding and Acknowledgments - List all relevant funders and acknowledgments.

☐ Conflict of interest - Ensure any relevant conflicts are declared.

☐ Supplementary files - Ensure the latest files are published and that no line numbers and tracked changes are visible.

Also, the supplementary files should be cited in the article body text.

☐ Queries - You must reply to all of the typesetter's queries below in order for production to proceed.

☐ Content - Read all content carefully and ensure any necessary corrections are made, then upload them to the Production Forum.
Author queries form
Query no.
 Details required
 Authors response
Q1
 Confirm that the article title is correct and check that it makes sense. �
Q2
 The citation and surnames of all of the authors have been highlighted. Check

that they are correct and consistent with your previous publications, and

correct them if needed, noting that the format in the author list should be

[First name] [Surname]. Please note that this may affect the indexing of your

article in repositories such as PubMed. �

https://helpx.adobe.com/acrobat/using/commenting-pdfs.html
https://helpcenter.frontiersin.org/s/topic/0TO4K0000008zVtWAI/article-production
https://www.frontiersin.org.cn/authors-proof-support/#QA1
https://www.frontiersin.org.cn/authors-proof-support/
https://www.frontiersin.org.cn/authors-proof-support/#QA4
https://www.frontiersin.org.cn/authors-proof-support/#QA2
kbri
스티커 노트
We confirm that the article title is correct.

kbri
스티커 노트
We confirm that the citation and surnames of all the authors are correct.



Q3
 Confirm that the email address in your correspondence section is accurate.
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all original and added/removed corresponding authors.
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the correspondence section. �
Q4
 We noticed a discrepancy between the author list in the submission system

and the accepted manuscript (for authors Seokjun Oh and Tae-Eun Kim ). If
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affiliations are listed sequentially and follow author order. Requests for non-
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 Ensure all grant numbers and funding information are included and accurate
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funders involvement/non-involvement in the manuscript is declared. If you
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Q21
 Confirm if the text included in the Conflict of Interest statement is correct.

Please do not suggest edits to the wording of the final sentence, as this is

standard for Frontiers' journal style, per our guidelines: The authors/remaining

authors declare that the research was conducted in the absence of any

commercial or financial relationships that could be construed as a potential

conflict of interest �
Q22
 Provide the page range for the following references, if applicable. 2, 3, 6,

32. �
Q23
 Provide a working DOI for "37; 44; 62", if applicable. Invalid DOIs will not be

added to references. �
Q24
 The emphases (underline) from revisions were removed throughout the

article. Confirm that you agree with these and if this change is fine.
Q25
 Please confirm that the below Frontiers AI generated Alt-Text is an accurate

visual description of your Figure(s). These Figure Alt-text proposals won't

replace your figure captions and will not be visible on your article. If you wish

to make any changes, kindly provide the exact revised Alt-Text you would like

to use, ensuring that the word-count remains at approximately 100 words for

best accessibility results. Further information on Alt-Text can be found here.

Figure 1 Alt-Text – Research findings on DYRK1A protein expression and behavioral

tests in mice. The top section shows hippocampal images with merged, EGFP, DAPI, and

DYRK1A stains. Subsequent sections present bar graphs and Western blot results,

highlighting increased DYRK1A intensity, mRNA levels, and protein expression in

experimental groups compared to controls. Behavioral tests, including Y maze and NOR,

indicate changes in spontaneous alternation and novelty preference in DYRK1A

overexpressing mice. Observations are outlined with statistical significance markers.

Figure 2 Alt-Text – A scientific diagram presents data on the effects of DYRK1A shRNA

on 5xFAD mice. Panels A and G show bar graphs of DYRK1A mRNA levels in the

hippocampus. Panel B includes hippocampus images stained for DYRK1A, with quantified

intensity graphs for CA1 and DG. Panels C and H display Y maze test results, indicating

spontaneous alternation and total arm entry. Panel D shows NOR test results for object

recognition. Panels E and F exhibit Western blots and bar graphs for p-CaMKIIa and p-

CREB levels. Each panel compares shCON and shDYRK1A groups at different time points.

Figure 3 Alt-Text – Bar graphs display experimental data from 5xFAD mice treated

with AAV-CON shRNA or AAV-DYRK1A shRNA. Panels A and B show changes in

proinflammatory cytokines IL-1b, TNF-a, COX-2, and IL-6 at mRNA and protein levels.

Panels C to H depict molecular targets and neuroinflammatory dynamics, including

NLRP3, SOD2, GFAP, GBP2, CXCL10, DST, NESTIN, IBA-1, ITGAX, TREM2, CLEC7A, CR3,

and C1QA. Statistical significance is indicated with asterisks, with comparisons between

shCON and shDYRK1A groups.

Figure 4 Alt-Text – Bar graphs showing mRNA fold changes in two experimental

conditions for 5xFAD mice aged six months. The conditions are shCON and shDYRK1A.

Graphs detail proinflammatory cytokines (IL-1b, TNF-a, COX-2, IL-6), molecular targets

(NLRP3, SOD2), astroglial-associated neuroinflammatory dynamics (GFAP, GBP2,

CXCL10), and microglial-associated neuroinflammatory dynamics (IBA-1, ITGAX, TREM2,

CLEC7A, CR3, C1QA). Green and orange dots represent data points, with significant

differences marked by asterisks. Data were collected via real-time PCR from days one to

twenty-four.

Figure 5 Alt-Text – Graphs depicting mRNA fold change in 5xFAD mice treated with

AAV-CON-EGFP or AAV-DYRK1A OE-EGFP at 3.5 months. Panels A-C show

proinflammatory cytokines and molecular targets. Panels D-H show astrogliosis-

associated dynamics, while panels I-L show microglia-associated markers. Orange and

green data points represent treatment groups, with significant changes indicated by
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asterisks. The focus is on DYRK1A's role in modulating cytokines, neuroinflammatory, and

gene expression dynamics measured by real-time PCR.

Figure 6 Alt-Text – Western blot and bar graph data showing effects of shDYRK1A and

OE-DYRK1A on protein levels in 5xFAD mice. Panels A to D depict HO-1, p-AKT, p-

STAT3, and p-NF-kB levels in hippocampal tissue. Panels E to H show reactive oxygen

species, p-AKT, p-STAT3, and p-NF-kB levels with controls. Statistical significance is

indicated by asterisks. The data are presented with error bars and include comparisons

between treatment groups.

Figure 7 Alt-Text – Research illustration showing experimental results from 5xFAD

mice, both 3.5-month-old and 6-month-old, treated with AAV-CON shRNA or AAV-

DYRK1A shRNA. Panel A displays microscopy images of the hippocampus from different

treatments, highlighting EGFP/DAPI/6E10 staining. Graphs B to K detail quantitative

analyses, including Ab plaque counts, soluble and insoluble Ab40 and Ab42 levels,

DYRK1A protein levels, and enzyme activity for BACE-1 and ADAM17. Statistical

significance is indicated with asterisks, showing various effects of the shRNA treatments.

Figure 8 Alt-Text – Western blot analysis of protein expression in PS19 mice at four

months old, comparing the effects of AAV-CON shRNA and AAV-DYRK1A shRNA over 21

days. Panels A-F show soluble and insoluble fractions of phosphorylated Tau proteins at

various sites, indicating changes in control versus shRNA treatment groups. Panels G-H

depict p-CDK5 and p-GSK3a/b expression in hippocampal tissues. Graphs illustrate

percentage control changes; significance levels are marked with asterisks. Protein

markers are indicated on the left, and conditions are labeled below each lane.

Figure 9 Alt-Text – Bar graph panels show mRNA fold changes in PS19 mice for

various targets after either AAV-CON shRNA or AAV-DYRK1A shRNA treatment. Panels A-

C display changes in proinflammatory cytokines (IL-1b, TNF-a, COX-2, IL-6, NLRP3,

SOD2). Panels D-G show astroglial-associated markers (GFAP, GBP2, DST, NESTIN,

CXCL10). Panels H-J depict microglial-associated markers (IBA-1, ITGAX, TREM2,

CLEC7A, CR3, C1QA). Statistical significance is indicated with asterisks: * for p < 0.05, **

for p < 0.01, **** for p < 0.0001. Comparison between shCON and shDYRK1A groups

is highlighted.
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specificity tyrosine phosphorylation-regulated kinase 1A
K1A in the brain on cognitive function, neuroinflammation

ase (AD) pathology and underlying molecular mechanisms

investigated.

mine whether overexpressing or knocking down DYRK1A

the brain affects cognitive function, neuroinflammation and

no-associated viruses (AAVs) were injected into the

ild-type (WT), 5xFAD, and PS19 mice. Then, cognitive
110
tory responses and AD pathologies were analyzed by real-

blotting, immunofluorescence staining, AD-associated

s and ELISA.

sion: In WT mice, hippocampal DYRK1A overexpression

d short-term spatial/recognition memory and SynGAP

creasing p-P38 levels. Conversely, in amyloid-beta (Ab)-
AD mice, hippocampal DYRK1A knockdown improved

ecognition memory and significantly increased CaMKIIa
rylation. Moreover, hippocampal DYRK1A knockdown in

ficantly suppressed mRNA levels of proinflammatory

ers of AD-associated reactive astrocytes (RAs), disease-

glia (DAMs), and RA–DAM interactions. However,

A overexpression in 5xFAD mice increased mRNA levels of

cytokine IL-1b, RA markers and the microglial marker Iba-1.

campal DYRK1A knockdown in 5xFAD mice significantly

the anti-oxidative/inflammatory molecule HO-1 without

p-NF-kB levels. By contrast, hippocampal DYRK1A

xFAD mice enhanced STAT3/NF-kB phosphorylation but
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did not affect RO
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levels. Importantly, hippocampal DYRK1A knockdown in

antly reduced Ab plaque number, soluble Ab40 levels, and

42 levels by suppressing b-secretase BACE1 activity but not

lation. Finally, hippocampal DYRK1A knockdown in PS19
that overexpresses human mutant tau (P301S)] selectively

e tau hyperphosphorylation at Ser396 and Ser404 and
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alleviated proinflammatory responses/glial-associated neuroinflammatory

dynamics. Taken together, our data indicate that DYRK1A modulates cognitive

function, neuroinflammation, and AD pathology (Ab and tauopathy) in mouse

models of AD and/or WT mice and support DYRK1A as a potential therapeutic

target for AD.

KEYWORDS

DYRK1A, neuroinflammation, amyloid beta, tauopathy, cognitive function,
Alzheimer’s disease

Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative

disease characterized by cognitive impairment and behavioral

disturbances. A key neuropathological hallmark of AD is the

extracellular accumulation of amyloid-beta (Ab) plaques (1, 2).

Previous studies reported that soluble oligomers of Ab, which is

formed by the sequential proteolytic cleavage of amyloid precursor

protein (APP) by b- and g-secretases (3), are responsible for the

disruptions of synaptic communication, the induction of glial

hyperactivation, and the subsequent neuroinflammation that

ultimately lead to neuronal degeneration and cognitive decline

(4). Another neuropathological hallmark of AD is the

intracellular formation of neurofibrillary tangles (NFTs), which

are composed of hyperphosphorylated tau protein. In healthy

neurons, tau stabilizes microtubules and plays a critical role in

axonal transport and neuronal function (5). However, when

hyperphosphorylated, tau loses its ability to bind microtubules,

leading to microtubule destabilization, impaired cellular transport,

and consequently contributed to neuronal dysfunction and

degeneration. NFTs are associated with neuronal dysfunction and

death, memory loss, neuroinflammatory dynamics, and the

progression of AD pathogenesis (6). Therefore, elucidating the

underlying mechanisms for the regulation of Ab accumulation

and tau pathology is crucial for developing effective therapeutic

strategies for AD.

Dual specificity tyrosine phosphorylation-regulated kinase 1A

(DYRK1A) plays a crucial role in physiological and pathological

processes in the brain. Several studies reported that DYRK1A is

involved in essential neuronal functions such as neurogenesis,

neuronal differentiation, and dendritic spine formation and

maturation, as well as in fundamental cellular processes including

cell growth and division (7–10). In addition, DYRK1A is located on

human chromosome 21, and its overexpression has been implicated

in multiple diseases, most notably Down syndrome and AD (11–

13). Specifically, DYRK1A resides in the Down syndrome critical

region (DSCR) and contributes to various phenotypes of Down

syndrome, including cognitive disability and memory and learning

impairments (14–19). Importantly, genetic overexpression of

DYRK1A leads to APP phosphorylation at Thr688, which

enhances the binding affinity of APP to b-/g-secretases, resulting
in Ab accumulation (10). DYRK1A also directly phosphorylates

tau, a key step required for the formation of NFT (20). We and

others previously reported that small-molecule inhibitors of

DYRK1A (e.g., KVN93 and Dyrk1-inh) alleviate LPS-induced

neuroinflammation by modulating TLR4/AKT/STAT3 and TLR4/

NF-kB signaling pathways and reduce AD-associated microglial/

astroglial activation (21, 22). Pharmacological inhibition of

DYRK1A also significantly decrease Ab pathology in 5xFAD and

3xTg mice (22, 23). Collectively, previous findings suggest that

DYRK1A could be a major regulator of AD pathology.

However, the precise molecular mechanisms underlying the

direct effects of DYRK1A inhibition in the brain have not been fully

elucidated. It is possible that pharmacological DYRK1A inhibitors

modulate AD pathology through its off-target (e.g., MAO-A and

CK1) which are also in volved in AD pathogenesis (24, 25). To

separate the direct effects of DYRK1A inhibition from these off-

target effects, in the present study, we examined the effects of direct

modulation of DYRK1A expression in the brain on cognitive

function and AD pathology as well as the underlying molecular

mechanisms. An adeno-associated virus (AAV) vector was used to

knock down or overexpress DYRK1A in the hippocampus of wild-

type (WT) mice, 5xFAD mice (Ab-overexpressing AD mouse

model), and PS19 mice (tau-overexpressing AD mouse model).

We found that hippocampal DYRK1A overexpression in WT mice

significantly impaired short-term and long-term memory, along

with reducing SynGAP levels and increasing P38 phosphorylation.

However, knocking down DYRK1A in the hippocampus in 5xFAD
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1661791
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Q24

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

Lee et al. 10.3389/fimmu.2025.1661791
mice improved short-term spatial/recognition memory and

increased p-CaMKIIa/p-CREB levels. In addition, hippocampal

DYRK1A knockdown in 5xFAD mice significantly downregulated

mRNA levels of proinflammatory cytokines and markers of AD-

related neuroinflammatory dynamics. Conversely, overexpressing

DYRK1A in the hippocampus in 5xFAD mice selectively

exacerbated AD-evoked neuroinflammatory mediators [IL-1b, RA
(reactive astrocyte) markers, IBA-1, CR3]. Moreover, in 5xFAD

mice, hippocampal DYRK1A knockdown increased levels of the

ant i -oxidat ive/ inflammatory molecule HO-1 but not

neuroinflammation-associated downstream STAT3/NF-kB
signaling, whereas hippocampal DYRK1A overexpression

significantly enhanced STAT3/NF-kB phosphorylation without

altering ROS levels. More importantly, hippocampal DYRK1A

knockdown significantly alleviated Ab pathology (e.g., senile

plaque accumulation and soluble/insoluble Ab levels) by

inhibiting BACE-1 activity in 5xFAD mice. Finally, hippocampal

DYRK1A knockdown in PS19 mice selectively decreased insoluble

p-TauSer396 and p-TauSer404 and suppressed tau-mediated

neuroinflammatory responses/AD-related glial dynamics.

Collectively, these results indicate that direct genetic DYRK1A

modulation (knockdown or overexpression) in the brain
modulates memory performance and various AD-related 74106, Qiagen, Venlo, Netherlands), and real-time PCR was
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pathologies including proinflammatory responses, Ab burden,

and tauopathy in 5xFAD, PS19, and/or WT mice implicating

DYRK1A as a promising target for AD intervention.

Materials and methods

Ethics statement

All experimental procedures were approved by the institutional

biosafety committee (IBC) and performed in accordance with

approved animal protocols of the Korea Brain Research Institute

(KBRI, approval nos. IACUC-2016-0013, IACUC-19-00049,
IACUC-19-00042, and IACUC-20-00061).

function, amyloidopathy, tau hyperphosphorylation, and

neuroinflammation, AAV-U6-control shRNA-EGFP or AAV-U6-
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5xFAD, PS19, and wild-type mice

3.5- and 6-month-old male 5xFAD mice (B6Cg-Tg

APPSwFlLon, PSEN1*M146L*L286V6799Vas/Mmjax; stock #

34848-JAX) and 4-month-old male human P301S tau transgenic

mice (PS19 mice) (B6;C3-Tg (Prnp-MAPT*P301S)PS19Vle/J, Stock

No. 008169) were purchased from Jackson Laboratory (Bar Harbor,

ME, USA), and 3- and 3.5-month-old male C57BL6/N (WT) mice

were purchased from Orient-Bio Company (Gyeonggi-do, Korea).

All animals were housed in a pathogen-free facility with a

photoperiod of 12 h and environmental control at 22°C. Food

and water were freely accessible to the mice throughout

the experiment.
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AAV-hSyn-mDYRK1A-EGFP

Cells
AAVpro® 293T cells (cat. no. 632273, Clontech, Mountain

View, CA, USA) were cultured in Dulbecco’s modified Eagle’s

Medium (DMEM; cat. no. 11965092, Gibco, Grand Island, NY,

USA) with 5% fetal bovine serum (FBS; cat. no. 16000-044,

Invitrogen, Carlsbad, CA, USA) and penicillin-streptomycin

solution (cat. no. 15140122, Gibco). The cells were maintained at

37°C in an atmosphere of humidified air containing 5% CO2.

Plasmids
The AAV plasmid backbone was based on pAAV-hSyn-EGFP

(cat. no. 50465, Addgene, Watertown, MA, USA). The full-length

DYRK1A gene was amplified from total RNA from mouse

hippocampal tissue by real-time PCR with the primers pAAV-

h S y n -DYRK1A -EGFP - F ( 5 ’ -AGAAGGTACCGGAT

CCGTCGACGCCACCATGCatacag-3’ , BamH1 restriction

sequence underlined) and pAAV-hSyn-Dyrk1a-EGFP-R (5’-

CCATGGTGGCGGATCCGTCGACTGCCGAGCTAGCTACA-3’,

BamH1 restriction sequence underlined). Total RNA from mouse

hippocampus tissue was isolated using an RNeasy mini kit (cat. no.
performed using the PrimeScript™ 1st strand cDNA Synthesis Kit

(cat. no. 6110A, Takara, Shiga, Japan). The amplified DYRK1A

cDNA (~2.5 kb) was inserted into pAAV-hSyn-EGFP using the

BamH1 restriction site. pAAV-RC and pHelper plasmids were

purchased from Agilent (cat. no. 240071, Santa Clara, CA, USA).

Virus production and purification
AAVpro 293T cells were co-transfected with the recombinant

pAAV expression plasmid (pAAV-RC) and pHelper using

polyethylenimine (PEI; cat. no. 24765, Polyscience, Addgene). At

least 72 h after transfection, AAV particles from the cell medium

were harvested and purified as described in Addgene’s protocols

(https://www.addgene.org/protocols/#virus, last accessed Sep.

29, 2020).

AAV-U6-mDYRK1A shRNA-EGFP

To investigate the effects of DYRK1A knockdown on cognitive
mDYRK1A shRNA-EGFP (cat. no. shAAV-257590, Vector Biolabs,

Malvern, PA, USA) was injected into the mouse brain.

Stereotaxic viral injection

All injections were conducted under intraperitoneally

administered anesthesia with ketamine (100 mg/kg) and xylazine

(10 mg/kg) in 0.1 M phosphate-buffered saline (PBS). The virus was

injected into the bilateral hippocampus (bregma: -2.0 mm AP, ± 1.5
mm ML, and -1.55 mm DV) in a volume of 0.5 to 1.0 mL in each
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hemisphere at a rate of 0.1 mL/min using a 5-mL syringe (cat. no.

time PCR. Forty-cycle real-time PCR was performed in a

Immunofluorescence staining

To separate proteins by electrophoresis, 10 mg of protein was

DYRK1A, anti-SynGAP, anti-p-P38, anti-P38, anti-p-CaMKIIa,
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QuantStudio™ 5 system (Thermo Fisher Scientific, Waltham,

MA, USA) with Fast SYBR Green Master Mix (Thermo Fisher

Scientific, Waltham, MA, USA). Normalization was performed

using the cycle threshold (Ct) value for gapdh. The primer

sequences are provided in Supplementary Table 1.
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heated for 10 min at 100°C and loaded onto an SDS-polyacrylamide

gel. The separated proteins were then electrotransferred to a PVDF

membrane (Millipore, Billerica, MA, USA), After blocking with 5%

skim milk at RT for 1 h, the membrane was incubated with anti-
7641–01, Hamilton, Reno, Nevada, USA) with a 33-gauge needle

(cat. no. 7762–06, Hamilton, Reno, Nevada, USA). After injection,

the needle was left in place for at least 10 min to allow diffusion of

the virus at the injection site. The mice were then allowed to recover

for 3–4 weeks before further behavioral experiments.

Behavioral testing paradigm

Y-maze test
The Y-maze test was performed to measure short-term spatial

memory. A single mouse injected with AAV-control, AAV-

DYRK1A, AAV-control shRNA, or AAV-DYRK1A shRNA was

placed in one of the three arms (35 cm x 7 cm x 15 cm) of the maze,

which met at an angle of 120°, and allowed to explore freely for 5

min. Spontaneous alternations were recorded and analyzed using

SMART video tracking software (Panlab, Barcelona, Spain). The

alternation percentage was calculated by dividing the number of

alternations by the number of alternation triads.

Novel object recognition test
To evaluate recognition memory, the NOR test was performed

as previously described with minor modifications (24, 25). Briefly,

each mouse underwent a 5-min training phase in an open-field box

(40 cm x 40 cm x 25 cm) containing two identical objects. Between

trials, odor cues were eliminated by thoroughly swabbing the

apparatus and objects with 70% ethanol. Twenty-four hours later,

the mouse was returned to the same apparatus containing one

familiar object and one novel object for a 5-min retention testing

phase. The locations of the two objects in the apparatus were

counterbalanced. The trials were recorded, and the recordings

were used to manually count the time of exploratory behavior,

defined as pointing of the mouse’s nose toward an object. Object

preference (%) was calculated using the formula [Preference (%) of

object = T Novel/(T Familiar + T Novel) × 100], where Tnovel is the time

of exploration of the novel object and TFamiliar is the time of

exploration of the familiar object.

Real-time PCR

To analyze the effect of genetic DYRK1A modulation on

DYRK1A and neuroinflammation-associated markers mRNA

levels, RNA was extracted from hippocampal tissue of WT,

5xFAD, and/or PS19 mice using TRIzol (Invitrogen, Waltham,

MA, USA) (25). The extracted RNA was used with the

Superscript cDNA Premix Kit II (cat. no. SR-5000, GeNetBio,

Daejeon, Republic of Korea) to synthesize cDNA for use in real-

To assess whether DYRK1A overexpression or knockdown in

brain directly affects DYRK1A protein expression and Ab plaque

accumulation in WT or 5xFAD mice, immunofluorescence staining

was performed. For this experiment, mouse brain sections were first

rinsed in PBST (PBS containing 0.2% Triton-X 100). Next, the brain

sections were incubated in blocking solution [10% normal goat serum

(cat. no. S-1000-20, Vector Laboratories, Burlingame, CA) in PBST]

for 2 h at room temperature (RT). The primary antibodies were

added, and the brain sections were incubated for 24–72 h at 4°C.

After washing with PBST three times, the brain sections were

incubated for 2 h at RT with Alexa Fluor 555-conjugated goat anti-

rabbit or anti-mouse secondary antibodies. The brain sections were

then washed with PBST, PBST/DAPI, and PBS before being mounted

on glass slides with a mounting solution containing DAPI (cat. no. H-

1200-10, Vector Laboratories). The immunostained tissue was

imaged by fluorescence microscopy (DMi8, Leica Microsystems),

and immunofluorescence staining was quantified using ImageJ

software (http://imagej.net/ij, Version 1.53e, US National Institutes

of Health, Bethesda, MD, USA, last accessed April 27, 2025).

D e t a i l e d a n t i b o d y i n f o rm a t i o n i s p r o v i d e d i n

Supplementary Table 2.

Western blotting

To determine the effects of DYRK1A gene manipulation on

memory-regulating protein levels, DYRK1A expression,

i nfl amma t i on - a s s o c i a t e d mo l e cu l e l e v e l s , a nd t au

hyperphosphorylation in WT, 5xFAD, and/or PS19 mice, the

mouse hippocampus was homogenized in RIPA lysis buffer

(Merck Millipore, Billerica, MA, USA) containing 1% protease

and phosphatase inhibitor cocktail (Thermo Scientific, Waltham,

MA, USA) for 1 h on ice. The lysate was then centrifuged three

times for 20 min at 20,000 × g and 4°C, and the supernatant was

collected and stored at −20°C until analysis.

To assess the effect of DYRK1A knockdown on cognitive

function and tauopathy in PS19 mice, the entorhinal cortex and

hippocampus were dissected and homogenized in RIPA lysis buffer

supplemented with a protease and phosphatase inhibitor cocktail

(Thermo Scientific). The homogenates were incubated at 4°C for 1 h

and centrifuged at 20,000 × g at 4°C for 20 min. The supernatant

was collected as the RIPA-soluble fraction and stored at −80°C until

analysis. The pellet was washed once with 1 M sucrose in RIPA lysis

buffer, resuspended in 2% SDS solution, and incubated at RT for 1

h. The suspension was sonicated and centrifuged at 20,000 × g for 1

min at RT, and the supernatant was collected as the RIPA-insoluble

fraction and stored at −80°C until analysis.
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(pH 6.8), and stored at –80°C until analysis of DEA-soluble Ab
levels. The remaining pellet was resuspended in formic acid and

ultracentrifuged at 47,000 rpm for 1 h at 4°C, and the supernatant

was collected, neutralized with Tris-HCl buffer (pH 8.8), and stored

at –80°C until analysis of DEA-insoluble Ab levels.

DEA-soluble/DEA-insoluble Ab40 and Ab42 levels were

analyzed using the Human Amyloid beta 40 ELISA Kit (cat. no.

KHB3481, Invitrogen, Carlsbad, CA, USA) and the Human
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anti-CaMKIIa, anti-p-CREB, anti-CREB, anti-HO-1, anti-p-AKT,

anti-AKT, anti-p-STAT3, anti-STAT3, anti-p-NF-kB, anti-NF-kB,
anti-NR2A, anti-NR2B, anti-GluA1, anti-GluA2, anti-EAAT1, anti-

EAAT2, anti-p-ERK, anti-ERK, anti-PS-1-CTF, anti-p-APPThr668,

anti-p-TauSer202/Thr205 (AT8), anti-p-TauThr212/Ser214 (AT100), anti-

p-TauThr231 (AT180), anti-p-TauSer396, anti-p-TauSer404, p-GSK3a/
b, anti-p-CDK5, anti-GAPDH or anti-b-actin antibodies overnight

at 4°C. The following day, the membrane was incubated with HRP-

conjugated goat anti-rabbit IgG or HRP-conjugated goat anti-

mouse IgG for 1 h, and detection was realized with ECL Western

Blotting Detection Reagent (GE Healthcare, Chicago, IL, USA).
Images were acquired and analyzed by Fusion Capt Advance

software (Vilber Lourmat, Collégien, France). Detailed antibody
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phosphatase inhibitor cocktail (Thermo Scientific, Waltham, MA,

USA), sonicated, and ultracentrifuged at 47,000 rpm for 1 h at 4°C.

The supernatant was collected, neutralized with Tris-HCL buffer
Amyloid beta 42 ELISA Kit (cat. no. KHB3441, Invitrogen,

Carlsbad, CA, USA), respectively, according to the manufacturer’s
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information is provided in Supplementary Table 3.

Enzyme-linked immunosorbent assay

RIPA-soluble Ab40 ELISA in 3.5-month-old
5xFAD mice

To investigate whether direct inhibition of DYRK1A gene

expression alters Ab pathology in the brains of younger AD

model mice, hippocampal Ab40 levels were measured by ELISA.

Hippocampal tissue from 3.5-month-old 5xFAD mice injected with

AAV-control shRNA or AAV-DYRK1A shRNA was homogenized

in RIPA lysis buffer (Merck Millipore, Billerica, MA, USA)

containing 1% protease and phosphatase inhibitor cocktail

(Thermo Scientific, Waltham, MA, USA) for 1 h on ice. The

lysates were then centrifuged three times for 20 min at 20,000 × g

and 4°C, and the supernatant (RIPA-soluble fraction) was collected

for analysis.

Ab40 levels were analyzed by using the Human Amyloid beta 40

ELISA Kit (cat. no. KHB3481, Invitrogen, Carlsbad, CA, USA)

according to the manufacturer’s instructions. Briefly, serially diluted

Human Ab40 standards (500 pg/ml to 0 pg/ml, 50 ml/well) or RIPA-
soluble fraction (50 ml/well) were loaded into the pre-coated 96-well
plate followed by human Ab40 detection antibody (50 ml/well) and
incubated for 3 h at RT. Next, the plate was washed with 1× wash

buffer four times, and anti-rabbit IgG HRP (100 ml/well) was added
and incubated for 1 h at RT. Then, the plate was washed with 1×

wa sh bu ff e r s i x t ime s , and s t a b i l i z e d ch romogen

(tetramethylbenzidine) was added and incubated for 30 min.

Finally, stop solution was added, and optical density was

measured at 450 nm.

DEA-soluble and DEA-insoluble Ab40 and Ab 42
ELISA in 6-month-old 5xFAD mice

To assess the effect of DYRK1A knockdown on Ab pathology in

aged AD mice, soluble and insoluble Ab40 and Ab42 levels were

measured by ELISA. For this experiment, 6-month-old 5xFADmice

were injected with AAV-control shRNA or AAV-DYRK1A shRNA,

and hippocampal tissue was dissected and homogenized in tissue

homogenization buffer (250 mM sucrose, 20 mM Tris-HCl, 1 mM

EDTA, 1 mM EGTA). The tissue homogenate was then added to

0.4% diethylamino (DEA) solution containing 1% protease and

instructions. Briefly, to detect human Ab40, serially diluted Human

Ab40 standards (500 pg/ml to 0 pg/ml, 50 ml/well) and the DEA-

soluble or DEA-insoluble fraction (50 ml/well) were loaded into the

pre-coated 96-well plate followed by human Ab40 detection

antibody (50 ml/well) and incubated for 3 h at RT. To detect

human Ab42, serially diluted Human Ab42 standards (500 pg/ml

to 0 pg/ml, 50 ml/well) and the DEA-soluble or DEA-insoluble

fraction (50 ml/well) were loaded into the pre-coated 96-well plate

followed by human Ab42 detection antibody (50 ml/well) and

incubated for 3 h at RT. Next, the plate was washed with 1× wash

buffer four times, and anti-rabbit IgG HRP (100 ml/well) was added
and incubated for 1h at RT. Then, the plate was washed with 1×

wa sh bu ff e r s i x t ime s , and s t a b i l i z e d ch romogen

(tetramethylbenzidine) was added and incubated for 30 min.

Finally, stop solution was added, and the optical density was

measured at 450 nm.

Proinflammatory cytokine ELISA in 3.5-month-
old 5xFAD mice

To determine whether genetic DYRK1A knockdown alters

proinflammatory responses at the protein level, 3.5-month-old

5xFAD mice were injected with AAV-control shRNA or AAV-

DYRK1A shRNA in the hippocampus. Three weeks after the

injection, the hippocampal tissue was dissected and homogenized

in RIPA lysis buffer (MerckMillipore, Billerica, MA, USA) containing

1% protease and phosphatase inhibitor cocktail (Thermo Scientific,

Waltham,MA, USA) for 1 h on ice. The lysates were then centrifuged

three times for 20 min at 20,000 × g and 4°C, and the supernatant

(RIPA-soluble fraction) was collected and used to determine the

protein concentration. COX-2, IL-1b, IL-6, and TNF-a protein levels

were measured using a COX-2 ELISA kit (DYC4198-5, R&D

Systems, Minneapolis, MN, USA) and IL-1b, IL-6, and TNF-a
ELISA kit (88-7013A-88 for IL-1b, 88-7064–22 for IL-6, 88-7324–

22 for TNF-a, Invitrogen, Waltham, Massachusetts, USA) according

to the manufacturer’s instructions.

ROS assessment

To investigate the effect of genetic knockdown of DYRK1A on

oxidative stress in 5xFAD mice, 3.5-month-old 5xFAD mice were

injected with AAV-control shRNA or AAV-DYRK1A shRNA in
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the hippocampus. In addition, to test whether overexpression of the

DYRK1A gene affects oxidative stress in 5xFAD mice, 3.5-month-

old 5xFAD mice were injected with AAV-control or AAV-

DYRK1A in the hippocampus. Three weeks after the injection,

the hippocampal tissue was dissected and homogenized in RIPA

lysis buffer (Merck Millipore, Billerica, MA, USA) containing 1%

protease and phosphatase inhibitor cocktail (Thermo Scientific,

Waltham, MA, USA) for 1 h on ice. The lysates were then

centrifuged three times for 20 min at 20,000 × g and 4°C, and the

supernatant (RIPA-soluble fraction) was collected. ROS levels were

measured using 2’,7’-dichlorofluorescein diacetate (DCFH-DA, cat.

no. 287810, Sigma–Aldrich, Burlington, MA, USA). Briefly, the

RIPA-soluble fraction (50 ml/well) was added to a 96-well plate, and
500 mM DCFH-DA solution (50 ml/well) was added. After

incubating the plate for 1.5 h at 37°C, fluorescence intensity was

measured at Ex/Em=488 nm/522 nm.

Activity test

ADAM17 activity
To examine the underlying molecular mechanisms for the effect

of DYRK1A knockdown on Ab plaque deposition and Ab levels in

5xFAD mice, the activity of ADAM17, an a-secretase involved in

non-amyloidogenic APP proteolytic processing, was measured. For

this experiment, hippocampal tissues of AAV-control shRNA-

injected or AAV-DYRK1A shRNA-injected 5xFAD mice were

homogenized in RIPA lysis buffer (Merck Millipore, Billerica,

MA, USA) containing 1% protease and phosphatase inhibitor

cocktail (Thermo Scientific, Waltham, MA, USA) for 1 h on ice.

The lysates were then centrifuged three times for 20 min at 20,000 ×
g and 4°C, and the supernatant was collected for analysis. ADAM17

activity was assessed by using the SensoLyte® 520 ADAM17

fluorescence intensity was significantly increased in AAV-

DYRK1A-injected WT mice than in AAV-control-injected WT

mice (Figures 1A, B).

Consistently, real-time PCR analysis revealed that hippocampal

DYRK1A mRNA expression was markedly enhanced by 408.63% in
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Activity Assay Kit (cat. no. AS-72085, AnaSpec, Fremont, CA,

USA) according to the manufacturer’s instructions. Briefly,

hippocampal homogenate and ADAM17-specific fluorogenic

substrate were loaded into a 96-well plate and incubated for 3 h,

stop solution was added, and the fluorescence intensity was

measured at Ex/Em=490 nm/520 nm.

BACE-1 activity
To elucidate underlying mechanisms by which DYRK1A

suppression ameliorates Ab pathology in 5xFAD mice, the activity

of BACE-1, a b-secretase involved in amyloidogenic processing of

APP, was analyzed. To assess this, hippocampal lysates of 5xFAD

mice injected with AAV-control shRNA or AAV-DYRK1A shRNA

were prepared as described in ADAM17 activity. BACE-1 activity was

assessed by using the SensoLyte® 520 ß-Secretase (BACE1) Activity

Assay Kit (cat. no. AS-71144, AnaSpec, Fremont, CA, USA)

according to the manufacturer’s instructions. Briefly, hippocampal

homogenate and b-secretase-specific fluorogenic substrate were

loaded into a 96-well plate and incubated for 3 h. Next, stop

solution was added, and the fluorescence intensity was measured at

Ex/Em=490 nm/520 nm.
Frontiers in Immunology 06
IDE activity
The activity of insulin-degrading enzyme (IDE), an Ab-

degrading enzyme, was measured to determine whether DYRK1A

inhibition decreases Ab pathology via IDE activity in 5xFAD mice.

For this experiment, hippocampal lysates of 5xFAD mice injected

with AAV-control shRNA or AAV-DYRK1A shRNA were

prepared as described in ADAM17 activity. IDE activity was

assessed by using the SensoLyte® 520 IDE Activity Assay Kit (cat.

no. AS-72231, AnaSpec, Fremont, CA, USA) according to the

manufacturer’s instructions. Briefly, hippocampal homogenate

and IDE-specific fluorogenic substrate were loaded into a 96-well

plate and incubated for 3 h. Then, stop solution was added, and
NEP activity
To analyze the specific molecular mechanisms by which

DYRK1A knockdown mitigates Ab pathology in 5xFAD mice, the

activity of neprilysin (NEP), an Ab-degrading enzyme, was

measured. To assess this, hippocampal lysates from 5xFAD mice

treated with AAV-control shRNA or AAV-DYRK1A shRNA were

prepared as described in ADAM17 activity. NEP activity was

quantified by using the SensoLyte® 520 NEP Activity Assay Kit

(cat. no. AS-72223, AnaSpec, Fremont, CA, USA) according to the

manufacturer’s instructions. Briefly, hippocampal homogenate and

NEP-specific fluorogenic substrate were loaded into a 96-well plate

and incubated for 3h. Then, stop solution was added, and

fluorescence intensity was measured at Ex/Em=490 nm/520 nm.

Statistical analysis

All data were analyzed using a two-tailed unpaired t-test in

GraphPad Prism 10 (GraphPad Software, San Diego, CA. USA).

Data are presented as the mean ± S.E.M. (*p < 0.05, **p < 0.01, ***p

< 0.001, ****p < 0.0001). Detailed statistical analysis results are

provided in Supplementary Table 4.

Results

DYRK1A overexpression decreases short-
term spatial/recognition memory,
suppresses SynGAP expression, and
increases p-P38 levels in WT mice

To investigate the effects of DYRK1A overexpression on

cognitive function in vivo, 3-month-old WT mice were injected

with AAV-control or AAV-DYRK1A in the hippocampus. Three

weeks after injection, immunofluorescence staining of hippocampal

tissue with an anti-DYRK1A antibody showed that DYRK1A
frontiersin.org
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FIGURE 1

DYRK1A overexpression impairs cognitive function, reduces SynGAP expre
immunofluorescence in hippocampal slices from WT mice injected with A
(C) Real-time PCR analysis of hippocampal DYRK1A mRNA levels in WT m
blotting of hippocampal DYRK1A levels in WT mice treated as described in
mice 30 days after treatment as described in (A, B) (n= 22–23 mice/group
treated as described in (A, B) with anti-SynGAP, anti-p-P38, anti-P38 and
***p < 0.001, ****p < 0.0001. Scale bar = 200 µm.
Frontiers in Immunology 07
ion, and increases P38 signaling in WT mice. (A, B) DYRK1A
-Control or AAV-DYRK1A (n = 16 brain slices from 4 mice/group).
treated as described in (A, B) (n = 5 mice/group). (D, E) Western
, B) (n = 8 mice/group). (F, G) Results of Y-maze and NOR tests of WT
(H, I) Western blotting analysis of hippocampal lysates from WT mice
ti-b-actin antibodies (n = 8 mice/group). *p < 0.05, **p < 0.01,
injected WT mice, confirming successful overexpression of

DYRK1A (Figure 1C). Further confirming these findings, western

blotting showed that hippocampal DYRK1A expression was

than AAV-control injection (Figures 1D, E). In behavioral

assessments, AAV-DYRK1A-injected WT mice exhibited

significantly reduced spontaneous alterations in the Y-maze test
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Given that memory function was impaired in 3.5-month-old

5xFAD mice compared with WT mice, we investigated whether

direct hippocampal knockdown of DYRK1A affects learning and

memory in this model of AD. To test this, 3.5-month-old 5xFAD

mice were bilaterally injected with AAV-control shRNA or AAV-

DYRK1A shRNA in the hippocampus. Thirty days after the

injection, Y-maze and NOR tests were performed, and DYRK1A

mRNA levels in brain tissue were measured. AAV-DYRK1A

shRNA injection significantly suppressed DYRK1A mRNA and

protein levels in 3.5-month-old 5xFAD mice compared to AAV-

control shRNA injection (Figures 2A, B). In addition, AAV-

DYRK1A shRNA-injected 5xFAD mice exhibited a significant
Frontiers in Immunology 08
DYRK1A knockdown significantly reduces
proinflammatory cytokine levels and AD-
associated reactive astrocytes and
microglia in 3.5-month-old 5xFAD mice

Given that direct DYRK1A knockdown (5xFAD mice) and

overexpression (WT mice) in the brain modulates cognitive

function, we further examined whether AAV-DYRK1A shRNA

injection alters neuroinflammatory responses/dynamics which are

closely associated with memory in 5xFAD mice. To test this, 3.5-
compared to AAV-control-injected WT mice (Figures 1F, G).

To investigate the molecular mechanisms by which DYRK1A

overexpression impairs learning and memory in vivo, WT mice

were injected as described above, and the hippocampus was

dissected. To assess the expression of Ras signaling-associated

molecules, western blotting was performed with anti-p-CaMKIIa,
anti-p-CREB, and anti-p-ERK antibodies, and found that the

phosphorylation of CaMKIIa, CREB, and ERK did not altered in

AAV-DYRK1A-injected compared to AAV-control-injected WT

mice (Supplementary Figures 1A–C). To assess other memory-

regulating molecules, western blotting was conducted with

antibodies against SynGAP (an inactivator of Ras and Rap

GTPases), PLK2 (Rap signaling molecule), and p-P38 (signal

transducer for long-term depression). We found that AAV-

DYRK1A injection significantly decreased SynGAP expression

and upregulated p-P38 levels in WT mice compared to AAV-

control injection but not PLK2 expression (Figures 1H, I,

Supplementary Figure 1D). These data suggest that DYRK1A

overexpression in the hippocampus of WT mice impairs short-

term spatial/recognition memory and diminishes SynGAP levels

while enhancing p-P38 levels.

Short-term spatial and recognition
memory are impaired in 5xFAD mice
compared with WT mice

Given that Ab accumulation is associated with learning and

memory impairments (26, 27), we next examined whether cognitive

functions are decreased in 5xFADmice, a model of AD in which Ab
is overexpressed, compared with WT mice. We found that 3.5-

month-old 5xFAD mice exhibited significant reductions in

spontaneous alterations and novelty preference in the Y-maze

and NOR tests compared to WT mice, indicating cognitive

deficits (Supplementary Figures 2A–D).

DYRK1A knockdown enhances short-term
spatial/recognition memory and increases
CaMKIIa-CREB signaling in 3.5-month-old
5xFAD mice

the novel object compared to AAV-control shRNA-injected 5xFAD

mice (Figures 2C, D). These data indicate that DYRK1A directly

affects short-term spatial and recognition memory in 3.5-month-

old 5xFAD mice.

We then examined whether direct hippocampal knockdown of

DYRK1A modulates memory-associated Ras signaling in 3.5-month-

old 5xFAD mice. We found that DYRK1A knockdown did not alter

total levels of NMDA receptor subunits (NR2A, NR2B) and AMPA

receptor subunits (GluA1, GluA2) in the hippocampus

(Supplementary Figures 3A–C). In addition, glutamate transporter

(e.g., EAAT1 and EAAT2) levels did not alter in AAV-DYRK1A

shRNA-injected compared to AAV-control shRNA-injected 5xFAD

mice (Supplementary Figure 3D). Most importantly, levels of the Ras

signaling-associated molecules p-CaMKIIa and p-CREB were

significantly increased in AAV-DYRK1A shRNA-injected 3.5-

month-old 5xFAD mice compared to AAV-control shRNA-

injected 5xFAD mice, whereas ERK phosphorylation was not

altered (Figures 2E, F, Supplementary Figure 3E). These findings

indicate that DYRK1A knockdown improves cognitive function

accompanied by enhanced Ras signaling in 3.5-month-old

5xFAD mice.

DYRK1A knockdown improves recognition
memory in 6-month-old 5xFAD mice

Since DYRK1A knockdown improved memory performance in a

mouse model of the early phase of AD (3.5-month-old 5xFAD mice),

we investigated the effects of altering DYRK1A expression on cognitive

function in aged 5xFAD mice. For this experiment, 6-month-old

5xFAD mice were injected with AAV-control shRNA or AAV-

DYRK1A shRNA in the hippocampus. Twenty-one days after

injection, Y-maze and NOR tests were performed, and hippocampal

DYRK1A mRNA levels were measured. We found that DYRK1A

mRNA levels were significantly reduced in AAV-DYRK1A shRNA-

injected 6-month-old 5xFADmice compared to AAV-control shRNA-

injected 5xFAD mice, confirming effective gene knockdown

(Figure 2G). In addition, DYRK1A knockdown significantly

enhanced recognition memory (NOR test) but not short-term

memory (Y-maze test) in 6-month-old 5xFAD mice (Figures 2H, I).

These results indicate that DYRK1A knockdown selectively improves

cognitive function in aged 5xFAD mice.
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slices from 7 mice/group). An enlarged view of the hippocampal CA1 and
of Y-maze and NOR tests of 3.5-month-old 5xFAD mice treated as descri
CaMKIIa, anti-CaMKIIa, anti-p-CREB, and anti-CREB antibodies of hippoc
(n = 8 mice/group). (G) 6-month-old 5xFAD mice were injected with AAV
to measure hippocampal DYRK1A mRNA levels (n=7–8 mice/group). (H, I)
described in (G) (n=7–8 mice/group). *p < 0.05, **p < 0.01, ***p < 0.001,
month-old 5xFAD mice were injected with AAV-control shRNA or

AAV-DYRK1A shRNA in the hippocampus. Three weeks after the

injection, the hippocampal tissue was dissected, and real-time PCR

or ELISA was performed. We found that proinflammatory cytokine

mRNA and protein levels were significantly downregulated in

987

988

989

990

Frontiers in Immunology 09
AAV-DYRK1A shRNA-injected 3.5-month-old 5xFAD mice

compared to AAV-control shRNA-injected 5xFAD mice

(Figures 3A, B). In addition, AAV-DYRK1A shRNA injection

markedly suppressed the mRNA levels of the neuroinflammation-

d in (A) (n = 10 mice/group). (E, F) Western blotting analysis with anti-p-
pal lysates from 3.5-month-old 5xFAD mice treated as described above
ontrol shRNA or AAV-DYRK1A shRNA, and real-time PCR was conducted
esults of Y-maze and NOR tests of 6-month-old 5xFAD mice treated as
*p < 0.0001. Scale bar = 200 µm.
FIGURE 2

DYRK1A knockdown improves memory performance and enhances CaMKIIa/CREB phosphorylation in 5xFAD mice. (A) Real-time PCR analysis of
hippocampal DYRK1A mRNA levels in 3.5-month-old 5xFAD mice injected with AAV-Control shRNA or AAV-DYRK1A shRNA (n = 7–8 mice/group).
(B) Immunofluorescence staining of DYRK1A in hippocampal slices from 3.5-month-old 5xFAD mice treated as described above (n = 27–28 brain
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associated molecular target NLRP3 without altering SOD2 mRNA suggest that direct genetic DYRK1A knockdown in the brain991
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levels (Figure 3C).

Next, we examined the effects of AAV-DYRK1A shRNA

injection on AD-associated glial dynamics in 3.5-month-old

5xFAD mice and found that DYRK1A knockdown significantly

reduced the mRNA levels of the RA markers GFAP, GBP2,

CXCL10, and DST but not NESTIN (Figures 3D, E). Moreover,

DYRK1A knockdown significantly diminished the mRNA expression

of markers for AD-related microglial dynamics (IBA-1, ITGAX, and

TREM2) and RA–disease-associated microglia (DAM) interactions

(CR3 and C1QA) but not CLEC7A (Figures 3F-H). These data

alleviates proinflammatory responses and AD-associated RA/

microglial dynamics markers in 3.5-month-old 5xFAD mice.

FIGURE 3

DYRK1A knockdown suppresses the expression of proinflammatory cytokines and neuroinflammatory dynamics-associated genes in 3.5-month-old
5xFAD mice. (A, B) 3.5-month-old 5xFAD mice were injected with AAV-Control shRNA or AAV-DYRK1A shRNA, and real-time PCR and ELISA were
conducted to measure proinflammatory cytokine levels in hippocampal lysates (n = 7–8 mice/group). (C) Real-time PCR analysis of hippocampal
NLRP3 and SOD2 mRNA levels in 3.5-month-old 5xFAD mice treated as described above (n = 8 mice/group). (D–H) Real-time PCR was performed
in in hippocampal lysates of 3.5-month-old 5xFAD mice treated as described above to analyze mRNA levels of markers for AD-associated reactive
astrocytes and microglial neuroinflammatory dynamics (n = 8 mice/group). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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DYRK1A knockdown selectively decreases
proinflammatory cytokine levels and AD-
associated neuroinflammatory dynamics in
6-month-old 5xFAD mice

Since genetic knockdown of DYRK1A downregulated

neuroinflammation in 3.5-month-old 5xFAD mice, we

investigated the effects of direct inhibition of DYRK1A in the

brain on AD-related neuroinflammatory dynamics in aged AD

mice. For this experiment, six-month-old 5xFAD mice were

injected with AAV-control shRNA or AAV-DYRK1A shRNA in

the hippocampus. Three weeks after the injection, the hippocampal

regions were dissected, and real-time PCR was performed. We

found that AAV-DYRK1A shRNA injection significantly

suppressed mRNA levels of the proinflammatory cytokines IL-1b
and TNF-a but not COX-2 and IL-6 in 6-month-old 5xFAD mice

(Figure 4A). In addition, AAV-DYRK1A shRNA-treated 6-month-

old 5xFAD mice significantly reduced NLRP3 mRNA levels but not

SOD2 mRNA levels (Figure 4B). Among markers of AD-associated

glial dynamics, DYRK1A knockdown significantly reduced the

mRNA levels of the RA markers GFAP, GBP2, and CXCL10 in

aged 5xFAD mice, but not DST and NESTIN (Figures 4C–G).

Moreover, AAV-DYRK1A shRNA injection significantly

diminished the mRNA levels of the AD-related microglial

markers IBA-1, ITGAX, and CLEC7A and the RA–DAM

interaction markers CR3 and C1QA in aged 5xFAD mice

compared to AAV-control shRNA injection, whereas TREM2

mRNA expression was not altered (Figures 4H–J). These data

indicate that direct genetic knockdown of DYRK1A in the brain

suppresses proinflammatory cytokine levels and AD-associated

neuroinflammatory dynamics markers in aged 5xFAD mice.

DYRK1A overexpression significantly

increases proinflammatory cytokine levels 1190
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and neuroinflammation-associated
dynamics in 3.5-month-old 5xFAD mice

Since DYRK1A knockdown decreased neuroinflammation in

5xFAD mice, we determined whether direct DYRK1A

overexpression in the brain modulates proinflammatory responses

in this AD mouse model. For this experiment, 3.5-month-old

5xFAD mice were injected with AAV-control or AAV-DYRK1A

in the hippocampus. Three weeks after the injection, the

hippocampal tissue was dissected, and real-time PCR was

performed. DYRK1A mRNA levels were significantly elevated in

AAV-DYRK1A-injected 5xFAD mice compared with AAV-

contro l - in jec ted 5xFAD mice , confirming success fu l

overexpression (Figure 5A). We also found that mRNA levels of

the proinflammatory cytokine IL-1b, NLRP3 and SOD2 were

significantly increased in AAV-DYRK1A-injected 5xFAD mice

compared with AAV-control-injected 5xFAD mice but not TNF-

a, COX-2 and IL-6 mRNA levels (Figures 5B, C).

We then investigated the effects of DYRK1A overexpression in

the brain on AD-related neuroinflammatory dynamics and found
Frontiers in Immunology 11
that mRNA levels of AD-associated RA markers GBP2, CXCL10,

DST, and NESTIN were significantly upregulated in AAV-

DYRK1A-injected 3.5-month-old 5xFAD mice compared with

AAV-control-injected 5xFAD mice, whereas GFAP mRNA levels

were not changed (Figures 5D–H). Final ly , DYRK1A

overexpression significantly increased mRNA levels of the

microglial marker IBA-1 and the RA–DAM interaction marker

CR3 but not the DAM markers ITGAX, TREM2, and CLEC7A and

RA–DAM interaction marker C1QA (Figures 5I–L), indicating that

directly overexpressing DYRK1A in the brain using the AAV

system selectively modulates proinflammatory cytokine levels and

neuroinflammation dynamics in 3.5-month-old 5xFAD mice.
Direct genetic modulation of DYRK1A in
the brain modulates HO-1 levels and
STAT3/NF-kB signaling in 3.5-month-old
5xFAD mice

To further elucidate the molecular mechanisms by which direct

genetic DYRK1A knockdown in the brain modulates

neuroinflammatory responses in 5xFAD mice, 3.5-month-old

5xFAD mice were injected with AAV-control shRNA or AAV-

DYRK1A shRNA in the hippocampus. Three weeks after the

injection, the hippocampal tissue was dissected, and western

blotting was performed with anti-HO-1, anti-p-AKT/AKT, anti-

p-STAT3/STAT3, and anti-p-NF-kB/NF-kB antibodies. We found

that genetic DYRK1A knockdown significantly increased protein

levels of the anti-oxidative/inflammatory molecule HO-1 in 5xFAD

mice compared to AAV-control shRNA injection (Figure 6A).

However, AAV-DYRK1A shRNA-treated 5xFAD mice did not

alter p-AKT, p-STAT3, and p-NF-kB levels compared to AAV-

control shRNA treatment (Figures 6B–D).

We then investigated the effect of direct DYRK1A

overexpress ion in the brain on oxidat ive stress and

neuroinflammation-related downstream signaling in 3.5-month-

old 5xFAD mice. The mice were injected with AAV-control-

EGFP or AAV-DYRK1A-EGFP in the hippocampus, and three

weeks after the injection, the hippocampal regions were dissected.

Then, ROS levels were analyzed, and western blotting was

performed with anti-p-AKT/AKT, anti-p-STAT3/STAT3, and

anti-p-NF-kB/NF-kB antibodies. We found that DYRK1A

overexpress ion did not a ffec t ROS leve l s and AKT

phosphorylation (Figures 6E, F). Interestingly, direct DYRK1A

overexpression in the brain significantly increased p-STAT3 and

p-NF-kB levels in 3.5-month-old 5xFAD mice (Figures 6G, H).

Taken together, these results indicate that genetic modulation of

DYRK1A expression in the brain differentially regulates

neuroinflammation-associated downstream HO-1 and STAT3/

NF-kB signaling in 5xFAD mice.
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number and soluble/insoluble Ab levels
through inhibition of BACE1 activity in
5xFAD mice

To investigate the effects of direct DYRK1A knockdown in the

brain on Ab pathology in a mouse model of early phase AD, 3.5-

month-old 5xFAD mice were injected with AAV-control shRNA or

AAV-DYRK1A shRNA in the hippocampus. Three weeks after the

in j e c t i on , t h e m i c e we r e p e r f u s ed and fixed , and
Frontiers in Immunology 12
conducted with an anti-6E10 antibody. We found that DYRK1A

knockdown significantly reduced Ab plaque number in the

hippocampus (Figures 7A, B) as well as soluble Ab40 levels

compared with AAV-control-shRNA-injected 5xFAD

mice (Figure 7C).

We then examined whether DYRK1A knockdown alters soluble

and insoluble Ab levels in aged 5xFAD mice. To test this, six-

month-old 5xFAD mice were injected with AAV-control- shRNA

or AAV-DYRK1A shRNA in the hippocampus. Three weeks after
FIGURE 4

DYRK1A knockdown selectively reduces proinflammatory responses and AD-related neuroinflammatory dynamics in 6-month-old 5xFAD mice.
(A, B) 6-month-old 5xFAD mice were injected with AAV-Control shRNA or AAV-DYRK1A shRNA, and real-time PCR was conducted to measure
hippocampal proinflammatory cytokine, NLRP3 and SOD2 mRNA levels (n = 7~8 mice/group). (C–J) Real-time PCR analysis of the expression of
markers of AD-associated reactive astrocytes and microglial neuroinflammatory dynamics in hippocampal lysates of 6-month-old 5xFAD mice
treated as described in (A, B) (n =7~8 mice/group). *p < 0.05, **p < 0.01, ***p < 0.001.
the injection, soluble and insoluble fractionation and Ab ELISA
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were performed. We found that soluble Ab40 and Ab42 levels and

insoluble Ab42 levels were significantly lowered in AAV-DYRK1A

shRNA-injected 6-month-old 5xFAD mice than in AAV-control

shRNA-injected mice (Figures 7D, E), indicating that direct genetic

knockdown of DYRK1A in the brain reduces soluble and insoluble

Ab levels in aged 5xFAD mice.

To determine the molecular mechanisms by which direct

DYRK1A knockdown in the brain alters Ab pathology, we first

measured protein levels of DYRK1A, which is a key player in Ab
pathology. We found that DYRK1A protein expression was

significantly downregulated in AAV-DYRK1A shRNA-injected
Frontiers in Immunology 13
3.5- or 6-month-old 5xFAD mice compared with AAV-control

shRNA-injected 3.5- or 6-month-old 5xFAD mice (Figures 7F, G).

Next, we measured the activities of a- and b-secretases that

proteolytically process APP (ADAM17 and BACE1, respectively)

and Ab-degrading enzymes (NEP and IDE). Importantly, direct

genetic knockdown of DYRK1A in the brain significantly decreased

BACE1 (b-secretase) activity but not ADAM17 (a-secretase)
activity in 3.5- and 6-month-old 5xFAD mice (Figures 7H–K). In

addition, DYRK1A knockdown did not alter NEP and IDE activities

in 3.5-month-old 5xFAD mice, nor did it affect protein levels of the

g-secretase PS-1-CTF (Supplementary Figures 4A–D). Finally,
FIGURE 5

Manipulation of DYRK1A expression modulates the expression of proinflammatory cytokines and AD-mediated glial dynamics in 3.5-month-old
5xFAD mice. (A) Real-time PCR analysis of hippocampal DYRK1A mRNA levels in 3.5-month-old 5xFAD mice injected with AAV-Control shRNA or
AAV-DYRK1A shRNA (knockdown) (n = 5–7 mice/group). (B, C) 3.5-month-old 5xFAD mice were treated with AAV-Control or AAV-DYRK1A
(overexpression), and real-time PCR analysis of hippocampal proinflammatory cytokine, NLRP3, and SOD2 mRNA levels was performed (n = 5–7
mice/group). (D–L) Real-time PCR analysis of the hippocampal expression of markers of AD-associated reactive astrocytes and microglial dynamics
in 3.5-month-old 5xFAD mice treated as described in (B, C) (n = 5–7 mice/group). *p < 0.05, **p < 0.01.
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genetic DYRK1A knockdown did not affect the phosphorylation of

APP at residue Thr668, which is involved in nuclear translocation

of APP and further neuronal degeneration, in 3.5- and 6-month-old

5xFAD mice (Supplementary Figures 4E–H). These results indicate

that direct genetic knockdown of DYRK1A inhibits BACE1 activity

to alleviate Ab pathology in 5xFAD mice.

FIGURE 6

Manipulation of DYRK1A expression alters HO-1 levels and STAT3/NF-kB s
were injected with AAV-Control shRNA or AAV-DYRK1A shRNA (knockdow
HO-1, anti-p-AKT, anti-AKT, anti-p-STAT3, anti-STAT3, anti-p-NF-kB, and
were assessed in 3.5-month-old 5xFAD mice injected with AAV-Control o
blotting analysis of p-AKT, AKT, p-STAT3, STAT3, p-NF-kB, and NF-kB leve
described above (n = 6–7 mice/group). *p < 0.05.
Frontiers in Immunology 14
DYRK1A knockdown selectively reduces
insoluble tau hyperphosphorylation in
4-month-old PS19 mice

Since DYRK1A is one of major tau kinase (20, 28), we further

examined whether DYRK1A knockdown modulates tau

hyperphosphorylation in 5xFAD mice. For this experiment, 3.5-

month-old 5xFAD mice were injected with AAV-control shRNA or

AAV-DYRK1A shRNA in the hippocampus. Three weeks later, the

hippocampus was dissected, and western blotting was conducted

aling in 3.5-month-old 5xFAD mice. (A–D) 3.5-month-old 5xFAD mice
), and western blotting of hippocampal lysates was performed with anti-
ti-NF-kB antibodies (n = 7 mice/group). (E) Hippocampal ROS levels
AV-DYRK1A (overexpression) (n = 7–8 mice/group). (F-H) Western
in hippocampal lysates from 3.5-month-old 5xFAD mice treated as
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FIGURE 7

DYRK1A knockdown decreases Ab plaque accumulation and soluble/insol
(A) Immunofluorescence staining of 6E10-positive Ab plaques in hippocam
shRNA or AAV-DYRK1A shRNA. (B) Quantification of data from (A) (n = 27
analysis of hippocampal lysates from 3.5-month-old 5xFAD mice treated a
mice were injected with AAV-Control shRNA or AAV-DYRK1A shRNA, and
hippocampal lysates were assessed by ELISA (n=7–8 mice/group). (F) Wes
5xFAD mice treated as described in (A) (n = 7 mice/group). (G) Western bl
mice treated as described above (n=7 mice/group). (H–K) Hippocampal a
with AAV-Control shRNA or AAV-DYRK1A shRNA (n = 6–8 mice/group). *
Frontiers in Immunology 15
le Ab levels by suppressing BACE activity in 5xFAD mice.
al slices from 3.5-month-old 5xFAD mice injected with AAV-Control
8 brain slices from 7 mice/group). (C) Results of soluble Ab40 ELISA
described above (n = 15–16 mice/group). (D, E) 6-month-old 5xFAD
luble Ab40/Ab42 levels (D) and insoluble Ab40/Ab42 levels (E) in
n blotting analysis of hippocampal DYRK1A expression in 3.5-month-old
ing analysis of hippocampal DYRK1A expression in 6-month-old 5xFAD
vity of BACE-1 and ADAM17 in 3.5- or 6-month-old 5xFAD mice injected
0.05, ***p < 0.001, ****p < 0.0001. Scale bar = 200 µm.
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with anti-p-TauSer202/Thr205 (AT8) and anti-p-TauThr231 (AT180)

antibodies. Surprisingly, we found that DYRK1A knockdown did

not affect tau hyperphosphorylation at Ser202/Thr205 (AT8) and
Thr231 (AT180) compared to AAV-control shRNA-injected 5xFAD shRNA-injected PS19 mice, whereas DST mRNA levels were 1709

1710

1711

1712

1713

1714

1715
mice (Supplementary Figure 5).

We then examined whether DYRK1A knockdown modulates

tau pathology in PS19 mice, which overexpress human mutant tau.

To test this, four-month-old PS19 mice were injected with AAV-

control shRNA or AAV-DYRK1A shRNA in the hippocampus.

Three weeks post-injection, the hippocampus was dissected, and
western blotting was conducted with anti-DYRK1A, anti-p- 1716

1717

1718

1719

1720

1721

1722

1723
TauSer202/Thr205 (AT8), anti-p-TauThr212/Ser214 (AT100), anti-p-

TauThr231 (AT180), anti-p-TauSer396, and anti-p-TauSer404

antibodies. We found that DYRK1A knockdown significantly

reduced hippocampal DYRK1A protein levels in PS19 mice

compared to AAV-control shRNA-injected PS19 mice confirming

successful knockdown (Figure 8A). In addition, DYRK1A

k n o c k d own d i d n o t a l t e r s o l u b l e / i n s o l u b l e t a u
hyperphosphorylation at Ser202/Thr205 (AT8), Thr212/Ser214

models of AD.

dynamics and upregulated STAT3/NF-kB phosphorylation.
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(AT100), or Thr231 (AT180) in PS19 mice (Figures 8B–D).

Interestingly, we found that AAV-DYRK1A shRNA-injected PS19

mice but s ign ificant ly downregu la ted inso lub le tau

hyperphosphorylation at Ser396 and Ser404 but not soluble p-

Ser396 and p-Ser404 levels (Figures 8E, F).

To determine the effects of DYRK1A knockdown on p-CDK5 and

p-GSK3a/b tau kinase levels, 4-month-old PS19 mice were injected as

described above, and western blotting was conducted with anti-p-CDK5

and anti-p-GSK3a/b antibodies. p-CDK5 and p-GSK3a/b levels in the

hippocampus did not differ between AAV-DYRK1A shRNA-injected

and AAV-control shRNA-injected PS19 mice (Figures 8G, H),

suggesting that DYRK1A knockdown directly in the brain in human

tau mutant PS19 mice selectively suppresses tauopathy-associated

phosphorylation without altering levels of the tau kinases CDK5 and

GSK3a/b.

DYRK1A knockdown diminishes
neuroinflammatory-associated dynamics

in 4-month-old PS19 mice

therapeutic target for AD.

healthy/WT controls (32, 33). In addition, we and others have
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S ince gene t i c knockdown of DYRK1A inh ib i t ed

neuroinflammatory responses in 5xFAD mice, we investigated

whether DYRK1A gene knockdown affects proinflammatory

responses in PS19 mice. For this experiment, four-month-old

PS19 mice were injected with AAV-control shRNA or AAV-

DYRK1A shRNA in the hippocampus. Three weeks after the

injection, the hippocampus regions were dissected, and real-time

PCR was conducted. We found that DYRK1A knockdown

significantly reduced mRNA levels of the proinflammatory

cytokines IL-1b and TNF-a in PS-19 mice but not COX-2 and

IL-6 (Figures 9A, B). In addition, AAV-DYRK1A shRNA-injected

PS19 mice significantly suppressed NLRP3 and SOD2 mRNA

levels (Figure 9C).

We then examined the effects of DYRK1A knockdown on

microglial- and astroglial-associated neuroinflammatory dynamics
Frontiers in Immunology 16
in tau-overexpressing PS19 mice and found that markers of

astrocyte-related neuroinflammatory dynamics, including GFAP,

GBP2, NESTIN, and CXCL10, were reduced in AAV-DYRK1A
unaffected (Figures 9D–G). Moreover, DYRK1A knockdown

significantly downregulated mRNA levels of markers of

microglial-associated neuroinflammatory dynamics (IBA-1),

DAMs (ITGAX, TREM2, and CLEC7A), and RA–DAM

interactions (CR3 and C1QA) (Figures 9H-J). These data indicate

that direct genetic modulation of DYRK1A in the brain of tau-

overexpressing PS19 mice alleviates proinflammatory responses, the

expression of the neuroinflammation-related molecular targets

NLRP3 and SOD2, and neuroinflammatory dynamics.

Discussion

The role of DYRK1A as a tau kinase in AD pathogenesis is well

established; however, the effects of direct genetic DYRK1A

manipulation in the brain and the underlying molecular

mechanisms have not been fully demonstrated. To address this

gap, the present study investigated whether direct alterations in

DYRK1A gene expression in the brain alter cognitive function,

neuroinflammation, and Ab/tau pathology and elucidated the

underlying mechanisms of action in WT mice and/or mouse
DYRK1A overexpression in WT mice impaired short-term

spatial/recognition memory, decreased SynGAP expression, and

increased P38 phosphorylation. In addition, DYRK1A knockdown

in 5xFAD mice improved cognitive function, upregulated

CaMKIIa/CREB signaling, and suppressed mRNA levels of

markers of neuroinflammatory-associated dynamics and

enhanced anti-oxidative/inflammatory molecule HO-1 levels. By

contrast, DYRK1A overexpression in 5xFAD mice increased

mRNA levels of markers for neuroinflammatory-associated
Importantly, DYRK1A knockdown in 5xFAD mice reduced Ab
plaque deposition, soluble Ab40/Ab42 levels and insoluble Ab42
levels by inhibiting BACE-1 activity but did not affect tau

hyperphosphorylation. Furthermore, in tau-overexpressing PS19

mice, knocking down DYRK1A directly in the brain selectively

suppressed insoluble tau hyperphosphorylation at Ser396 and

Ser404 and neuroinflammatory responses. Collectively, the

present results indicate that DYRK1A plays an important role in

cognitive function, Ab/tauopathy and neuroinflammation in WT

mice and mouse models of AD, implicating DYRK1A as a potential
Cognitive impairments and memory loss are critical factors in

AD diagnosis and progression (29). Recent studies have implicated

DYRK1A is closely associated with pathoprogression of

neurocognitive disorders, including AD and Down syndrome (10,

30, 31). Specifically, DYRK1A expression is increased in the brains

of patients with AD or Down syndrome or in DYRK1A-

overexpressing transgenic mice (DYRK1A Tg mice) compared to
frontiersin.org
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More importantly, DYRK1A knockdown rescued cognitive
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reported that pharmacological DYRK1A inhibition (e.g., with

KVN93) ameliorates cognitive dysfunction and AD pathology in

3xTg AD mice and Ab-overexpressing 5xFAD mice (22, 23). Here,

we systematically investigated the direct effects of DYRK1A in the

brain on cognitive function by injecting an AAV enabling DYRK1A

overexpression or knockdown. In WT mice, DYRK1A

overexpression significantly reduced spatial/recognition memory

accompanied by decreased SynGAP (a Ras/Rap inactivator)

expression and increased p-P38 levels (Figure 1). However,

FIGURE 8

DYRK1A knockdown selectively suppresses insoluble tau hyperphosphoryl
AAV-Control shRNA or AAV-DYRK1A shRNA, and western blotting of hipp
group). (B–F) PS19 mice were treated as described in (A), and western blo
(AT8), anti-p-TauThr212/Ser214 (AT100), anti-p-TauThr231 (AT180), anti-p-Tau
(G, H) PS19 mice were injected as described above, and western blot anal
anti-p-GSK3a/b and anti-GAPDH antibodies (n = 8 mice/group). *p < 0.05
DYRK1A knockdown significantly increased short-term and long-

term memory as assessed by the Y-maze and NOR tests,

respectively in 3.5-month-old 5xFAD mice (Figure 2).

Furthermore, DYRK1A knockdowned 6-month-old 5xFAD mice

also significantly enhanced long-term memory but not short-term

memory (Figure 2). These stage-dependent differences may reflect

variations in AD severity, as 3.5- and 6-month-old 5xFAD mice

represent the early and intermediate stages of AD, respectively.

on in PS19 mice. (A) Tau-overexpressing PS19 mice were injected with
ampal lysates was performed with an anti-DYRK1A antibody (n = 8 mice/
g of hippocampal lysates was performed with anti-p-TauSer202/Thr205

396, anti-p-TauSer404 and anti-GAPDH antibodies (n = 8 mice/group).
s of hippocampal lysates was performed with anti-p-CDK5, anti-CDK5,
*p < 0.01, ****p < 0.0001.
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function and increased CaMKIIa/CREB signaling in 5xFAD mice

compared with AAV-control shRNA-injected 5xFAD mice

(Figure 2). Our findings raise an interesting question: why do

genetic overexpression and knockdown of DYRK1A engage

distinct memory-regulating pathways? These differences may be

the result of distinct neuropathological states in WT and 5xFAD

mice. Specifically, under pathological AD conditions (Ab
overexpression in 5xFAD mice), Ab oligomers suppress LTP-

promoting Ras signaling, including CaMKIIa activation and

CREB-dependent transcription, thereby contributing to memory

FIGURE 9

DYRK1A knockdown suppresses proinflammatory cytokine levels and AD-ass
(A–C) 4-month-old PS19 mice were injected with AAV-Control shRNA or AA
hippocampal proinflammatory cytokine, NLRP3, and SOD2 mRNA levels (n =
and astroglial-associated neuroinflammatory dynamics in hippocampal lysate
group). *p < 0.05, **p < 0.01, ****p < 0.0001.
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impairment (34, 35). Consistent with previous findings, we found

that DYRK1A knockdown reduced Ab levels in 5xFAD mice

(Figure 7), which may have attenuated Ab-mediated inhibition of

the CaMKIIa–CREB pathway, thereby restoring pathway activity

and improving memory performance (Figure 2). However, under

non-pathological conditions (WT mice), CaMKIIa–CREB
signaling is already within a normal functional range. Thus, it is

possible that DYRK1A overexpression does not further alter

CaMKIIa or CREB phosphorylation in WT mice. Instead,

DYRK1A overexpression reduced SynGAP expression and

ociated neuroinflammatory dynamics in 4-month-old PS19 mice.
V-DYRK1A shRNA, and real-time PCR was conducted to measure
6~8 mice/group). (D–J) Real-time PCR analysis of markers of microglial
s of 4-month-old PS19 mice treated as described above (n =7~8 mice/
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increased p-P38 levels in WT mice (Figure 1). Because SynGAP

inactivates Ras/Rap signaling, SynGAP deficiency is closely

associated with cognitive impairment. Indeed, SynGAP1+/− mice

exhibit attenuated hippocampal LTP induction and reduced

learning and memory (36). In addition, excessive activation of

P38 disrupts synaptic plasticity and memory; Dai et al.

demonstrated that neuron-specific knockdown of P38 restored

hippocampal LTP and improved spatial memory performances in

5xFAD mice (37). Moreover, pharmacological inhibition of P38

(e.g., by NJK14047 or MW 150) elicits neuroprotective effects and/

or enhanced cognitive function in 5xFAD mice (38, 39). Taken

together, our findings suggest that genetic DYRK1A manipulation

modulates cognitive function through disease state–dependent

mechanisms: restoring Ab-suppressed CaMKIIa–CREB signaling

under AD pathological conditions (5xFAD mice) or modulating

SynGAP–P38 pathways under normal conditions (WT mice).

Homeostatic astrocytes and surveilling microglia play critical

roles in the formation and remodeling of synapses, thereby

contributing to normal cognitive function (40, 41). However,

under pathological conditions, including sustained exposure to

Ab plaques and/or NFTs, these neuroprotective glial cells shift to

d i s e a s e - a s so c i a t ed r e a c t i v e g l i a , wh i ch exa c e rba t e

neuroinflammation and contribute to neuronal degeneration

followed by cognitive decline (42–44). Importantly, several studies

have demonstrated that DYRK1A plays an essential role in

neuroinflammatory responses in vivo (22, 45). For instance,

DYRK1A-overexpressing Tg mice and DYRK1A shRNA plasmid-

injected WT mice exhibit significant increases or decreases,

respectively, in the mRNA levels of the astrocyte markers GFAP

and S100b (45). The same study also found that the expression of

MAC-2, a marker of AD-associated reactive microglia, is not altered

in DYRK1A Tg mice (45, 46). In addition, we previously reported

that pharmacological inhibition of DYRK1A with the small

molecule KVN93 significantly downregulates microglial and

astrocyte activation in 5xFAD mice (22). However, the effects of

altering DYRK1A gene expression directly in the brain on

neuroinflammatory dynamics are not well studied. We therefore

investigated the effect of genetic DYRK1A manipulation directly in

the brain on microglial/astroglial neuroinflammatory dynamics and

the underlying mechanisms of action in 5xFAD mice. We found

that AAV-DYRK1A shRNA injection (knockdown) significantly

decreased neuroinflammatory responses and significantly increased

HO-1 expression in 5xFAD mice without altering STAT3/NF-kB
phosphorylation levels (Figures 3, 6). By contrast, AAV-DYRK1A

injection (overexpression) notably increased proinflammatory

responses and elevated STAT3 and NF-kB phosphorylation in

5xFAD mice but did not affect ROS levels (Figures 5, 6). The

distinct mechanisms underlying these differential effects of

DYRK1A knockdown and overexpression on oxidative stress and

neuroinflammatory downstream signaling in 5xFAD mice will be

systematically analyzed in a future study.

The NLRP3 inflammasome plays a key role in AD progression

by increasing the release of the proinflammatory cytokine IL-1b and
reducing Ab phagocytosis, which accelerates Ab aggregation and

senile plaque deposition (47). Interestingly, pharmacological

inhibition of NLRP3 by OLT1177 ameliorates Ab accumulation

and cognitive impairment in an AD mouse model (48, 49).

Although both NLRP3 and DYRK1A have been implicated in AD

pathology, the mechanistic relationship has not been fully

elucidated. We therefore examined whether direct modulation of

DYRK1A in the brain affects NLRP3 expression in 5xFAD mice.

AAV-DYRK1A shRNA injection (knockdown) significantly

decreased NLRP3 mRNA levels in the hippocampus in 5xFAD

mice, whereas AAV-DYRK1A-injection (overexpression) markedly

increased NLRP3 mRNA expression (Figures 3–5). These results

suggest that DYRK1A regulates NLRP3 to influence

neuroinflammatory responses in this mouse model of AD.

Consistent with this possibility, DYRK1A knockdown increased

levels of the anti-oxidative/neuroinflammatory molecule HO-1,

while DYRK1A overexpression upregulated STAT3/NF-kB
signaling, which is associated with NLRP3 downstream signaling

in 5xFAD mice (Figure 6). Collectively, these findings raise the

possibility that DYRK1A may function upstream of NLRP3 to

modulate neuroinflammatory responses in AD pathology. To

further validate this hypothesis, it is necessary to determine

whether directly altering DYRK1A expression (knockdown or

overexpression) in the brain modulates key upstream modulators

of NLRP3 [e.g., thioredoxin-interacting protein (TXNIP) and

NIMA-related kinase 7 (NEK7)]. Changes in TXNIP and NEK

expression would support the notion that DYRK1A acts upstream

of NLRP3. Future studies will clarify this regulatory relationship.

Alternatively, DYRK1A may act downstream of NLRP3 to diminish

AD-associated neuroinflammatory signaling. To test this

possibility, future research will examine whether modulation of

NLRP3 expression via genetic knockdown using an AAV vector

system or pharmacological inhibition alters DYRK1A levels or

activity in mouse models of AD. A third plausible explanation is

that DYRK1A directly binds to NLRP3 or its adaptor proteins (e.g.,

ASC), thereby influencing inflammasome assembly and subsequent

proinflammatory cytokine release. Taken together, our findings

suggest that DYRK1A and NLRP3 reciprocally regulate each

other through a bidirectional signaling network to modulate

neuroinflammatory responses in mouse models of AD.

Neurotoxic Ab plaques are formed through the amyloidogenic

proteolytic processing of APP by b-secretase (BACE-1) and g-secretase
(presenilin), which contributes to neuronal degeneration and further

synaptic and cognitive dysfunction (4, 13). In contrast, Ab production

is inhibited when APP is processed via non-amyloidogenic proteolysis

by a-secretases such as ADAM10 and ADAM17 (50). In addition, Ab-
degrading enzymes like IDE and NEP hydrolyze Ab40 into smaller and

less toxic fragments (51). Interestingly, several studies have reported

that DYRK1A participates in the regulation of APP trafficking and

processing, thereby contributing to Ab pathology in vitro and in vivo.

For example, DYRK1Amodulates bilateral APP axonal transportation,

a critical process for Ab pathogenesis, in neurons derived from human

induced pluripotent stem cells (52). Moreover, DYRK1A Tg mice that

overexpress DYRK1A exhibit increased phosphorylation of APP at

Thr688, a crucial site for amyloidogenic processing and Ab levels in the
brain (53). Furthermore, pharmacological inhibition of DYRK1A, e.g.,

by KVN93, significantly reduces Ab plaque accumulation and
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insoluble Ab40/Ab42 levels in 5xFADmice and 3xTg mice (22, 23). In

the present study, we demonstrated that AAV-DYRK1A shRNA-

injected 5xFAD mice significantly reduced Ab deposition and

soluble/insoluble Ab levels through selectively reducing the activity of

the b-secretase BACE-1 without affecting other Ab-regulating enzymes

(i.e., ADAM17, NEP, and IDE) or PS-1 expression levels (Figure 7,

Supplementary Figure 4). We then examined whether directly altering

DYRK1A expression in the brain modulates APP phosphorylation at

Thr688 to affect Ab pathology and found that direct DYRK1A

knockdown in the brain did not alter p-APPThr688 levels in either

3.5- or 6-month-old 5xFAD mice (Supplementary Figure 4). Together,

the previous literature and the present findings suggest that DYRK1A

manipulation directly in the brain diminishes Ab pathology by

suppressing BACE-1 activity and/or direct inhibition of DYRK1A

itself in 5xFAD mice. Although our current findings demonstrate the

underlying mechanisms by which direct genetic DYRK1A knockdown

or overexpression in the brain modulates Ab pathology in WT and

5xFAD mice, we did not use pharmacological inhibitors to further

validate whether DYRK1A manipulation modulates Ab pathologies by

targeting other molecules, which will be addressed in a future study.

Tau participates in microtubule stabilization in neurons under

normal physiological conditions. However, under pathological

conditions, multiple tau kinases (e.g., DYRK1A and GSK3a/b)
hyperphosphorylate tau, leading to its aggregation, NFT

formation, and cognitive dysfunction (54, 55). Therefore, tau

kinase dysfunction contributes to the pathogenesis of

neurodegenerative diseases, and in vivo and clinical studies have

shown that modulating tau kinase is a critical therapeutic approach.

For example, genetic DYRK1A overexpression (e.g., in DYRK1A

transgenic mice or Down syndrome patients) increases total tau

levels, tau hyperphosphorylation, and NFT formation (56, 57).

However, pharmacological DYRK1A inhibition significantly

reduces tauopathy in 3xTg mice, a mouse model of AD exhibiting

both Ab pathology and tauopathy (23). In addition, CDK5 is highly

expressed in the brains of patients with AD, and genetic

overexpression of CDK5 or increased CDK5 activity induces NFT

formation, synaptic damage, and neuronal death in vitro and in vivo

(58, 59). Another tau kinase, GSK3, is associated with memory

decline, tau hyperphosphorylation, and the formation of paired

helical filaments (60, 61). However, beyond these findings, the effect

of direct genetic inhibition of DYRK1A in the brain on tauopathy

has not been fully investigated in mouse models of AD. We found

that AAV-DYRK1A shRNA injection in the brain in 5xFAD did not

reduce tau hyperphosphorylation at Ser202/Thr205 and Thr231

(Supplementary Figure 5). To understand why direct DYRK1A

knockdown in the brain does not affect tau hyperphosphorylation

in 3.5-month-old 5xFADmice, it is important to remember that tau

hyperphosphorylation increases in an age-dependent manner in

5xFAD mice. While robust p-Tau (Ser202/Thr205) expression is

observed in 7- to 8-month-old 5xFAD mice (late-stage AD), it is

possible that 3.5-month-old 5xFAD mice (early-stage AD) are not

suitable for assessing the effect of DYRK1A knockdown on tau

hyperphosphorylation (62, 63). To further clarify the effects of

DYRK1A on tau pathology, we examined whether direct

DYRK1A knockdown in the brain differentially regulates tau

hyperphosphorylation in tau-overexpressing PS19 mice. We

found that tau phosphorylation at Ser396 and Ser404 was

significantly reduced in RIPA-insoluble fractions of hippocampal

tissue from AAV-DYRK1A shRNA-injected PS19 mice (Figure 8).

These results indicate that direct DYRK1A knockdown in the brain

modulates tau hyperphosphorylation under tauopathy-

predominant conditions.

There are several limitations of the present study. First, we

demonstrated that genetic DYRK1A knockdown did not alter tau

phosphorylation in 3.5-month-old 5xFAD mice (Supplementary

F i g u r e 5 ) a nd s e l e c t i v e l y r e d u c e d i n s o l u b l e t a u

hyperphosphorylation at Ser396 and Ser404 in 4-month-old PS19

mice (Figure 8). Therefore, combined approaches might provide a

broader blockade of tau phosphorylation epitopes, thereby

achieving more efficient suppression of tauopathy and directly

and/or indirectly regulating Ab pathology. CDK5 and GSK3b are

involved in inflammation/Ab signaling as well as synaptic plasticity/
cognitive function (64–67). Therefore, combining genetic

knockdown of DYRK1A with a tau inhibitor might have

synergistic effects on multiple aspects of AD pathology, including

cognitive impairment, neuroinflammation, and Ab/tau pathology.

Second, the present study specifically focused on the effect of genetic

manipulation of DYRK1A in the hippocampus rather than multiple

brain regions. The hippocampus was chosen because it plays a

pivotal role in early memory formation and is particularly

vulnerable to AD-related pathology (68). Given its central

involvement in memory consolidation and synaptic plasticity, we

examined how DYRK1A knockdown or overexpression in this

region influences cognitive function and other AD pathologies.

However, we are aware that other brain regions, such as the cortex,

are also crucial for regulating learning and memory. Future studies

will therefore investigate the effects of DYRK1A modulation in the

cortex using AAV-based gene delivery to determine its impact on

cognitive function, AD pathology, and neuroinflammation in

mouse models of AD as well as explore potential combinational

therapeutic synergistic effects (e.g., DYRK1A gene therapy and Ab/
tau inhibitor) on AD pathology.

Conclusion

The present study demonstrated that DYRK1A gene

overexpression directly in the hippocampus in WT mice

significantly impaired short-term spatial/recognition memory by

modulating SynGAP and P38 signaling. In addition, DYRK1A

knockdown directly in the hippocampus in Ab-overexpressing
5xFAD mice significantly attenuated cognitive impairment and

neuroinflammatory responses, increased anti-oxidative/anti-

inflammatory HO-1 levels, and reduced Ab pathology by

suppressing BACE-1 activity. Moreover, DYRK1A overexpression

directly in the hippocampus in 5xFAD mice exacerbated

neuroinflammation and enhanced STAT3/NF-kB signaling.

Furthermore, DYRK1A knockdown directly in the hippocampus

in tau-overexpressing PS19 mice selectively reduced insoluble tau

phosphorylation and proinflammatory responses/glial dynamics.
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These results indicate that modulation of DYRK1A expression in

the brain is a promising therapeutic strategy for ameliorating

cognitive dysfunction and mitigating AD-related pathologies.
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