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Figure 1 Alt-Text — Research findings on DYRK1A protein expression and behavioral
tests in mice. The top section shows hippocampal images with merged, EGFP, DAPI, and
DYRKIA stains. Subsequent sections present bar graphs and Western blot results,
highlighting increased DYRKI1A intensity, mRNA levels, and protein expression in
experimental groups compared to controls. Behavioral tests, including Y maze and NOR,
indicate changes in spontaneous alternation and novelty preference in DYRK1A
overexpressing mice. Observations are outlined with statistical significance markers.

Figure 2 Alt-Text — A scientific diagram presents data on the effects of DYRK1A shRNA
on 5xFAD mice. Panels A and G show bar graphs of DYRKIA mRNA levels in the
hippocampus. Panel B includes hippocampus images stained for DYRKIA, with quantified
intensity graphs for CA1 and DG. Panels C and H display Y maze test results, indicating
spontaneous alternation and total arm entry. Panel D shows NOR test results for object
recognition. Panels E and F exhibit Western blots and bar graphs for p-CaMKllo and p-
CREB levels. Each panel compares shCON and shDYRK1A groups at different time points.

Figure 3 Alt-Text — Bar graphs display experimental data from 5xFAD mice treated
with AAV-CON shRNA or AAV-DYRKI1A shRNA. Panels A and B show changes in
proinflammatory cytokines IL-1B, TNF-a, COX-2, and IL-6 at mRNA and protein levels.
Panels C to H depict molecular targets and neuroinflammatory dynamics, including
NLRP3, SOD2, GFAP, GBP2, CXCL10, DST, NESTIN, IBA-1, ITGAX, TREM2, CLEC7A, CR3,
and C1QA. Statistical significance is indicated with asterisks, with comparisons between
shCON and shDYRK1A groups.

Figure 4 Alt-Text — Bar graphs showing mRNA fold changes in two experimental
conditions for 5xFAD mice aged six months. The conditions are shCON and shDYRK1A.
Graphs detail proinflammatory cytokines (IL-1B, TNF-o, COX-2, IL-6), molecular targets
(NLRP3, SOD?), astroglial-associated neuroinflammatory dynamics (GFAP, GBP2,
CXCL10), and microglial-associated neuroinflammatory dynamics (IBA-1, ITGAX, TREM2,
CLEC7A, CR3, C1QA). Green and orange dots represent data points, with significant
differences marked by asterisks. Data were collected via real-time PCR from days one to
twenty-four.

Figure 5 Alt-Text — Graphs depicting mRNA fold change in 5xFAD mice treated with
AAV-CON-EGFP or AAV-DYRK1A OE-EGFP at 3.5 months. Panels A-C show
proinflammatory cytokines and molecular targets. Panels D-H show astrogliosis-
associated dynamics, while panels I-L show microglia-associated markers. Orange and
green data points represent treatment groups, with significant changes indicated by
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asterisks. The focus is on DYRK1A's role in modulating cytokines, neuroinflammatory, and
gene expression dynamics measured by real-time PCR.

Figure 6 Alt-Text — Western blot and bar graph data showing effects of shDYRK1A and
OE-DYRK1A on protein levels in 5xFAD mice. Panels A to D depict HO-1, p-AKT, p-
STAT3, and p-NF-xB levels in hippocampal tissue. Panels E to H show reactive oxygen
species, p-AKT, p-STAT3, and p-NF-kB levels with controls. Statistical significance is
indicated by asterisks. The data are presented with error bars and include comparisons
between treatment groups.

Figure 7 Alt-Text — Research illustration showing experimental results from 5xFAD
mice, both 3.5-month-old and 6-month-old, treated with AAV-CON shRNA or AAV-
DYRK1A shRNA. Panel A displays microscopy images of the hippocampus from different
treatments, highlighting EGFP/DAPI/6E10 staining. Graphs B to K detail quantitative
analyses, including AB plaque counts, soluble and insoluble AB40 and AB42 levels,
DYRKIA protein levels, and enzyme activity for BACE-1 and ADAM17. Statistical
significance is indicated with asterisks, showing various effects of the shRNA treatments.

Figure 8 Alt-Text — Western blot analysis of protein expression in PS19 mice at four
months old, comparing the effects of AAV-CON shRNA and AAV-DYRK1A shRNA over 21
days. Panels A-F show soluble and insoluble fractions of phosphorylated Tau proteins at
various sites, indicating changes in control versus shRNA treatment groups. Panels G-H
depict p-CDK5 and p-GSK3a/B expression in hippocampal tissues. Graphs illustrate
percentage control changes; significance levels are marked with asterisks. Protein
markers are indicated on the left, and conditions are labeled below each lane.

Figure 9 Alt-Text — Bar graph panels show mRNA fold changes in PS19 mice for
various targets after either AAV-CON shRNA or AAV-DYRK1A shRNA treatment. Panels A-
C display changes in proinflammatory cytokines (IL-13, TNF-o, COX-2, IL-6, NLRP3,
SOD?2). Panels D-G show astroglial-associated markers (GFAP, GBP2, DST, NESTIN,
CXCL10). Panels H-J depict microglial-associated markers (IBA-1, ITGAX, TREM2,
CLEC7A, CR3, C1QA). Statistical significance is indicated with asterisks: * for p < 0.05, **
for p < 0.01, **** for p < 0.0001. Comparison between shCON and shDYRK1A groups

is highlighted.
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Genetic knockdown of DYRK1A

attenuates cognitive impairment,
AP pathology, tauopathy and
neuroinflammatory responses in
mouse models of AD

Hyun-ju Lee'*, Sora Kang*', Yoo Jin Lee", Seokjun Oh'*, Q2
Bitna Joo™*, Jeong-Woo Hwang'? Jeongseop Kim™*,
Tae-Eun Kim*, Tae-Mi Jung?, Yu-Jin Kim?, Ji-Yeong Jang'*>,
Jeong-Heon Song? Ja Wook Keo'* and Hyang-Sook Hoe"***
‘Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu,

Republic of Korea, ?Al-based Neurodevelopmental Diseases Digital Therapeutics Group, Korea Brain

Research Institute (KBRI), Daegu, Republic of Korea, *Department of Brain Sciences, Daegu
Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea, Department of
Pharmacology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea

Introduction: Dual specificity tyrosine phosphorylation-regulated kinase 1A
(DYRK1A) is associated with the pathoprogression of neurodevelopmental and
neurodegenerative disorders. However, the effects of direct genetic
manipulation of DYRKIA in the brain on cognitive function, neuroinflammation
and Alzheimer's disease (AD) pathology and underlying molecular mechanisms
have not been fully investigated.

Methods: To determine whether overexpressing or knocking down DYRK1A
expression directly in the brain affects cognitive function, neuroinflammation and
AD pathology, adeno-associated viruses (AAVs) were injected into the
hippocampus of wild-type (WT), 5xFAD, and PS19 mice. Then, cognitive
function was assessed via Y-maze and novel object recognition (NOR) tests,
and neuroinflammatory responses and AD pathologies were analyzed by real-
time PCR, Western blotting, immunofluorescence staining, AD-associated
protein activity assays and ELISA.

Results and discussion: In WT mice, hippocampal DYRKIA overexpression
significantly reduced short-term spatial/recognition memory and SynGAP
expression while increasing p-P38 levels. Conversely, in amyloid-beta (AB)-
overexpressing 5xFAD mice, hippocampal DYRK1IA knockdown improved
short-term spatial/recognition memory and significantly increased CaMKllo
and CREB phosphorylation. Moreover, hippocampal DYRK1A knockdown in
5xFAD mice significantly suppressed mRNA levels of proinflammatory
cytokines and markers of AD-associated reactive astrocytes (RAs), disease-
associated microglia (DAMs), and RA-DAM interactions. However,
hippocampal DYRKI1A overexpression in 5xFAD mice increased mRNA levels of
the proinflammatory cytokine IL-1B, RA markers and the microglial marker Iba-1.
Interestingly, hippocampal DYRK1A knockdown in 5xFAD mice significantly
increased levels of the anti-oxidative/inflasnmatory molecule HO-1 without
altering p-STAT3/p-NF-xB levels. By contrast, hippocampal DYRK1A
overexpression in 5xFAD mice enhanced STAT3/NF-kB phosphorylation but
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did not affect ROS levels. Importantly, hippocampal DYRK1A knockdown in
5xFAD mice significantly reduced AP plaque number, soluble AB40 levels, and
soluble/insoluble AB42 levels by suppressing B-secretase BACEL activity but not
tau hyperphosphorylation. Finally, hippocampal DYRK1A knockdown in PS19
mice [a model of AD that overexpresses human mutant tau (P301S)] selectively
decreased insoluble tau hyperphosphorylation at Ser396 and Ser404 and
alleviated proinflammatory responses/glial-associated neuroinflammatory
dynamics. Taken together, our data indicate that DYRK1A modulates cognitive
function, neuroinflammation, and AD pathology (AR and tauopathy) in mouse
models of AD and/or WT mice and support DYRKIA as a potential therapeutic

target for AD.

DYRK1A, neuroinflammation, amyloid beta, tauopathy, cognitive function,

Alzheimer’s disease

Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative
disease characterized by cognitive impairment and behavioral
disturbances. A key neuropathological hallmark of AD is the
extracellular accumulation of amyloid-beta (AB) plaques (1, 2).
Previous studies reported that soluble oligomers of AP, which is
formed by the sequential proteolytic cleavage of amyloid precursor
protein (APP) by B- and y-secretases (3), are responsible for the
disruptions of synaptic communication, the induction of glial
hyperactivation, and the subsequent neuroinflammation that
ultimately lead to neuronal degeneration and cognitive decline
(4). Another neuropathological hallmark of AD is the
intracellular formation of neurofibrillary tangles (NFTs), which
are composed of hyperphosphorylated tau protein. In healthy
neurons, tau stabilizes microtubules and plays a critical role in
axonal transport and neuronal function (5). However, when
hyperphosphorylated, tau loses its ability to bind microtubules,
leading to microtubule destabilization, impaired cellular transport,
and consequently contributed to neuronal dysfunction and
degeneration. NFTs are associated with neuronal dysfunction and
death, memory loss, neuroinflammatory dynamics, and the
progression of AD pathogenesis (6). Therefore, elucidating the
underlying mechanisms for the regulation of AP accumulation
and tau pathology is crucial for developing effective therapeutic
strategies for AD.

Dual specificity tyrosine phosphorylation-regulated kinase 1A
(DYRKI1A) plays a crucial role in physiological and pathological
processes in the brain. Several studies reported that DYRKIA is
involved in essential neuronal functions such as neurogenesis,
neuronal differentiation, and dendritic spine formation and
maturation, as well as in fundamental cellular processes including
cell growth and division (7-10). In addition, DYRK1A is located on
human chromosome 21, and its overexpression has been implicated
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in multiple diseases, most notably Down syndrome and AD (11-
13). Specifically, DYRK1A resides in the Down syndrome critical
region (DSCR) and contributes to various phenotypes of Down
syndrome, including cognitive disability and memory and learning
impairments (14-19). Importantly, genetic overexpression of
DYRKIA leads to APP phosphorylation at Thr688, which
enhances the binding affinity of APP to -/y-secretases, resulting
in AP accumulation (10). DYRK1A also directly phosphorylates
tau, a key step required for the formation of NFT (20). We and
others previously reported that small-molecule inhibitors of
DYRKIA (e.g., KVN93 and Dyrkl-inh) alleviate LPS-induced
neuroinflammation by modulating TLR4/AKT/STAT3 and TLR4/
NF-xB signaling pathways and reduce AD-associated microglial/
astroglial activation (21, 22). Pharmacological inhibition of
DYRKI1A also significantly decrease AB pathology in 5xFAD and
3xTg mice (22, 23). Collectively, previous findings suggest that
DYRKIA could be a major regulator of AD pathology.

However, the precise molecular mechanisms underlying the
direct effects of DYRKIA inhibition in the brain have not been fully
elucidated. It is possible that pharmacological DYRKI1A inhibitors
modulate AD pathology through its off-target (e.g., MAO-A and
CK1) which are also in volved in AD pathogenesis (24, 25). To
separate the direct effects of DYRKIA inhibition from these off-
target effects, in the present study, we examined the effects of direct
modulation of DYRKIA expression in the brain on cognitive
function and AD pathology as well as the underlying molecular
mechanisms. An adeno-associated virus (AAV) vector was used to
knock down or overexpress DYRKI1A in the hippocampus of wild-
type (WT) mice, 5XFAD mice (AB-overexpressing AD mouse
model), and PS19 mice (tau-overexpressing AD mouse model).
We found that hippocampal DYRK1A overexpression in WT mice
significantly impaired short-term and long-term memory, along
with reducing SynGAP levels and increasing P38 phosphorylation.
However, knocking down DYRKI1A in the hippocampus in 5xFAD
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mice improved short-term spatial/recognition memory and
increased p-CaMKIIo/p-CREB levels. In addition, hippocampal
DYRKIA knockdown in 5xFAD mice significantly downregulated
mRNA levels of proinflammatory cytokines and markers of AD-
related neuroinflammatory dynamics. Conversely, overexpressing
DYRKIA in the hippocampus in 5xFAD mice selectively
exacerbated AD-evoked neuroinflammatory mediators [IL-1B, RA
(reactive astrocyte) markers, IBA-1, CR3]. Moreover, in 5xFAD
mice, hippocampal DYRKIA knockdown increased levels of the
anti-oxidative/inflammatory molecule HO-1 but not
neuroinflammation-associated downstream STAT3/NF-xB
signaling, whereas hippocampal DYRK1A overexpression
significantly enhanced STAT3/NF-xB phosphorylation without
altering ROS levels. More importantly, hippocampal DYRKIA
knockdown significantly alleviated Af pathology (e.g., senile
plaque accumulation and soluble/insoluble AP levels) by
inhibiting BACE-1 activity in 5xFAD mice. Finally, hippocampal
DYRKI1A knockdown in PS19 mice selectively decreased insoluble

Ser396 Ser404

p-Tau and p-Tau and suppressed tau-mediated
neuroinflammatory responses/AD-related glial dynamics.
Collectively, these results indicate that direct genetic DYRKIA
modulation (knockdown or overexpression) in the brain
modulates memory performance and various AD-related
pathologies including proinflammatory responses, A} burden,
and tauopathy in 5xFAD, PS19, and/or WT mice implicating

DYRKIA as a promising target for AD intervention.

Materials and methods
Ethics statement

All experimental procedures were approved by the institutional
biosafety committee (IBC) and performed in accordance with
approved animal protocols of the Korea Brain Research Institute
(KBRI, approval nos. TACUC-2016-0013, TACUC-19-00049,
TACUC-19-00042, and TACUC-20-00061).

5xFAD, PS19, and wild-type mice

3.5- and 6-month-old male 5xFAD mice (B6Cg-Tg
APPSwFlLon, PSEN1*M146L*L286V6799Vas/Mmjax; stock #
34848-JAX) and 4-month-old male human P301S tau transgenic
mice (PS19 mice) (B6;C3-Tg (Prnp-MAPT*P301S)PS19Vle/], Stock
No. 008169) were purchased from Jackson Laboratory (Bar Harbor,
ME, USA), and 3- and 3.5-month-old male C57BL6/N (WT) mice
were purchased from Orient-Bio Company (Gyeonggi-do, Korea).
All animals were housed in a pathogen-free facility with a
photoperiod of 12 h and environmental control at 22°C. Food
and water were freely accessible to the mice throughout
the experiment.
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AAV-hSyn-mDYRK1A-EGFP

Cells

AAVpro® 293T cells (cat. no. 632273, Clontech, Mountain
View, CA, USA) were cultured in Dulbecco’s modified Eagle’s
Medium (DMEM; cat. no. 11965092, Gibco, Grand Island, NY,
USA) with 5% fetal bovine serum (FBS; cat. no. 16000-044,
Invitrogen, Carlsbad, CA, USA) and penicillin-streptomycin
solution (cat. no. 15140122, Gibco). The cells were maintained at
37°C in an atmosphere of humidified air containing 5% CO,.

Plasmids

The AAV plasmid backbone was based on pAAV-hSyn-EGFP
(cat. no. 50465, Addgene, Watertown, MA, USA). The full-length
DYRKIA gene was amplified from total RNA from mouse
hippocampal tissue by real-time PCR with the primers pAAV-
hSyn-DYRKIA-EGFP-F (5-AGAAGGTACCGGAT
CCGTCGACGCCACCATGCatacag-3’, BamHI restriction
sequence underlined) and pAAV-hSyn-Dyrkla-EGFP-R (5’-
CCATGGTGGCGGATCCGTCGACTGCCGAGCTAGCTACA-3,
BamH]1 restriction sequence underlined). Total RNA from mouse
hippocampus tissue was isolated using an RNeasy mini kit (cat. no.
74106, Qiagen, Venlo, Netherlands), and real-time PCR was
performed using the PrimeScriptTM 1* strand cDNA Synthesis Kit
(cat. no. 6110A, Takara, Shiga, Japan). The amplified DYRKI1A
cDNA (~2.5 kb) was inserted into pAAV-hSyn-EGFP using the
BamH]1 restriction site. pAAV-RC and pHelper plasmids were
purchased from Agilent (cat. no. 240071, Santa Clara, CA, USA).

Virus production and purification

AAVpro 293T cells were co-transfected with the recombinant
PAAV expression plasmid (pAAV-RC) and pHelper using
polyethylenimine (PEL cat. no. 24765, Polyscience, Addgene). At
least 72 h after transfection, AAV particles from the cell medium
were harvested and purified as described in Addgene’s protocols
(https://www.addgene.org/protocols/#virus, last accessed Sep.
29, 2020).

AAV-U6-mDYRKI1A shRNA-EGFP

To investigate the effects of DYRK1A knockdown on cognitive
function, amyloidopathy, tau hyperphosphorylation, and
neuroinflammation, AAV-U6-control shRNA-EGFP or AAV-U6-
mDYRKI1A shRNA-EGFP (cat. no. shAAV-257590, Vector Biolabs,
Malvern, PA, USA) was injected into the mouse brain.

Stereotaxic viral injection

All injections were conducted under intraperitoneally
administered anesthesia with ketamine (100 mg/kg) and xylazine
(10 mg/kg) in 0.1 M phosphate-buffered saline (PBS). The virus was
injected into the bilateral hippocampus (bregma: -2.0 mm AP, + 1.5
mm ML, and -1.55 mm DV) in a volume of 0.5 to 1.0 UL in each
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hemisphere at a rate of 0.1 uL/min using a 5-uL syringe (cat. no.
7641-01, Hamilton, Reno, Nevada, USA) with a 33-gauge needle
(cat. no. 7762-06, Hamilton, Reno, Nevada, USA). After injection,
the needle was left in place for at least 10 min to allow diffusion of
the virus at the injection site. The mice were then allowed to recover
for 3-4 weeks before further behavioral experiments.

Behavioral testing paradigm

Y-maze test

The Y-maze test was performed to measure short-term spatial
memory. A single mouse injected with AAV-control, AAV-
DYRK1A, AAV-control shRNA, or AAV-DYRKIA shRNA was
placed in one of the three arms (35 cm x 7 cm x 15 cm) of the maze,
which met at an angle of 120°, and allowed to explore freely for 5
min. Spontaneous alternations were recorded and analyzed using
SMART video tracking software (Panlab, Barcelona, Spain). The
alternation percentage was calculated by dividing the number of
alternations by the number of alternation triads.

Novel object recognition test

To evaluate recognition memory, the NOR test was performed
as previously described with minor modifications (24, 25). Briefly,
each mouse underwent a 5-min training phase in an open-field box
(40 cm x 40 cm x 25 cm) containing two identical objects. Between
trials, odor cues were eliminated by thoroughly swabbing the
apparatus and objects with 70% ethanol. Twenty-four hours later,
the mouse was returned to the same apparatus containing one
familiar object and one novel object for a 5-min retention testing
phase. The locations of the two objects in the apparatus were
counterbalanced. The trials were recorded, and the recordings
were used to manually count the time of exploratory behavior,
defined as pointing of the mouse’s nose toward an object. Object
preference (%) was calculated using the formula [Preference (%) of
object = T Novel/(T Famitiar T T Novet) X 100], where T4y is the time
of exploration of the novel object and Trymii,r is the time of
exploration of the familiar object.

Real-time PCR

To analyze the effect of genetic DYRKIA modulation on
DYRKI1A and neuroinflammation-associated markers mRNA
levels, RNA was extracted from hippocampal tissue of WT,
5xFAD, and/or PS19 mice using TRIzol (Invitrogen, Waltham,
MA, USA) (25). The extracted RNA was used with the
Superscript cDNA Premix Kit II (cat. no. SR-5000, GeNetBio,
Daejeon, Republic of Korea) to synthesize cDNA for use in real-
time PCR. Forty-cycle real-time PCR was performed in a
QuantStudioTM 5 system (Thermo Fisher Scientific, Waltham,
MA, USA) with Fast SYBR Green Master Mix (Thermo Fisher
Scientific, Waltham, MA, USA). Normalization was performed
using the cycle threshold (Ct) value for gapdh. The primer
sequences are provided in Supplementary Table 1.
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Immunofluorescence staining

To assess whether DYRK1A overexpression or knockdown in
brain directly affects DYRKIA protein expression and A plaque
accumulation in WT or 5xFAD mice, immunofluorescence staining
was performed. For this experiment, mouse brain sections were first
rinsed in PBST (PBS containing 0.2% Triton-X 100). Next, the brain
sections were incubated in blocking solution [10% normal goat serum
(cat. no. S-1000-20, Vector Laboratories, Burlingame, CA) in PBST]
for 2 h at room temperature (RT). The primary antibodies were
added, and the brain sections were incubated for 24-72 h at 4°C.
After washing with PBST three times, the brain sections were
incubated for 2 h at RT with Alexa Fluor 555-conjugated goat anti-
rabbit or anti-mouse secondary antibodies. The brain sections were
then washed with PBST, PBST/DAPI, and PBS before being mounted
on glass slides with a mounting solution containing DAPI (cat. no. H-
1200-10, Vector Laboratories). The immunostained tissue was
imaged by fluorescence microscopy (DMi8, Leica Microsystems),
and immunofluorescence staining was quantified using Image]
software (http://imagej.net/ij, Version 1.53e, US National Institutes
of Health, Bethesda, MD, USA, last accessed April 27, 2025).
Detailed antibody information is provided in
Supplementary Table 2.

Western blotting

To determine the effects of DYRKIA gene manipulation on
memory-regulating protein levels, DYRK1A expression,
inflammation-associated molecule levels, and tau
hyperphosphorylation in WT, 5xFAD, and/or PS19 mice, the
mouse hippocampus was homogenized in RIPA lysis buffer
(Merck Millipore, Billerica, MA, USA) containing 1% protease
and phosphatase inhibitor cocktail (Thermo Scientific, Waltham,
MA, USA) for 1 h on ice. The lysate was then centrifuged three
times for 20 min at 20,000 x g and 4°C, and the supernatant was
collected and stored at —20°C until analysis.

To assess the effect of DYRKIA knockdown on cognitive
function and tauopathy in PS19 mice, the entorhinal cortex and
hippocampus were dissected and homogenized in RIPA lysis buffer
supplemented with a protease and phosphatase inhibitor cocktail
(Thermo Scientific). The homogenates were incubated at 4°C for 1 h
and centrifuged at 20,000 x g at 4°C for 20 min. The supernatant
was collected as the RIPA-soluble fraction and stored at —80°C until
analysis. The pellet was washed once with 1 M sucrose in RIPA lysis
buffer, resuspended in 2% SDS solution, and incubated at RT for 1
h. The suspension was sonicated and centrifuged at 20,000 x g for 1
min at RT, and the supernatant was collected as the RIPA-insoluble
fraction and stored at —80°C until analysis.

To separate proteins by electrophoresis, 10 [ig of protein was
heated for 10 min at 100°C and loaded onto an SDS-polyacrylamide
gel. The separated proteins were then electrotransferred to a PVDF
membrane (Millipore, Billerica, MA, USA), After blocking with 5%
skim milk at RT for 1 h, the membrane was incubated with anti-
DYRKI1A, anti-SynGAP, anti-p-P38, anti-P38, anti-p-CaMKIIo,
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anti-CaMKIIo,, anti-p-CREB, anti-CREB, anti-HO-1, anti-p-AKT,
anti-AKT, anti-p-STAT3, anti-STAT3, anti-p-NF-xB, anti-NF-xB,
anti-NR2A, anti-NR2B, anti-GluA1, anti-GluA2, anti-EAAT], anti-
EAAT2, anti-p-ERK, anti-ERK, anti-PS-1-CTF, anti-p-APP™%¢,
anti_p_TauSerZOZ/Thr205 (ATS), anti_p_TauThrZIZ/SerZM (AT100), anti-
p-Tau™?*! (AT180), anti-p-Tau>"™°, anti-p-Tau*"***, p-GSK30/
B, anti-p-CDK5, anti-GAPDH or anti-B-actin antibodies overnight
at 4°C. The following day, the membrane was incubated with HRP-
conjugated goat anti-rabbit IgG or HRP-conjugated goat anti-
mouse IgG for 1 h, and detection was realized with ECL Western
Blotting Detection Reagent (GE Healthcare, Chicago, IL, USA).
Images were acquired and analyzed by Fusion Capt Advance
software (Vilber Lourmat, Collégien, France). Detailed antibody
information is provided in Supplementary Table 3.

Enzyme-linked immunosorbent assay

RIPA-soluble AB40 ELISA in 3.5-month-old
5xFAD mice

To investigate whether direct inhibition of DYRKIA gene
expression alters AP pathology in the brains of younger AD
model mice, hippocampal AB40 levels were measured by ELISA.
Hippocampal tissue from 3.5-month-old 5xFAD mice injected with
AAV-control shRNA or AAV-DYRKI1A shRNA was homogenized
in RIPA lysis buffer (Merck Millipore, Billerica, MA, USA)
containing 1% protease and phosphatase inhibitor cocktail
(Thermo Scientific, Waltham, MA, USA) for 1 h on ice. The
lysates were then centrifuged three times for 20 min at 20,000 x g
and 4°C, and the supernatant (RIPA-soluble fraction) was collected
for analysis.

AP40 levels were analyzed by using the Human Amyloid beta 40
ELISA Kit (cat. no. KHB3481, Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s instructions. Briefly, serially diluted
Human AB40 standards (500 pg/ml to 0 pg/ml, 50 ul/well) or RIPA-
soluble fraction (50 pl/well) were loaded into the pre-coated 96-well
plate followed by human AB40 detection antibody (50 pl/well) and
incubated for 3 h at RT. Next, the plate was washed with 1x wash
buffer four times, and anti-rabbit IgG HRP (100 ul/well) was added
and incubated for 1 h at RT. Then, the plate was washed with 1x
wash buffer six times, and stabilized chromogen
(tetramethylbenzidine) was added and incubated for 30 min.
Finally, stop solution was added, and optical density was
measured at 450 nm.

DEA-soluble and DEA-insoluble AB40 and AB 42
ELISA in 6-month-old 5xFAD mice

To assess the effect of DYRK1A knockdown on Af pathology in
aged AD mice, soluble and insoluble APB40 and AP42 levels were
measured by ELISA. For this experiment, 6-month-old 5xFAD mice
were injected with AAV-control shRNA or AAV-DYRKI1A shRNA,
and hippocampal tissue was dissected and homogenized in tissue
homogenization buffer (250 mM sucrose, 20 mM Tris-HCI, 1 mM
EDTA, 1 mM EGTA). The tissue homogenate was then added to
0.4% diethylamino (DEA) solution containing 1% protease and
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phosphatase inhibitor cocktail (Thermo Scientific, Waltham, MA,
USA), sonicated, and ultracentrifuged at 47,000 rpm for 1 h at 4°C.
The supernatant was collected, neutralized with Tris-HCL buffer
(pH 6.8), and stored at -80°C until analysis of DEA-soluble A
levels. The remaining pellet was resuspended in formic acid and
ultracentrifuged at 47,000 rpm for 1 h at 4°C, and the supernatant
was collected, neutralized with Tris-HCI buffer (pH 8.8), and stored
at -80°C until analysis of DEA-insoluble A levels.

DEA-soluble/DEA-insoluble AB40 and AP42 levels were
analyzed using the Human Amyloid beta 40 ELISA Kit (cat. no.
KHB3481, Invitrogen, Carlsbad, CA, USA) and the Human
Amyloid beta 42 ELISA Kit (cat. no. KHB3441, Invitrogen,
Carlsbad, CA, USA), respectively, according to the manufacturer’s
instructions. Briefly, to detect human AB40, serially diluted Human
AP40 standards (500 pg/ml to 0 pg/ml, 50 ul/well) and the DEA-
soluble or DEA-insoluble fraction (50 pl/well) were loaded into the
pre-coated 96-well plate followed by human AB40 detection
antibody (50 pl/well) and incubated for 3 h at RT. To detect
human AB42, serially diluted Human AB42 standards (500 pg/ml
to 0 pg/ml, 50 pl/well) and the DEA-soluble or DEA-insoluble
fraction (50 pl/well) were loaded into the pre-coated 96-well plate
followed by human AB42 detection antibody (50 pl/well) and
incubated for 3 h at RT. Next, the plate was washed with 1x wash
buffer four times, and anti-rabbit IgG HRP (100 ul/well) was added
and incubated for 1h at RT. Then, the plate was washed with 1x
wash buffer six times, and stabilized chromogen
(tetramethylbenzidine) was added and incubated for 30 min.
Finally, stop solution was added, and the optical density was
measured at 450 nm.

Proinflammatory cytokine ELISA in 3.5-month-
old 5xFAD mice

To determine whether genetic DYRK1IA knockdown alters
proinflammatory responses at the protein level, 3.5-month-old
5xFAD mice were injected with AAV-control shRNA or AAV-
DYRKIA shRNA in the hippocampus. Three weeks after the
injection, the hippocampal tissue was dissected and homogenized
in RIPA lysis buffer (Merck Millipore, Billerica, MA, USA) containing
1% protease and phosphatase inhibitor cocktail (Thermo Scientific,
Waltham, MA, USA) for 1 h on ice. The lysates were then centrifuged
three times for 20 min at 20,000 x g and 4°C, and the supernatant
(RIPA-soluble fraction) was collected and used to determine the
protein concentration. COX-2, IL-1, IL-6, and TNF-o. protein levels
were measured using a COX-2 ELISA kit (DYC4198-5, R&D
Systems, Minneapolis, MN, USA) and IL-1f, IL-6, and TNF-o
ELISA kit (88-7013A-88 for IL-1[3, 88-7064-22 for IL-6, 88-7324~
22 for TNF-o,, Invitrogen, Waltham, Massachusetts, USA) according
to the manufacturer’s instructions.

ROS assessment
To investigate the effect of genetic knockdown of DYRKIA on

oxidative stress in 5XxFAD mice, 3.5-month-old 5XxFAD mice were
injected with AAV-control shRNA or AAV-DYRKIA shRNA in

frontiersin.org

496
497
498
499
500
501
502
503
504

506
507
508
509
510
511
512
513
514
515
516
517
518

520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550


https://doi.org/10.3389/fimmu.2025.1661791
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
kbri
텍스트에 대한 주석
Please replace this as follows; 'anti-CaMKIIa, anti-p-CREB, anti-CREB, anti-PLK2, anti-HO-1,'


551

553
554
555
556
557
558
559

561
562

564
565

567
568
569
570
571
572
573

575
576

578
579
580
581
582
583
584

586
587

589
590

592
593
594
595

597
598

600
601

603
604

Lee et al.

the hippocampus. In addition, to test whether overexpression of the
DYRKIA gene affects oxidative stress in 5xFAD mice, 3.5-month-
old 5xFAD mice were injected with AAV-control or AAV-
DYRKIA in the hippocampus. Three weeks after the injection,
the hippocampal tissue was dissected and homogenized in RIPA
lysis buffer (Merck Millipore, Billerica, MA, USA) containing 1%
protease and phosphatase inhibitor cocktail (Thermo Scientific,
Waltham, MA, USA) for 1 h on ice. The lysates were then
centrifuged three times for 20 min at 20,000 x g and 4°C, and the
supernatant (RIPA-soluble fraction) was collected. ROS levels were
measured using 2°,7’-dichlorofluorescein diacetate (DCFH-DA, cat.
no. 287810, Sigma-Aldrich, Burlington, MA, USA). Briefly, the
RIPA-soluble fraction (50 pl/well) was added to a 96-well plate, and
500 uM DCFH-DA solution (50 ul/well) was added. After
incubating the plate for 1.5 h at 37°C, fluorescence intensity was
measured at Ex/Em=488 nm/522 nm.

Activity test

ADAM17 activity

To examine the underlying molecular mechanisms for the effect
of DYRK1A knockdown on A plaque deposition and AP levels in
5xFAD mice, the activity of ADAMI17, an o-secretase involved in
non-amyloidogenic APP proteolytic processing, was measured. For
this experiment, hippocampal tissues of AAV-control shRNA-
injected or AAV-DYRKIA shRNA-injected 5xFAD mice were
homogenized in RIPA lysis buffer (Merck Millipore, Billerica,
MA, USA) containing 1% protease and phosphatase inhibitor
cocktail (Thermo Scientific, Waltham, MA, USA) for 1 h on ice.
The lysates were then centrifuged three times for 20 min at 20,000 x
g and 4°C, and the supernatant was collected for analysis. ADAM17
activity was assessed by using the SensoLyte® 520 ADAM17
Activity Assay Kit (cat. no. AS-72085, AnaSpec, Fremont, CA,
USA) according to the manufacturer’s instructions. Briefly,
hippocampal homogenate and ADAM17-specific fluorogenic
substrate were loaded into a 96-well plate and incubated for 3 h,
stop solution was added, and the fluorescence intensity was
measured at Ex/Em=490 nm/520 nm.

BACE-1 activity

To elucidate underlying mechanisms by which DYRKI1A
suppression ameliorates AP} pathology in 5xFAD mice, the activity
of BACE-1, a B-secretase involved in amyloidogenic processing of
APP, was analyzed. To assess this, hippocampal lysates of 5xFAD
mice injected with AAV-control shRNA or AAV-DYRKIA shRNA
were prepared as described in ADAM17 activity. BACE-1 activity was
assessed by using the SensoLyTe® 520 3-Secretase (BACE1) Activity
Assay Kit (cat. no. AS-71144, AnaSpec, Fremont, CA, USA)
according to the manufacturer’s instructions. Briefly, hippocampal
homogenate and B-secretase-specific fluorogenic substrate were
loaded into a 96-well plate and incubated for 3 h. Next, stop
solution was added, and the fluorescence intensity was measured at
Ex/Em=490 nm/520 nm.
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IDE activity

The activity of insulin-degrading enzyme (IDE), an AB-
degrading enzyme, was measured to determine whether DYRK1A
inhibition decreases A pathology via IDE activity in 5XFAD mice.
For this experiment, hippocampal lysates of 5XFAD mice injected
with AAV-control shRNA or AAV-DYRKIA shRNA were
prepared as described in ADAMI7 activity. IDE activity was
assessed by using the SensoLyte® 520 IDE Activity Assay Kit (cat.
no. AS-72231, AnaSpec, Fremont, CA, USA) according to the
manufacturer’s instructions. Briefly, hippocampal homogenate
and IDE-specific fluorogenic substrate were loaded into a 96-well
plate and incubated for 3 h. Then, stop solution was added, and
fluorescence intensity was measured at Ex/Em=490 nm/520 nm.

NEP activity

To analyze the specific molecular mechanisms by which
DYRKI1A knockdown mitigates A pathology in 5XFAD mice, the
activity of neprilysin (NEP), an AP-degrading enzyme, was
measured. To assess this, hippocampal lysates from 5xFAD mice
treated with AAV-control shRNA or AAV-DYRKIA shRNA were
prepared as described in ADAMI17 activity. NEP activity was
quantified by using the SensoLyte® 520 NEP Activity Assay Kit
(cat. no. AS-72223, AnaSpec, Fremont, CA, USA) according to the
manufacturer’s instructions. Briefly, hippocampal homogenate and
NEP-specific fluorogenic substrate were loaded into a 96-well plate
and incubated for 3h. Then, stop solution was added, and
fluorescence intensity was measured at Ex/Em=490 nm/520 nm.

Statistical analysis

All data were analyzed using a two-tailed unpaired ¢-test in
GraphPad Prism 10 (GraphPad Software, San Diego, CA. USA).
Data are presented as the mean + S.EM. (*p < 0.05, **p < 0.01, ***p
< 0.001, ***p < 0.0001). Detailed statistical analysis results are
provided in Supplementary Table 4.

Results

DYRK1A overexpression decreases short-
term spatial/recognition memory,
suppresses SynGAP expression, and
increases p-P38 levels in WT mice

To investigate the effects of DYRKIA overexpression on
cognitive function in vivo, 3-month-old WT mice were injected
with AAV-control or AAV-DYRKIA in the hippocampus. Three
weeks after injection, immunofluorescence staining of hippocampal
tissue with an anti-DYRK1A antibody showed that DYRK1A
fluorescence intensity was significantly increased in AAV-
DYRKI1A-injected WT mice than in AAV-control-injected WT
mice (Figures 1A, B).

Consistently, real-time PCR analysis revealed that hippocampal
DYRKIA mRNA expression was markedly enhanced by 408.63% in
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AAV-DYRKI1A-injected WT mice compared to AAV-control-
injected WT mice, confirming successful overexpression of
DYRKIA (Figure 1C). Further confirming these findings, western
blotting showed that hippocampal DYRKIA expression was

10.3389/fimmu.2025.1661791

significantly upregulated in AAV-DYRKI1A-injected WT mice
than AAV-control injection (Figures 1D, E). In behavioral
assessments, AAV-DYRKI1A-injected WT mice exhibited
significantly reduced spontaneous alterations in the Y-maze test
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8
5
o
(&)
<
X
x
(a)
B _ C D ] E
B = 4007 Hrxk < < 8 Jekk Hippo kDa =
g 2 ) <
£E 300 £S5 6 ® DYRK1A - eaf9 S=E
<S200|p fn <54 _ g 8
T o'= 100 E % 2 B-actin | e e ww e - 43 = s
[T > L °\°
E =~ 0 o= o CON + - + - ~
CON + - CON + - DYRKIA - + - +
DYRK1A - + DYRK1A - DYRK1A
Day 1 Day 30 Day 31~33
WT mice AAV-CON-EGFP or AAV-DYRK1A OE-EGFP Y maze NOR test
F  Ymaze Y maze o Training  Test
~ —~ 100 Fkkk 60 o NORT 2 100
. IS : =}
S ST g0 Iy o
B 9 c = ol s 80
‘ 8= 0 3 franing 35X
Correct £ c 40 20 @ §24hr > 40
e 28 20 1 3 s 20
the “% - 0 < «f 2 o
‘ CON + + - =Lz oy - - -
Incorrect  pyrkia - o+ - 4+ Test DYRKIA - + . +
Day 1 Day 21
WT mice AAV-CON-EGFP or AAV-DYRK1A OE-EGFP WB SynGAP, p-P38
SynGAP -P38 P38
H : [ i kD P
H Hippo a
—PP% _ kpa 3 2501 ML o 5 600 .
SYynGAP| = =" 140 § 150 ] © p-P38| w=iiam |40 § 400
100
B-actin| ———— 43 E 50 P38| — ——=— 140 3200
CON + - + - CgN + - CON + - + - cog + - + -
DYRKIA - + - + DYRKIA - + DYRKIA - + - + DYRKIA - + - +

FIGURE 1

DYRK1A overexpression impairs cognitive function, reduces SynGAP expression, and increases P38 signaling in WT mice. (A, B) DYRK1A
immunofluorescence in hippocampal slices from WT mice injected with AAV-Control or AAV-DYRKIA (n = 16 brain slices from 4 mice/group)

(C) Real-time PCR analysis of hippocampal DYRKIA mRNA levels in WT mice treated as described in (A, B) (n = 5 mice/group). (D, E) Western
blotting of hippocampal DYRKIA levels in WT mice treated as described in (A, B) (n = 8 mice/group). (F, G) Results of Y-maze and NOR tests of WT
mice 30 days after treatment as described in (A, B) (n= 22-23 mice/group). (H, 1) Western blotting analysis of hippocampal lysates from WT mice
treated as described in (A, B) with anti-SynGAP, anti-p-P38, anti-P38 and anti-f-actin antibodies (n = 8 mice/group). *p < 0.05, **p < 0.01,

***p < 0.001, ****p < 0.0001. Scale bar = 200 ym
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and novelty preference in the novel object recognition (NOR) test
compared to AAV-control-injected WT mice (Figures 1F, G).

To investigate the molecular mechanisms by which DYRKIA
overexpression impairs learning and memory in vivo, WT mice
were injected as described above, and the hippocampus was
dissected. To assess the expression of Ras signaling-associated
molecules, western blotting was performed with anti-p-CaMKIIa,
anti-p-CREB, and anti-p-ERK antibodies, and found that the
phosphorylation of CaMKIIo, CREB, and ERK did not altered in
AAV-DYRKI1A-injected compared to AAV-control-injected WT
mice (Supplementary Figures 1A-C). To assess other memory-
regulating molecules, western blotting was conducted with
antibodies against SynGAP (an inactivator of Ras and Rap
GTPases), PLK2 (Rap signaling molecule), and p-P38 (signal
transducer for long-term depression). We found that AAV-
DYRKIA injection significantly decreased SynGAP expression
and upregulated p-P38 levels in WT mice compared to AAV-
control injection but not PLK2 expression (Figures 1H, I,
Supplementary Figure 1D). These data suggest that DYRKIA
overexpression in the hippocampus of WT mice impairs short-
term spatial/recognition memory and diminishes SynGAP levels
while enhancing p-P38 levels.

Short-term spatial and recognition
memory are impaired in 5xFAD mice
compared with WT mice

Given that AB accumulation is associated with learning and
memory impairments (26, 27), we next examined whether cognitive
functions are decreased in 5xFAD mice, a model of AD in which A}
is overexpressed, compared with WT mice. We found that 3.5-
month-old 5xFAD mice exhibited significant reductions in
spontaneous alterations and novelty preference in the Y-maze
and NOR tests compared to WT mice, indicating cognitive
deficits (Supplementary Figures 2A-D).

DYRK1A knockdown enhances short-term
spatial/recognition memory and increases
CaMKllo-CREB signaling in 3.5-month-old
5xFAD mice

Given that memory function was impaired in 3.5-month-old
5xFAD mice compared with WT mice, we investigated whether
direct hippocampal knockdown of DYRKIA affects learning and
memory in this model of AD. To test this, 3.5-month-old 5xFAD
mice were bilaterally injected with AAV-control shRNA or AAV-
DYRKI1A shRNA in the hippocampus. Thirty days after the
injection, Y-maze and NOR tests were performed, and DYRKIA
mRNA levels in brain tissue were measured. AAV-DYRKIA
shRNA injection significantly suppressed DYRKIA mRNA and
protein levels in 3.5-month-old 5xFAD mice compared to AAV-
control shRNA injection (Figures 2A, B). In addition, AAV-
DYRKIA shRNA-injected 5xFAD mice exhibited a significant
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increase in spontaneous alternation and a higher preference for
the novel object compared to AAV-control shRNA-injected 5xFAD
mice (Figures 2C, D). These data indicate that DYRKI1A directly
affects short-term spatial and recognition memory in 3.5-month-
old 5xFAD mice.

We then examined whether direct hippocampal knockdown of
DYRKI1A modulates memory-associated Ras signaling in 3.5-month-
old 5xFAD mice. We found that DYRK1A knockdown did not alter
total levels of NMDA receptor subunits (NR2A, NR2B) and AMPA
receptor subunits (GluAl, GluA2) in the hippocampus
(Supplementary Figures 3A-C). In addition, glutamate transporter
(e.g, EAAT1 and EAAT2) levels did not alter in AAV-DYRKIA
shRNA-injected compared to AAV-control shRNA-injected 5xFAD
mice (Supplementary Figure 3D). Most importantly, levels of the Ras
signaling-associated molecules p-CaMKIIow and p-CREB were
significantly increased in AAV-DYRKIA shRNA-injected 3.5-
month-old 5xFAD mice compared to AAV-control shRNA-
injected 5xFAD mice, whereas ERK phosphorylation was not
altered (Figures 2E, F, Supplementary Figure 3E). These findings
indicate that DYRKIA knockdown improves cognitive function
accompanied by enhanced Ras signaling in 3.5-month-old
5xFAD mice.

DYRK1A knockdown improves recognition
memory in 6-month-old 5xFAD mice

Since DYRK1A knockdown improved memory performance in a
mouse model of the early phase of AD (3.5-month-old 5xFAD mice),
we investigated the effects of altering DYRK1A expression on cognitive
function in aged 5xFAD mice. For this experiment, 6-month-old
5xFAD mice were injected with AAV-control shRNA or AAV-
DYRKIA shRNA in the hippocampus. Twenty-one days after
injection, Y-maze and NOR tests were performed, and hippocampal
DYRKIA mRNA levels were measured. We found that DYRKIA
mRNA levels were significantly reduced in AAV-DYRKIA shRNA-
injected 6-month-old 5xFAD mice compared to AAV-control sShRNA-
injected 5xFAD mice, confirming effective gene knockdown
(Figure 2G). In addition, DYRK1A knockdown significantly
enhanced recognition memory (NOR test) but not short-term
memory (Y-maze test) in 6-month-old 5XFAD mice (Figures 2H, I).
These results indicate that DYRK1A knockdown selectively improves
cognitive function in aged 5xFAD mice.

DYRK1A knockdown significantly reduces
proinflammatory cytokine levels and AD-
associated reactive astrocytes and
microglia in 3.5-month-old 5xFAD mice

Given that direct DYRKIA knockdown (5xFAD mice) and
overexpression (WT mice) in the brain modulates cognitive
function, we further examined whether AAV-DYRK1A shRNA
injection alters neuroinflammatory responses/dynamics which are
closely associated with memory in 5xFAD mice. To test this, 3.5-
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FIGURE 2

DYRK1A knockdown improves memory performance and enhances CaMKIlo/CREB phosphorylation in 5xFAD mice. (A) Real-time PCR analysis of
hippocampal DYRKIA mRNA levels in 3.5-month-old 5xFAD mice injected with AAV-Control shRNA or AAV-DYRKIA shRNA (n = 7—-8 mice/group)

(B) Immunofluorescence staining of DYRK1A in hippocampal slices from 3.5-

month-old 5xFAD mice treated as described above (n = 27-28 brain

slices from 7 mice/group). An enlarged view of the hippocampal CA1 and dentate gyrus (DG) regions is indicated by the white box. (C, D) The results
of Y-maze and NOR tests of 3.5-month-old 5xFAD mice treated as described in (A) (n = 10 mice/group). (E, F) Western blotting analysis with anti-p-
CaMKlla, anti-CaMKlla, anti-p-CREB, and anti-CREB antibodies of hippocampal lysates from 3.5-month-old 5xFAD mice treated as described above
(n = 8 mice/group). (G) 6-month-old 5xFAD mice were injected with AAV-Control shRNA or AAV-DYRK1A shRNA, and real-time PCR was conducted
to measure hippocampal DYRK1IA mRNA levels (n=7-8 mice/group). (H, 1) Results of Y-maze and NOR tests of 6-month-old 5xFAD mice treated as

described in (G) (n=7-8 mice/group). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Scale bar = 200 pm.

month-old 5xFAD mice were injected with AAV-control shRNA or
AAV-DYRKIA shRNA in the hippocampus. Three weeks after the
injection, the hippocampal tissue was dissected, and real-time PCR
or ELISA was performed. We found that proinflammatory cytokine
mRNA and protein levels were significantly downregulated in
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AAV-DYRKIA shRNA-injected 3.5-month-old 5xFAD mice
compared to AAV-control shRNA-injected 5xFAD mice
(Figures 3A, B). In addition, AAV-DYRKIA shRNA injection
markedly suppressed the mRNA levels of the neuroinflammation-
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associated molecular target NLRP3 without altering SOD2 mRNA
levels (Figure 3C).

Next, we examined the effects of AAV-DYRK1A shRNA
injection on AD-associated glial dynamics in 3.5-month-old
5xFAD mice and found that DYRKIA knockdown significantly
reduced the mRNA levels of the RA markers GFAP, GBP2,
CXCL10, and DST but not NESTIN (Figures 3D, E). Moreover,
DYRKIA knockdown significantly diminished the mRNA expression
of markers for AD-related microglial dynamics (IBA-1, ITGAX, and
TREM2) and RA-disease-associated microglia (DAM) interactions
(CR3 and C1QA) but not CLEC7A (Figures 3F-H). These data

10.3389/fimmu.2025.1661791

suggest that direct genetic DYRKIA knockdown in the brain
alleviates proinflammatory responses and AD-associated RA/
microglial dynamics markers in 3.5-month-old 5xFAD mice.
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FIGURE 3

DYRKIA knockdown suppresses the expression of proinflammatory cytokines and neuroinflammatory dynamics-associated genes in 3.5-month-old
5xFAD mice. (A, B) 3.5-month-old 5xFAD mice were injected with AAV-Control shRNA or AAV-DYRK1A shRNA, and real-time PCR and ELISA were
conducted to measure proinflammatory cytokine levels in hippocampal lysates (n = 7-8 mice/group). (C) Real-time PCR analysis of hippocampal
NLRP3 and SOD2 mRNA levels in 3.5-month-old 5xFAD mice treated as described above (n = 8 mice/group). (D—H) Real-time PCR was performed
in in hippocampal lysates of 3.5-month-old 5xFAD mice treated as described above to analyze mRNA levels of markers for AD-associated reactive
astrocytes and microglial neuroinflammatory dynamics (n = 8 mice/group). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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DYRK1A knockdown selectively decreases
proinflammatory cytokine levels and AD-
associated neuroinflammatory dynamics in
6-month-old 5xFAD mice

Since genetic knockdown of DYRK1A downregulated
neuroinflammation in 3.5-month-old 5xFAD mice, we
investigated the effects of direct inhibition of DYRKIA in the
brain on AD-related neuroinflammatory dynamics in aged AD
mice. For this experiment, six-month-old 5xFAD mice were
injected with AAV-control shRNA or AAV-DYRKIA shRNA in
the hippocampus. Three weeks after the injection, the hippocampal
regions were dissected, and real-time PCR was performed. We
found that AAV-DYRKIA shRNA injection significantly
suppressed mRNA levels of the proinflammatory cytokines IL-1f
and TNF-a but not COX-2 and IL-6 in 6-month-old 5xFAD mice
(Figure 4A). In addition, AAV-DYRK1A shRNA-treated 6-month-
old 5xFAD mice significantly reduced NLRP3 mRNA levels but not
SOD2 mRNA levels (Figure 4B). Among markers of AD-associated
glial dynamics, DYRK1A knockdown significantly reduced the
mRNA levels of the RA markers GFAP, GBP2, and CXCLI10 in
aged 5xFAD mice, but not DST and NESTIN (Figures 4C-G).
Moreover, AAV-DYRKIA shRNA injection significantly
diminished the mRNA levels of the AD-related microglial
markers IBA-1, ITGAX, and CLEC7A and the RA-DAM
interaction markers CR3 and CIQA in aged 5xFAD mice
compared to AAV-control shRNA injection, whereas TREM2
mRNA expression was not altered (Figures 4H-J). These data
indicate that direct genetic knockdown of DYRKIA in the brain
suppresses proinflammatory cytokine levels and AD-associated
neuroinflammatory dynamics markers in aged 5xFAD mice.

DYRK1A overexpression significantly
increases proinflammatory cytokine levels
and neuroinflammation-associated
dynamics in 3.5-month-old 5xFAD mice

Since DYRK1A knockdown decreased neuroinflammation in
5xFAD mice, we determined whether direct DYRKIA
overexpression in the brain modulates proinflammatory responses
in this AD mouse model. For this experiment, 3.5-month-old
5xFAD mice were injected with AAV-control or AAV-DYRKIA
in the hippocampus. Three weeks after the injection, the
hippocampal tissue was dissected, and real-time PCR was
performed. DYRKIA mRNA levels were significantly elevated in
AAV-DYRKI1A-injected 5xFAD mice compared with AAV-
control-injected 5xFAD mice, confirming successful
overexpression (Figure 5A). We also found that mRNA levels of
the proinflammatory cytokine IL-1B, NLRP3 and SOD2 were
significantly increased in AAV-DYRKI1A-injected 5xFAD mice
compared with AAV-control-injected 5xFAD mice but not TNF-
o, COX-2 and IL-6 mRNA levels (Figures 5B, C).

We then investigated the effects of DYRKIA overexpression in
the brain on AD-related neuroinflammatory dynamics and found
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that mRNA levels of AD-associated RA markers GBP2, CXCL10,
DST, and NESTIN were significantly upregulated in AAV-
DYRKI1A-injected 3.5-month-old 5xFAD mice compared with
AAV-control-injected 5XFAD mice, whereas GFAP mRNA levels
were not changed (Figures 5D-H). Finally, DYRKI1A
overexpression significantly increased mRNA levels of the
microglial marker IBA-1 and the RA-DAM interaction marker
CR3 but not the DAM markers ITGAX, TREM2, and CLEC7A and
RA-DAM interaction marker C1QA (Figures 5I-L), indicating that
directly overexpressing DYRKIA in the brain using the AAV
system selectively modulates proinflammatory cytokine levels and
neuroinflammation dynamics in 3.5-month-old 5xFAD mice.

Direct genetic modulation of DYRK1A in
the brain modulates HO-1 levels and
STAT3/NF-xB signaling in 3.5-month-old
5xFAD mice

To further elucidate the molecular mechanisms by which direct
genetic DYRKIA knockdown in the brain modulates
neuroinflammatory responses in 5xFAD mice, 3.5-month-old
5xFAD mice were injected with AAV-control shRNA or AAV-
DYRKIA shRNA in the hippocampus. Three weeks after the
injection, the hippocampal tissue was dissected, and western
blotting was performed with anti-HO-1, anti-p-AKT/AKT, anti-
p-STAT3/STATS3, and anti-p-NF-kB/NF-kB antibodies. We found
that genetic DYRKI1A knockdown significantly increased protein
levels of the anti-oxidative/inflammatory molecule HO-1 in 5xFAD
mice compared to AAV-control shRNA injection (Figure 6A).
However, AAV-DYRKIA shRNA-treated 5xFAD mice did not
alter p-AKT, p-STAT3, and p-NF-xB levels compared to AAV-
control shRNA treatment (Figures 6B-D).

We then investigated the effect of direct DYRK1A
overexpression in the brain on oxidative stress and
neuroinflammation-related downstream signaling in 3.5-month-
old 5xFAD mice. The mice were injected with AAV-control-
EGFP or AAV-DYRKI1A-EGFP in the hippocampus, and three
weeks after the injection, the hippocampal regions were dissected.
Then, ROS levels were analyzed, and western blotting was
performed with anti-p-AKT/AKT, anti-p-STAT3/STAT3, and
anti-p-NF-kB/NF-kB antibodies. We found that DYRKIA
overexpression did not affect ROS levels and AKT
phosphorylation (Figures 6E, F). Interestingly, direct DYRKIA
overexpression in the brain significantly increased p-STAT3 and
p-NE-kB levels in 3.5-month-old 5xFAD mice (Figures 6G, H).
Taken together, these results indicate that genetic modulation of
DYRKIA expression in the brain differentially regulates
neuroinflammation-associated downstream HO-1 and STAT3/
NF-kB signaling in 5xFAD mice.
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FIGURE 4

DYRK1A knockdown selectively reduces proinflammatory responses and AD-related neuroinflammatory dynamics in 6-month-old 5xFAD mice.
(A, B) 6-month-old 5xFAD mice were injected with AAV-Control shRNA or AAV-DYRK1A shRNA, and real-time PCR was conducted to measure
hippocampal proinflammatory cytokine, NLRP3 and SOD2 mRNA levels (n = 7~8 mice/group). (C—J) Real-time PCR analysis of the expression of
markers of AD-associated reactive astrocytes and microglial neuroinflammatory dynamics in hippocampal lysates of 6-month-old 5xFAD mice
treated as described in (A, B) (n =7~8 mice/group). *p < 0.05, **p < 0.01, ***p < 0.001.

DYRK1A knockdown reduces A plaque
number and soluble/insoluble A levels
through inhibition of BACE1 activity in
5xFAD mice

To investigate the effects of direct DYRK1A knockdown in the
brain on A pathology in a mouse model of early phase AD, 3.5-
month-old 5xFAD mice were injected with AAV-control shRNA or
AAV-DYRKI1A shRNA in the hippocampus. Three weeks after the
injection, the mice were perfused and fixed, and
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immunofluorescence staining of hippocampal slices was
conducted with an anti-6E10 antibody. We found that DYRKIA
knockdown significantly reduced AP plaque number in the
hippocampus (Figures 7A, B) as well as soluble AB40 levels
compared with AAV-control-shRNA-injected 5xFAD
mice (Figure 7C).

We then examined whether DYRK1A knockdown alters soluble
and insoluble AP levels in aged 5xFAD mice. To test this, six-
month-old 5xFAD mice were injected with AAV-control- shRNA
or AAV-DYRKIA shRNA in the hippocampus. Three weeks after
the injection, soluble and insoluble fractionation and A ELISA
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FIGURE 5

Manipulation of DYRK1A expression modulates the expression of proinflammatory cytokines and AD-mediated glial dynamics in 3.5-month-old
5xFAD mice. (A) Real-time PCR analysis of hippocampal DYRKIA mRNA levels in 3.5-month-old 5xFAD mice injected with AAV-Control shRNA or
AAV-DYRKIA shRNA (knockdown) (n = 5-7 mice/group). (B, C) 3.5-month-old 5xFAD mice were treated with AAV-Control or AAV-DYRKIA
(overexpression), and real-time PCR analysis of hippocampal proinflammatory cytokine, NLRP3, and SOD2 mRNA levels was performed (n = 5-7
mice/group). (D—L) Real-time PCR analysis of the hippocampal expression of markers of AD-associated reactive astrocytes and microglial dynamics
in 3.5-month-old 5xFAD mice treated as described in (B, C) (n = 5-7 mice/group). *p < 0.05, **p < 0.01.

were performed. We found that soluble AB40 and AB42 levels and
insoluble AB42 levels were significantly lowered in AAV-DYRKI1A
shRNA-injected 6-month-old 5xFAD mice than in AAV-control
shRNA-injected mice (Figures 7D, E), indicating that direct genetic
knockdown of DYRKI1A in the brain reduces soluble and insoluble
AP levels in aged 5xFAD mice.

To determine the molecular mechanisms by which direct
DYRK1A knockdown in the brain alters AR pathology, we first
measured protein levels of DYRK1A, which is a key player in AR
pathology. We found that DYRKIA protein expression was
significantly downregulated in AAV-DYRKIA shRNA-injected
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3.5- or 6-month-old 5xFAD mice compared with AAV-control
shRNA-injected 3.5- or 6-month-old 5xFAD mice (Figures 7F, G).
Next, we measured the activities of - and [-secretases that
proteolytically process APP (ADAMI17 and BACEI, respectively)
and AB-degrading enzymes (NEP and IDE). Importantly, direct
genetic knockdown of DYRKI1A in the brain significantly decreased
BACE1 (B-secretase) activity but not ADAM17 (o-secretase)
activity in 3.5- and 6-month-old 5xFAD mice (Figures 7H-K). In
addition, DYRK1A knockdown did not alter NEP and IDE activities
in 3.5-month-old 5xFAD mice, nor did it affect protein levels of the
v-secretase PS-1-CTF (Supplementary Figures 4A-D). Finally,
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FIGURE 6

Manipulation of DYRKIA expression alters HO-1 levels and STAT3/NF-kB signaling in 3.5-month-old 5xFAD mice. (A—D) 3.5-month-old 5xFAD mice
were injected with AAV-Control shRNA or AAV-DYRK1A shRNA (knockdown), and western blotting of hippocampal lysates was performed with anti-
HO-1, anti-p-AKT, anti-AKT, anti-p-STAT3, anti-STAT3, anti-p-NF-kB, and anti-NF-kB antibodies (n = 7 mice/group). (E) Hippocampal ROS levels
were assessed in 3.5-month-old 5xFAD mice injected with AAV-Control or AAV-DYRKIA (overexpression) (n = 7-8 mice/group). (F-H) Western

blotting analysis of p-AKT, AKT, p-STAT3, STAT3, p-NF-kB, and NF-kB levels
described above (n = 6-7 mice/group). *p < 0.05.

genetic DYRKIA knockdown did not affect the phosphorylation of
APP at residue Thr668, which is involved in nuclear translocation
of APP and further neuronal degeneration, in 3.5- and 6-month-old
5xFAD mice (Supplementary Figures 4E-H). These results indicate
that direct genetic knockdown of DYRK1A inhibits BACELI activity
to alleviate AP pathology in 5xFAD mice.
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in hippocampal lysates from 3.5-month-old 5xFAD mice treated as

DYRK1A knockdown selectively reduces
insoluble tau hyperphosphorylation in
4-month-old PS19 mice

Since DYRKI1A is one of major tau kinase (20, 28), we further
examined whether DYRKIA knockdown modulates tau
hyperphosphorylation in 5xFAD mice. For this experiment, 3.5-
month-old 5xFAD mice were injected with AAV-control shRNA or
AAV-DYRKI1A shRNA in the hippocampus. Three weeks later, the
hippocampus was dissected, and western blotting was conducted
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FIGURE 7

DYRK1A knockdown decreases AB plague accumulation and soluble/insoluble AB levels by suppressing BACE activity in 5xFAD mice.

(A) Immunofluorescence staining of 6E10-positive AR plaques in hippocampal slices from 3.5-month-old 5xFAD mice injected with AAV-Control
shRNA or AAV-DYRK1A shRNA. (B) Quantification of data from (A) (n = 27-28 brain slices from 7 mice/group). (C) Results of soluble AB40 ELISA
analysis of hippocampal lysates from 3.5-month-old 5xFAD mice treated as described above (n = 15-16 mice/group). (D, E) 6-month-old 5xFAD
mice were injected with AAV-Control shRNA or AAV-DYRK1A shRNA, and soluble AB40/AB42 levels (D) and insoluble AB40/AB42 levels (E) in
hippocampal lysates were assessed by ELISA (n=7-8 mice/group). (F) Western blotting analysis of hippocampal DYRK1A expression in 3.5-month-old
5xFAD mice treated as described in (A) (n = 7 mice/group). (G) Western blotting analysis of hippocampal DYRK1A expression in 6-month-old 5xFAD
mice treated as described above (n=7 mice/group). (H-K) Hippocampal activity of BACE-1 and ADAM17 in 3.5- or 6-month-old 5xFAD mice injected
with AAV-Control shRNA or AAV-DYRK1A shRNA (n = 6-8 mice/group). *p < 0.05, ***p < 0.001, ****p < 0.0001. Scale bar = 200 ym.
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with anti—p—Tauserzozl Thr205 (A T8) and an‘[i—p-TauThr231 (AT180)
antibodies. Surprisingly, we found that DYRKIA knockdown did
not affect tau hyperphosphorylation at Ser’**/Thr**> (AT8) and
Thr**' (AT180) compared to AAV-control shRNA-injected 5xFAD
mice (Supplementary Figure 5).

We then examined whether DYRKIA knockdown modulates
tau pathology in PS19 mice, which overexpress human mutant tau.
To test this, four-month-old PS19 mice were injected with AAV-
control shRNA or AAV-DYRKI1A shRNA in the hippocampus.
Three weeks post-injection, the hippocampus was dissected, and
western blotting was conducted with anti-DYRKI1A, anti-p-
TauSer20%/Thi205 (ATg)  anti-p-Tau™212/5214 (AT100), anti-p-
Tayhr23! (AT180), anti—p-TauS“396, and anti—p—TauSer404
antibodies. We found that DYRKIA knockdown significantly
reduced hippocampal DYRKIA protein levels in PS19 mice
compared to AAV-control shRNA-injected PS19 mice confirming
successful knockdown (Figure 8A). In addition, DYRKIA
knockdown did not alter soluble/insoluble tau
hyperphosphorylation at Ser’°*/Thr*°® (AT8), Thr*'?/Ser*'*
(AT100), or Thr”®' (AT180) in PS19 mice (Figures 8B-D).
Interestingly, we found that AAV-DYRKI1A shRNA-injected PS19
mice but significantly downregulated insoluble tau
hyperphosphorylation at Ser396 and Ser404 but not soluble p-
Ser’®® and p-Ser*™* levels (Figures 8E, F).

To determine the effects of DYRKIA knockdown on p-CDK5 and
p-GSK30/p tau kinase levels, 4-month-old PS19 mice were injected as
described above, and western blotting was conducted with anti-p-CDK5
and anti-p-GSK30/f antibodies. p-CDK5 and p-GSK30/3 levels in the
hippocampus did not differ between AAV-DYRKIA shRNA-injected
and AAV-control shRNA-injected PS19 mice (Figures 8G, H),
suggesting that DYRK1A knockdown directly in the brain in human
tau mutant PS19 mice selectively suppresses tauopathy-associated
phosphorylation without altering levels of the tau kinases CDK5 and
GSK3o/B.

DYRK1A knockdown diminishes
neuroinflammatory-associated dynamics
in 4-month-old PS19 mice

Since genetic knockdown of DYRKI1A inhibited
neuroinflammatory responses in 5xFAD mice, we investigated
whether DYRKIA gene knockdown affects proinflammatory
responses in PS19 mice. For this experiment, four-month-old
PS19 mice were injected with AAV-control shRNA or AAV-
DYRKIA shRNA in the hippocampus. Three weeks after the
injection, the hippocampus regions were dissected, and real-time
PCR was conducted. We found that DYRKIA knockdown
significantly reduced mRNA levels of the proinflammatory
cytokines IL-18 and TNF-o in PS-19 mice but not COX-2 and
IL-6 (Figures 9A, B). In addition, AAV-DYRKIA shRNA-injected
PS19 mice significantly suppressed NLRP3 and SOD2 mRNA
levels (Figure 9C).

We then examined the effects of DYRKIA knockdown on
microglial- and astroglial-associated neuroinflammatory dynamics
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in tau-overexpressing PS19 mice and found that markers of
astrocyte-related neuroinflammatory dynamics, including GFAP,
GBP2, NESTIN, and CXCL10, were reduced in AAV-DYRKI1A
shRNA-injected PS19 mice, whereas DST mRNA levels were
unaffected (Figures 9D-G). Moreover, DYRKIA knockdown
significantly downregulated mRNA levels of markers of
microglial-associated neuroinflammatory dynamics (IBA-1),
DAMs (ITGAX, TREM2, and CLEC7A), and RA-DAM
interactions (CR3 and C1QA) (Figures 9H-]). These data indicate
that direct genetic modulation of DYRKIA in the brain of tau-
overexpressing PS19 mice alleviates proinflammatory responses, the
expression of the neuroinflammation-related molecular targets
NLRP3 and SOD2, and neuroinflammatory dynamics.

Discussion

The role of DYRKI1A as a tau kinase in AD pathogenesis is well
established; however, the effects of direct genetic DYRKIA
manipulation in the brain and the underlying molecular
mechanisms have not been fully demonstrated. To address this
gap, the present study investigated whether direct alterations in
DYRKIA gene expression in the brain alter cognitive function,
neuroinflammation, and AP/tau pathology and elucidated the
underlying mechanisms of action in WT mice and/or mouse
models of AD.

DYRKIA overexpression in WT mice impaired short-term
spatial/recognition memory, decreased SynGAP expression, and
increased P38 phosphorylation. In addition, DYRK1A knockdown
in 5xFAD mice improved cognitive function, upregulated
CaMKIIo/CREB signaling, and suppressed mRNA levels of
markers of neuroinflammatory-associated dynamics and
enhanced anti-oxidative/inflammatory molecule HO-1 levels. By
contrast, DYRKIA overexpression in 5xFAD mice increased
mRNA levels of markers for neuroinflammatory-associated
dynamics and upregulated STAT3/NF-xB phosphorylation.
Importantly, DYRKIA knockdown in 5xFAD mice reduced A
plaque deposition, soluble AB40/AB42 levels and insoluble AB42
levels by inhibiting BACE-1 activity but did not affect tau
hyperphosphorylation. Furthermore, in tau-overexpressing PS19
mice, knocking down DYRKIA directly in the brain selectively
suppressed insoluble tau hyperphosphorylation at Ser396 and
Ser404 and neuroinflammatory responses. Collectively, the
present results indicate that DYRKIA plays an important role in
cognitive function, AP/tauopathy and neuroinflammation in WT
mice and mouse models of AD, implicating DYRK1A as a potential
therapeutic target for AD.

Cognitive impairments and memory loss are critical factors in
AD diagnosis and progression (29). Recent studies have implicated
DYRKIA is closely associated with pathoprogression of
neurocognitive disorders, including AD and Down syndrome (10,
30, 31). Specifically, DYRK1A expression is increased in the brains
of patients with AD or Down syndrome or in DYRKIA-
overexpressing transgenic mice (DYRKIA Tg mice) compared to
healthy/WT controls (32, 33). In addition, we and others have
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FIGURE 8

DYRK1A knockdown selectively suppresses insoluble tau hyperphosphorylation in PS19 mice. (A) Tau-overexpressing PS19 mice were injected with
AAV-Control shRNA or AAV-DYRKIA shRNA, and western blotting of hippocampal lysates was performed with an anti-DYRK1A antibody (n = 8 mice/

group). (B—F) PS19 mice were treated as described in (A), and western blotti

ng of hippocampal lysates was performed with anti-p-Tau®¢r202/Tr205

(AT8), anti-p-Tau'212/5er214 (AT100), anti-p-Tau™™2%! (AT180), anti-p-Tau®*°®, anti-p-Tau>*"*°* and anti-GAPDH antibodies (n = 8 mice/group).

(G, H) PS19 mice were injected as described above, and western blot analys

is of hippocampal lysates was performed with anti-p-CDKS5, anti-CDK5,

anti-p-GSK3o/B and anti-GAPDH antibodies (n = 8 mice/group). *p < 0.05, **p < 0.01, ****p < 0.0001.

reported that pharmacological DYRKI1A inhibition (e.g., with
KVN93) ameliorates cognitive dysfunction and AD pathology in
3xTg AD mice and AB-overexpressing 5xFAD mice (22, 23). Here,
we systematically investigated the direct effects of DYRKI1A in the
brain on cognitive function by injecting an AAV enabling DYRK1A
overexpression or knockdown. In WT mice, DYRKIA
overexpression significantly reduced spatial/recognition memory
accompanied by decreased SynGAP (a Ras/Rap inactivator)
expression and increased p-P38 levels (Figure 1). However,
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DYRKIA knockdown significantly increased short-term and long-
term memory as assessed by the Y-maze and NOR tests,
respectively in 3.5-month-old 5xFAD mice (Figure 2).
Furthermore, DYRK1A knockdowned 6-month-old 5xFAD mice
also significantly enhanced long-term memory but not short-term
memory (Figure 2). These stage-dependent differences may reflect
variations in AD severity, as 3.5- and 6-month-old 5xFAD mice
represent the early and intermediate stages of AD, respectively.
More importantly, DYRK1A knockdown rescued cognitive
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FIGURE 9

DYRK1A knockdown suppresses proinflammatory cytokine levels and AD-associated neuroinflammatory dynamics in 4-month-old PS19 mice.
(A—C) 4-month-old PS19 mice were injected with AAV-Control shRNA or AAV-DYRKIA shRNA, and real-time PCR was conducted to measure
hippocampal proinflammatory cytokine, NLRP3, and SOD2 mRNA levels (n = 6~8 mice/group). (D—J) Real-time PCR analysis of markers of microglial
and astroglial-associated neuroinflammatory dynamics in hippocampal lysates of 4-month-old PS19 mice treated as described above (n =7~8 mice/

group). *p < 0.05, **p < 0.01, ****p < 0.0001.

function and increased CaMKIIoi/CREB signaling in 5xFAD mice
compared with AAV-control shRNA-injected 5xFAD mice
(Figure 2). Our findings raise an interesting question: why do
genetic overexpression and knockdown of DYRKIA engage
distinct memory-regulating pathways? These differences may be
the result of distinct neuropathological states in WT and 5xFAD
mice. Specifically, under pathological AD conditions (AP
overexpression in 5xFAD mice), AP oligomers suppress LTP-
promoting Ras signaling, including CaMKIIo. activation and
CREB-dependent transcription, thereby contributing to memory
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impairment (34, 35). Consistent with previous findings, we found
that DYRKIA knockdown reduced A levels in 5xFAD mice
(Figure 7), which may have attenuated AB-mediated inhibition of
the CaMKIIo-CREB pathway, thereby restoring pathway activity
and improving memory performance (Figure 2). However, under
non-pathological conditions (WT mice), CaMKIIa.-CREB
signaling is already within a normal functional range. Thus, it is
possible that DYRK1A overexpression does not further alter
CaMKIIo or CREB phosphorylation in WT mice. Instead,
DYRKI1A overexpression reduced SynGAP expression and
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increased p-P38 levels in WT mice (Figure 1). Because SynGAP
inactivates Ras/Rap signaling, SynGAP deficiency is closely
associated with cognitive impairment. Indeed, SynGAP1™~ mice
exhibit attenuated hippocampal LTP induction and reduced
learning and memory (36). In addition, excessive activation of
P38 disrupts synaptic plasticity and memory; Dai et al.
demonstrated that neuron-specific knockdown of P38 restored
hippocampal LTP and improved spatial memory performances in
5xFAD mice (37). Moreover, pharmacological inhibition of P38
(e.g., by NJK14047 or MW 150) elicits neuroprotective effects and/
or enhanced cognitive function in 5xFAD mice (38, 39). Taken
together, our findings suggest that genetic DYRK1A manipulation
modulates cognitive function through disease state-dependent
mechanisms: restoring AB-suppressed CaMKIIo~CREB signaling
under AD pathological conditions (5xFAD mice) or modulating
SynGAP-P38 pathways under normal conditions (WT mice).

Homeostatic astrocytes and surveilling microglia play critical
roles in the formation and remodeling of synapses, thereby
contributing to normal cognitive function (40, 41). However,
under pathological conditions, including sustained exposure to
AP plaques and/or NFTs, these neuroprotective glial cells shift to
disease-associated reactive glia, which exacerbate
neuroinflammation and contribute to neuronal degeneration
followed by cognitive decline (42-44). Importantly, several studies
have demonstrated that DYRK1A plays an essential role in
neuroinflammatory responses in vivo (22, 45). For instance,
DYRKI1A-overexpressing Tg mice and DYRKIA shRNA plasmid-
injected WT mice exhibit significant increases or decreases,
respectively, in the mRNA levels of the astrocyte markers GFAP
and S100p (45). The same study also found that the expression of
MAC-2, a marker of AD-associated reactive microglia, is not altered
in DYRK1A Tg mice (45, 46). In addition, we previously reported
that pharmacological inhibition of DYRKI1A with the small
molecule KVN93 significantly downregulates microglial and
astrocyte activation in 5xFAD mice (22). However, the effects of
altering DYRKIA gene expression directly in the brain on
neuroinflammatory dynamics are not well studied. We therefore
investigated the effect of genetic DYRK1A manipulation directly in
the brain on microglial/astroglial neuroinflammatory dynamics and
the underlying mechanisms of action in 5xFAD mice. We found
that AAV-DYRKIA shRNA injection (knockdown) significantly
decreased neuroinflammatory responses and significantly increased
HO-1 expression in 5xFAD mice without altering STAT3/NF-kB
phosphorylation levels (Figures 3, 6). By contrast, AAV-DYRKIA
injection (overexpression) notably increased proinflammatory
responses and elevated STAT3 and NF-kB phosphorylation in
5xFAD mice but did not affect ROS levels (Figures 5, 6). The
distinct mechanisms underlying these differential effects of
DYRKIA knockdown and overexpression on oxidative stress and
neuroinflammatory downstream signaling in 5xFAD mice will be
systematically analyzed in a future study.

The NLRP3 inflammasome plays a key role in AD progression
by increasing the release of the proinflammatory cytokine IL-1f3 and
reducing AP phagocytosis, which accelerates AP aggregation and
senile plaque deposition (47). Interestingly, pharmacological
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inhibition of NLRP3 by OLT1177 ameliorates AP} accumulation
and cognitive impairment in an AD mouse model (48, 49).
Although both NLRP3 and DYRKI1A have been implicated in AD
pathology, the mechanistic relationship has not been fully
elucidated. We therefore examined whether direct modulation of
DYRKIA in the brain affects NLRP3 expression in 5xFAD mice.
AAV-DYRKI1A shRNA injection (knockdown) significantly
decreased NLRP3 mRNA levels in the hippocampus in 5xFAD
mice, whereas AAV-DYRKI1A-injection (overexpression) markedly
increased NLRP3 mRNA expression (Figures 3-5). These results
suggest that DYRKIA regulates NLRP3 to influence
neuroinflammatory responses in this mouse model of AD.
Consistent with this possibility, DYRKIA knockdown increased
levels of the anti-oxidative/neuroinflammatory molecule HO-1,
while DYRKI1A overexpression upregulated STAT3/NF-xB
signaling, which is associated with NLRP3 downstream signaling
in 5xFAD mice (Figure 6). Collectively, these findings raise the
possibility that DYRK1A may function upstream of NLRP3 to
modulate neuroinflammatory responses in AD pathology. To
further validate this hypothesis, it is necessary to determine
whether directly altering DYRKIA expression (knockdown or
overexpression) in the brain modulates key upstream modulators
of NLRP3 [e.g., thioredoxin-interacting protein (TXNIP) and
NIMA-related kinase 7 (NEK7)]. Changes in TXNIP and NEK
expression would support the notion that DYRK1A acts upstream
of NLRP3. Future studies will clarify this regulatory relationship.
Alternatively, DYRKIA may act downstream of NLRP3 to diminish
AD-associated neuroinflammatory signaling. To test this
possibility, future research will examine whether modulation of
NLRP3 expression via genetic knockdown using an AAV vector
system or pharmacological inhibition alters DYRKI1A levels or
activity in mouse models of AD. A third plausible explanation is
that DYRK1A directly binds to NLRP3 or its adaptor proteins (e.g.,
ASC), thereby influencing inflammasome assembly and subsequent
proinflammatory cytokine release. Taken together, our findings
suggest that DYRK1A and NLRP3 reciprocally regulate each
other through a bidirectional signaling network to modulate
neuroinflammatory responses in mouse models of AD.

Neurotoxic AP plaques are formed through the amyloidogenic
proteolytic processing of APP by [3-secretase (BACE-1) and y-secretase
(presenilin), which contributes to neuronal degeneration and further
synaptic and cognitive dysfunction (4, 13). In contrast, AB production
is inhibited when APP is processed via non-amyloidogenic proteolysis
by oi-secretases such as ADAM10 and ADAM17 (50). In addition, AB-
degrading enzymes like IDE and NEP hydrolyze AB,, into smaller and
less toxic fragments (51). Interestingly, several studies have reported
that DYRK1A participates in the regulation of APP trafficking and
processing, thereby contributing to AP pathology in vitro and in vivo.
For example, DYRK1A modulates bilateral APP axonal transportation,
a critical process for AP} pathogenesis, in neurons derived from human
induced pluripotent stem cells (52). Moreover, DYRK1A Tg mice that
overexpress DYRKIA exhibit increased phosphorylation of APP at
Thr688, a crucial site for amyloidogenic processing and A levels in the
brain (53). Furthermore, pharmacological inhibition of DYRKI1A, e.g.,
by KVN93, significantly reduces AR plaque accumulation and
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insoluble AB40/AB42 levels in 5xFAD mice and 3xTg mice (22, 23). In
the present study, we demonstrated that AAV-DYRK1A shRNA-
injected 5XxFAD mice significantly reduced AP deposition and
soluble/insoluble AP levels through selectively reducing the activity of
the B-secretase BACE-1 without affecting other AB-regulating enzymes
(i.e, ADAMI17, NEP, and IDE) or PS-1 expression levels (Figure 7,
Supplementary Figure 4). We then examined whether directly altering
DYRKIA expression in the brain modulates APP phosphorylation at
Thr688 to affect AR pathology and found that direct DYRKIA
knockdown in the brain did not alter p-APP™8 Jevels in either
3.5- or 6-month-old 5xFAD mice (Supplementary Figure 4). Together,
the previous literature and the present findings suggest that DYRKIA
manipulation directly in the brain diminishes A pathology by
suppressing BACE-1 activity and/or direct inhibition of DYRKIA
itself in 5xFAD mice. Although our current findings demonstrate the
underlying mechanisms by which direct genetic DYRK1A knockdown
or overexpression in the brain modulates AP pathology in WT and
5xFAD mice, we did not use pharmacological inhibitors to further
validate whether DYRK1A manipulation modulates AP pathologies by
targeting other molecules, which will be addressed in a future study.
Tau participates in microtubule stabilization in neurons under
normal physiological conditions. However, under pathological
conditions, multiple tau kinases (e.g., DYRKIA and GSK30/()
hyperphosphorylate tau, leading to its aggregation, NFT
formation, and cognitive dysfunction (54, 55). Therefore, tau
kinase dysfunction contributes to the pathogenesis of
neurodegenerative diseases, and in vivo and clinical studies have
shown that modulating tau kinase is a critical therapeutic approach.
For example, genetic DYRKIA overexpression (e.g., in DYRKIA
transgenic mice or Down syndrome patients) increases total tau
levels, tau hyperphosphorylation, and NFT formation (56, 57).
However, pharmacological DYRKIA inhibition significantly
reduces tauopathy in 3xTg mice, a mouse model of AD exhibiting
both AP pathology and tauopathy (23). In addition, CDKS5 is highly
expressed in the brains of patients with AD, and genetic
overexpression of CDK5 or increased CDKS5 activity induces NFT
formation, synaptic damage, and neuronal death in vitro and in vivo
(58, 59). Another tau kinase, GSK3, is associated with memory
decline, tau hyperphosphorylation, and the formation of paired
helical filaments (60, 61). However, beyond these findings, the effect
of direct genetic inhibition of DYRKIA in the brain on tauopathy
has not been fully investigated in mouse models of AD. We found
that AAV-DYRKIA shRNA injection in the brain in 5xFAD did not
reduce tau hyperphosphorylation at Ser’*’/Thr*®> and Thr**!
(Supplementary Figure 5). To understand why direct DYRKIA
knockdown in the brain does not affect tau hyperphosphorylation
in 3.5-month-old 5xFAD mice, it is important to remember that tau
hyperphosphorylation increases in an age-dependent manner in
5xFAD mice. While robust p-Tau (Ser202/Thr205) expression is
observed in 7- to 8-month-old 5xFAD mice (late-stage AD), it is
possible that 3.5-month-old 5xFAD mice (early-stage AD) are not
suitable for assessing the effect of DYRK1A knockdown on tau
hyperphosphorylation (62, 63). To further clarify the effects of
DYRKIA on tau pathology, we examined whether direct
DYRKI1A knockdown in the brain differentially regulates tau
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hyperphosphorylation in tau-overexpressing PS19 mice. We
found that tau phosphorylation at Ser396 and Ser404 was
significantly reduced in RIPA-insoluble fractions of hippocampal
tissue from AAV-DYRK1A shRNA-injected PS19 mice (Figure 8).
These results indicate that direct DYRK1A knockdown in the brain
modulates tau hyperphosphorylation under tauopathy-
predominant conditions.

There are several limitations of the present study. First, we
demonstrated that genetic DYRK1A knockdown did not alter tau
phosphorylation in 3.5-month-old 5xFAD mice (Supplementary
Figure 5) and selectively reduced insoluble tau
hyperphosphorylation at Ser396 and Ser404 in 4-month-old PS19
mice (Figure 8). Therefore, combined approaches might provide a
broader blockade of tau phosphorylation epitopes, thereby
achieving more efficient suppression of tauopathy and directly
and/or indirectly regulating AP pathology. CDK5 and GSK3f are
involved in inflammation/A signaling as well as synaptic plasticity/
cognitive function (64-67). Therefore, combining genetic
knockdown of DYRKIA with a tau inhibitor might have
synergistic effects on multiple aspects of AD pathology, including
cognitive impairment, neuroinflammation, and Af/tau pathology.
Second, the present study specifically focused on the effect of genetic
manipulation of DYRK1A in the hippocampus rather than multiple
brain regions. The hippocampus was chosen because it plays a
pivotal role in early memory formation and is particularly
vulnerable to AD-related pathology (68). Given its central
involvement in memory consolidation and synaptic plasticity, we
examined how DYRKIA knockdown or overexpression in this
region influences cognitive function and other AD pathologies.
However, we are aware that other brain regions, such as the cortex,
are also crucial for regulating learning and memory. Future studies
will therefore investigate the effects of DYRK1A modulation in the
cortex using AAV-based gene delivery to determine its impact on
cognitive function, AD pathology, and neuroinflammation in
mouse models of AD as well as explore potential combinational
therapeutic synergistic effects (e.g., DYRKIA gene therapy and AP/
tau inhibitor) on AD pathology.

Conclusion

The present study demonstrated that DYRK1A gene
overexpression directly in the hippocampus in WT mice
significantly impaired short-term spatial/recognition memory by
modulating SynGAP and P38 signaling. In addition, DYRKIA
knockdown directly in the hippocampus in AB-overexpressing
5xFAD mice significantly attenuated cognitive impairment and
neuroinflammatory responses, increased anti-oxidative/anti-
inflammatory HO-1 levels, and reduced AP pathology by
suppressing BACE-1 activity. Moreover, DYRK1A overexpression
directly in the hippocampus in 5XxFAD mice exacerbated
neuroinflammation and enhanced STAT3/NF-kB signaling.
Furthermore, DYRK1A knockdown directly in the hippocampus
in tau-overexpressing PS19 mice selectively reduced insoluble tau
phosphorylation and proinflammatory responses/glial dynamics.
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These results indicate that modulation of DYRKIA expression in
the brain is a promising therapeutic strategy for ameliorating
cognitive dysfunction and mitigating AD-related pathologies.
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