

Proximity labeling unveils potential roles of the Miro2-CISD1 network in mitochondrial dynamics and neuronal differentiation

3 Im Kyeung Kang¹, Sunwoo Lee¹, Tae Kwon Moon¹, A Reum Han², Dae Bong Yu¹, Minkyo Jung³,
4 Chulhwan Kwak⁴, Jeong Kon Seo⁵, Hyun-Woo Rhee⁴, Seong Who Kim^{2,6}, Ha-Na Woo^{2,6*}, Ji Young
5 Mun^{3*}, Heuiran Lee^{1,6*}

⁶ ¹Department of Microbiology, Asan Medical Institute of Convergence Science and Technology, Asan
⁷ Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea

8 ²Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul,
9 Republic of Korea

¹⁰³Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea

11 ⁴Department of Chemistry, Seoul National University, Seoul, Republic of Korea

12 ⁵Department of UNIST Central Research Facilities, Ulsan National Institute of Science and Technology,
13 Ulsan, Republic of Korea

14 ⁶Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea

15

16 *Correspondence should be addressed to H. Lee, J. Y. Mun, and H. N. Woo

17 Heuiran Lee, Ph.D.

18 Department of Microbiology, Asan Medical Institute of Convergence Science and Technology, Asan
19 Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea

20 Phone: +82-2-3010-4286; E-mail: heuiran@amc.seoul.kr, ORCID: 0000-0002-4241-5664

21 Ji Young Mun, Ph.D.

22 Neural Circuit Research Group, Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu
23 41062, Republic of Korea

24 Phone: +82-53-980-8470; E-mail: jymun@kbri.re.kr, ORCID: 0000-0003-0820-6233

25 Ha-Na Woo, Ph.D.

26 Department of Biochemistry and Molecular Biology, University of Ulsan, College of Medicine, 88
27 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea

28 Phone: +82-2-3010-2918; E-mail: woohn101@gmail.com, ORCID: 0000-0002-6771-8151

29 **Abstract**

30 Adult hippocampal neurogenesis, crucial for maintaining neural homeostasis, is integral to
31 neurodegeneration. We previously identified Miro2 as a key regulator of mitochondrial dynamics and
32 survival in hippocampal neural stem cells with potential relevance to Alzheimer's disease. Here, using
33 TurboID-based proximity labeling, we explore Miro2's interaction networks and identify sixty-six
34 unique interactors specific to hippocampal neural stem cells. Functional enrichment analysis reveals
35 that these proteins are crucial for mitochondrial organization, transport, and neurodegeneration. CISD1
36 emerges as a significant interaction partner. Knockdown of Miro2 and CISD1 impairs mitochondrial
37 trafficking in adult hippocampal stem cells, disrupted stem cell differentiation with increased
38 cytotoxicity. Rescue experiments partially reverse cell death, and both Miro2 and CISD1 show
39 increased expression and interaction during differentiation. These findings suggest the Miro2–CISD1
40 axis as a critical regulator of mitochondrial remodeling and neurogenesis, providing a framework for
41 future studies on how mitochondrial dynamics contribute to neurodegenerative disease mechanisms.

42

43 **Keywords:** Hippocampal neural stem (HCN) cell, Adult hippocampal neurogenesis,
44 Neurodegeneration, Mitochondria trafficking, Mitochondrial Rho GTPase 2 (Miro2), CDGSH iron
45 sulfur domain (CISD1), TurboID-mediated proximity labeling, Bioinformatics

46 **Introduction**

47 Hippocampal neural stem (HCN) cells are essential for adult neurogenesis, generating new neurons in
48 the subgranular zone of the hippocampal dentate gyrus and the subventricular zone of the lateral
49 ventricle¹. Brain injuries stimulate HCN cell proliferation and differentiation, enabling migration and
50 integration into neural networks for functional recovery. Impairments in neurogenesis are linked to
51 neurodegenerative diseases^{2,3}. Isolated from adult rat brain by the Gage group, HCN cells differentiate
52 into neurons, astrocytes, and oligodendrocytes both in vitro and in vivo, influenced by various factors.
53 The HCN cells exhibit a unique susceptibility to autophagy-dependent cell death (ADCD) under
54 conditions of insulin withdrawal^{4,5}. Our previous study demonstrated that miR-351-5p targets Miro2,
55 reducing its levels and inducing ADCD. The results indicated that mitochondrial dysfunction, fission,
56 and subsequent mitophagy-dependent cell death occurs during HCN cell death via the miR-351-
57 5p/Miro2 axis. It also provided an evidence that Miro2 decreased in Alzheimer's disease models.
58 Mitochondria are dynamic subcellular organelles essential for various cellular processes, including
59 energy metabolism and cell survival^{6,7}. Dysregulated mitochondrial dynamics contribute to
60 neurodegenerative disorders like Alzheimer's and Parkinson's disease^{8,9}. Miro proteins (Miro1 and
61 Miro2), are mitochondrial outer membrane GTPases critical for mitochondrial trafficking, dynamics,
62 mitophagy, calcium homeostasis, mitochondria-ER contacts, and mitochondrial transfer through their
63 interactions with the cytoskeleton and other cellular components^{10,11,12}. Miro enables bidirectional
64 mitochondrial transport by interacting with Milton along with motor proteins like kinesin and dynein¹³.
65 While several Miro2 interactors have been identified, our comprehension of the functional network and
66 action mechanisms involving Miro2 on mitochondria remains limited and fragmented. Further in-depth
67 studies are needed to elucidate how these interactors contribute to these critical cellular processes.
68 Protein interaction networks and compartmentalization are fundamental to cellular signaling.
69 Traditional methods for studying protein-protein interactions including immunoprecipitation and yeast
70 two-hybrid assays have limitations such as non-specific contamination by non-specific molecules and
71 subcellular bias. Recently, enzyme-catalyzed proximity labeling has emerged as a powerful alternative

72 for studying the spatial and interaction characteristics of proteins in living cells by biotinyling nearby
73 proteins in living cells for streptavidin enrichment and mass spectrometry identification¹³. TurboID, an
74 engineered biotin ligase, enables rapid, efficient labeling of proximal proteins^{14,15,16}.
75 To this end, TurboID-based proximity labeling was utilized to map the spatial proteomes and interaction
76 networks within HCN cells, focusing on Miro2's protein-protein interactions with potential partners.
77 This approach seeks to deepen our understanding of Miro2's mitochondrial roles and its influence on
78 neurogenesis in HCN cells.

79

80 **Results**

81 **Proximity labeling systems were validated and applied to uncover Miro2 interactome.** Miro2-
82 TurboID (Miro2-TID) and TurboID-Miro2 (TID-Miro2) fusion protein constructs were generated by
83 cloning Miro2 into the N- or C-terminus of TurboID (Fig. 1a). Following optimization in 293T cells, a
84 50 μ M biotin treatment for 6 hours was chosen to maximize labeling efficiency while minimizing non-
85 specific background, ensuring high-fidelity capture of Miro2-interacting proteins (Supplementary Fig.
86 1). All constructs successfully expressed the fusion proteins as expected and demonstrated effective
87 biotinylation (Fig. 1b). The subcellular distribution of the constructs in HeLa cells was analyzed to
88 determine if the bait proteins maintained their native subcellular localization (Fig. 1c). Similar to
89 Tom20-TID, TID-Miro2 showed mitochondrial localization, whereas Miro2-TID, like TID alone,
90 remained cytosolic. Quantitative colocalization analysis indicated that TID-Miro2 exhibits strong
91 mitochondrial targeting, as reflected by a Pearson's coefficient of 0.95 ± 0.00 and an overlap coefficient
92 of 0.96 ± 0.00 (Fig. 1d, e). MitoTracker staining and mitochondrial motility assays suggested no
93 detectable alterations in mitochondrial morphology or dynamics across HCN-TurboID cell lines
94 (Supplementary Fig. 2), indicating that TID-Miro2 preserves endogenous Miro2 function and is suitable
95 for proximity labeling. To overcome low transfection efficiency in HCN cells, we generated stable cell
96 lines using a lentiviral system and confirmed successful enrichment of biotinylated proteins prior to
97 mass spectrometry (Supplementary Fig. 3-4). Following biotinylation and trypsin digestion,

98 biotinylated peptides were isolated, and lysine residues modified by biotin (K+226 Da) were analyzed
99 by liquid chromatography-tandem mass spectrometry (LC-MS/MS) (Fig. 2a; Supplementary Fig. 5).
100 Biotin-modified site analysis or super-resolution proximity labeling workflow can provide clear picture
101 of proximal biotinylated interactome as shown in previous studies^{17,18}. On average, 950 Miro2-enriched,
102 918 Tom20-enriched, and 1489 cytosol-enriched interactors were identified. Principal component
103 analysis revealed that 61.6% and 14.8% of the interactome variation, respectively, represented by
104 principal components 1 (PC1) and 2 (PC2), and each cluster further exhibited a distinct separation of
105 protein profiles (Fig. 2b). Hierarchical cluster analysis showed high concordance between replicates of
106 each experimental group and revealed a distinct interaction profile for Miro2-enriched proteins
107 compared to Tom20 (Ctrl2) and Whole cell (Ctrl1), with unique patterns among the groups (Fig. 2c).

108

109 **Miro2 interactome was assessed using interactome databases.** The major changes that met the
110 criteria for quantitative MS analysis between Miro2 and Whole cell and between Tom20 and Whole
111 cell were displayed in volcano plots (Fig. 2d, Supplementary Fig. 6). Sixty-six proteins were identified
112 as Miro2 interactors with significantly altered abundance compared to the Whole cell, whereas Tom20
113 interactors numbered 266 under similar conditions. Among these proteins, seven proteins were Miro2
114 specific and fifty-nine overlapped with Miro2 and Tom20 (Fig. 2e, and Supplementary Table 1). The
115 specificity of our findings, using Miro2 as a keyword to explore network-based resources for protein-
116 protein interaction studies, was assessed by comparing them with existing interactome databases, such
117 as BioPlex (Biophysical Interactions of ORFeome-based Complexes), IntAct, and BioGRID
118 (Biological General Repository for Interaction Datasets (Fig. 3a). The results indicated that among the
119 proteins identified as Miro2 interactors, only thirteen were found in previously reported interactome
120 databases. These findings highlight the distinctive Miro2 interactome specific to neural stem cells and
121 reveal previously undocumented interactors not found in existing databases. In addition, we performed
122 Gene Ontology analyses of the Miro2-interacting protein hits to evaluate their reported biological
123 processes. The top biological processes included mitochondrion organization (GO:0007005),

124 mitochondrial transport (GO:0006839), and cellular respiration (GO:0045333) (Fig. 3b). The result
125 substantiated the known functions of Miro2 in mitochondria. Interestingly, Kyoto Encyclopedia of
126 Genes and Genomes (KEGG) enrichment analysis demonstrated that Miro2 interactors are strongly
127 associated with neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease (Fig.
128 3c). ShinyGO 0.08 analysis against various databases and functional categories implied the significant
129 changes in the interactions of these genes with neurodegenerative diseases, as well as in the
130 mitochondrial metabolism and dynamics (Fig. 3d). Overall, these results suggest that Miro2 interactors
131 engage in mitochondrial trafficking and could play a role in neurodegenerative disease pathways.

132

133 **The interaction between Miro2 and the candidate interactor CISD1 was validated.** The top five
134 significant hits clustering was represented in Fig. 2e, 4a. The Miro2-specific proximity to these proteins
135 was confirmed by biotinylation experiments in the TurboID cell line (Supplementary Fig. 7). To further
136 explore the functional connectivity of Miro2 with its potential interactors, we examined their known
137 properties, including subcellular localization, activity, and biological functions, focusing on those
138 particularly relevant to neural stem cells. Among the top five Miro2 interactors, CISD1 (CDGSH Iron
139 Sulfur Domain 1) was the only protein localized to the mitochondrial outer membrane, similar to Miro2,
140 and has been identified as an early-stage biomarker of Alzheimer's disease linked to mitochondrial
141 dysfunction³⁹. STRING analysis revealed that CISD1 clusters with proteins involved in mitochondrial
142 regulation and stem cell differentiation, including TIMM44, PHB2, and HSPA8, highlighting its
143 potential functional relevance (Supplementary Fig. 8). In light of these findings, CISD1 was selected
144 for further investigation as a potential Miro2 interactor. Reciprocal immunoprecipitation of endogenous
145 proteins in HCN cells confirmed an interaction between Miro2 and CISD1 (Fig. 4b). The dominance of
146 yellow color in the immunocytochemistry experiment indicates colocalization of Miro2 and CISD1
147 proteins within the same region in HCN cells (Fig. 4c). The coefficient values prove this; Pearson's
148 coefficient 0.66 (± 0.13) and Overlap coefficient 0.77 (± 0.11). Colocalization of Miro2 and CISD1 was
149 further confirmed by overexpression of Myc-Miro2 and HA-CISD1 tagged constructs in neuroblastoma

150 SH-SY5Y cells (Fig 4d). The coefficient values prove this; Pearson's coefficient 0.85 (\pm 0.06) and
151 Overlap coefficient 0.89 (\pm 0.05). Taken together, these data indicate a correlated interaction between
152 Miro2 and CISD1 and support the reliability of the Miro2 interactome data.

153

154 **Miro2 and CISD1 regulate mitochondrial trafficking.** To investigate the cellular function of Miro2
155 and CISD1 in HCN cells, we specifically knocked down these proteins (Supplementary Fig. 9) and then
156 observed the mitochondria using transmission electron microscopy. When Miro2 and CISD1 were
157 suppressed, mitochondria in HCN cells became shortened and fragmented (Fig. 5a). We confirmed the
158 mitochondria morphological changes by measuring the aspect ratio (Fig. 5c). Additionally, the
159 distribution of mitochondria in Miro2 and CISD1 knockdown cells was quite distinct from that observed
160 in siCON-treated cells (Fig. 5b). In Miro2 and CISD1 knockdown cells, mitochondria were positioned
161 closer to the nucleus, suggesting reduced mitochondrial movement. The Imaris program was used to
162 measure the distance between the mitochondria and the nucleus, revealing that the knockdown of Miro2
163 and CISD1 resulted in a reduced distance between the nucleus and mitochondria (Fig. 5d). These results
164 thus imply that CISD1, like Miro2, is a major factor influencing mitochondrial trafficking.

165

166 **Miro2 and CISD1 enable the differentiation of hippocampal neural stem cells.** One of the key
167 characteristics of neural stem cells is their ability to differentiate into cells of the nervous system^{19,20}.
168 To investigate the roles of Miro2 and CISD1 in neuronal differentiation, we analyzed protein expression
169 changes during this process, confirming HCN cells' differentiation potential through
170 immunocytochemistry of several markers. Results indicated that undifferentiated HCN cells strongly
171 expressed Nestin and PAX6, specific to neural stem cells, while differentiated cells exhibited MAP2
172 along neurites and a low detection rate of the astrocyte marker GFAP (Fig. 6a). Furthermore, under
173 these differentiation conditions, the levels of both Miro2 and CISD1 proteins significantly increased
174 (Fig. 6b, c). Inducing neural differentiation under Miro2 and CISD1 knockdown led to a significant
175 increase in cell death (Fig. 6d). The LDH assay consistently showed elevated cytotoxicity in Miro2 and

176 CISD1 downregulated groups, compared to siCON (Fig. 6e). Rescue experiments demonstrated that
177 overexpression of either Miro2 or CISD1 reduced knockdown-induced cell death and partially restored
178 neuronal differentiation (Supplementary Fig. 10). Under differentiation conditions, protein levels of
179 both Miro2 and CISD1 increased, and co-immunoprecipitation assays revealed a concomitant
180 enhancement in their interaction (Supplementary Fig. 11). This interaction increase was specific to the
181 Miro2–CISD1 pair, as no change was detected for Drp1 or TIMM44, despite their presence in the Miro2
182 interactome. These results indicate that Miro2 and CISD1 expression and physical association are both
183 upregulated during neuronal differentiation and that their knockdown impairs cell survival and
184 differentiation capacity.

185

186 **Discussion**

187 In this study, we successfully mapped the Miro2 interactome in HCN cells using proximity labeling,
188 expanding on our prior findings that Miro2 is crucial in Alzheimer's disease and related dementias by
189 regulating mitochondrial dynamics. Our integrative analysis, which incorporated bioinformatics tools
190 and public database resources, revealed that Miro2 interactors primarily linked with mitochondrial
191 maintenance and beta-oxidation of fatty acids. Interestingly, the KEGG and ShinyGO analyses revealed
192 a significant correlation between the Miro2 interactome and neurodegenerative disease, suggesting that
193 these findings may reflect the distinctive characteristics of HCN cells. Previous studies have shown that
194 a sharp decline of adult hippocampal neurogenesis has been observed in early Alzheimer's disease^{2,3}.
195 Enhancing the viability of HCN cells may help mitigating neurodegenerative diseases associated with
196 a reduced neural stem cell pool^{21,22}. Additionally, the upregulation of Miro2 and its key interactor
197 CISD1 during neural differentiation suggests that these proteins support cell viability, probably
198 facilitating differentiation. While many of the identified interactors are enriched in mitochondrial
199 pathways, some—such as HSPD1, PPIA, and PHB2—have also been implicated in stem cell
200 differentiation. This suggests that mitochondrial proteins may play dual roles in both supporting cellular
201 metabolism and regulating neurogenesis. This study enhances our understanding of the role of Miro2
202 by detailing its interactome in HCN cells and emphasizing its critical influence on mitochondrial
203 trafficking and neurogenesis.

204 TurboID offers high efficiency and minimal toxicity in proximity labeling, allowing accurate interaction
205 detection within living cells based on protein subcellular localization. Although advantageous,
206 proximity labeling has limitations, including the need to express the biotin ligase as a fusion protein
207 with the bait and the requirement for high overexpression in cell lines like 293T. To address this, we
208 created two Miro2-TurboID fusion variants and verified their correct subcellular localization. To
209 improve low transfection efficiency in HCN cells, we established stable cell lines using a lentivirus
210 system^{23,24}. Given their ability to effectively transduce both dividing and non-dividing cells, lentiviral

211 vectors serve as adequate transgene delivery tools, as they also result in stable and long-term gene
212 expression.

213 The reliability of our results is supported by the overlap with proteins listed in interactome databases
214 and the validation of recognized proteins, such as TRAK1 and MYO19, as demonstrated in previous
215 studies^{25,26}. The interactions of other proteins with Miro have also been documented. Specifically, the
216 mitochondrial fusion proteins mitofusin 1 (MFN1) and mitofusin 2 (MFN2) affect mitochondrial
217 dynamics through interaction with Miro. MFN2 is directly involved in mitochondrial transport in axons
218 by interacting with the Miro/Milton complex²⁷. Miro also acts as a sensor for cytosolic Ca²⁺ (cCa²⁺),
219 with the EF-hand domain. An increase in cCa²⁺ triggers the dissociation of the N-terminus of the
220 mitochondrial calcium uniporter (MCU), disrupting the MCU–Miro interaction, which is crucial for
221 maintaining mitochondrial transport in axon cells²⁸. Notably, the Miro protein exists in two isoforms,
222 designated Miro1 and Miro2^{29,30}. The two isoforms share key features, including the GTPase domain
223 and EF hands. They are also known to form heterodimers, but prior studies have often not differentiated
224 between the two isoforms or have mostly focused on Miro1³¹. However, our previous study suggests
225 that there may be functional differences between the two proteins⁵. Additionally, an analysis of
226 interactome databases revealed that Miro1 and Miro2 exhibit distinct patterns of protein interaction.
227 Further investigations of these differences based on interactome analysis would be promising.

228 Utilizing Miro2 as a keyword, we can leverage publicly accessible databases to further investigate and
229 understand the functional roles of Miro2. However, several limitations must be acknowledged. The
230 Bioplex dataset is restricted to Miro2 interactome data from 293 and HCT116 cell lines, while IntAct
231 predominantly focuses on human data. Although BioGRID provides extensive data from various
232 analytical methods, it still lacks species diversity, underscoring the need for additional data to enhance
233 reliability. Notably, we found limited interactome data derived specifically from neural stem cells.
234 Considering the unique characteristics of these cells, we anticipate that our Miro2 interactome will
235 provide meaningful insights into the functional role of Miro2 in neuronal systems. As expected, the
236 Miro2 interactors identified in our study show minimal overlap with those identified in public databases.

237 Nonetheless, 80.3% of proteins uniquely found in our study represent key entities that could advance
238 our understanding of the specific role of Miro2 in HCN cells and its potential links to neurodegenerative
239 diseases.

240 This study identified CISD1 as a Miro2 interactor with a high *p*-value, uncovering previously unknown
241 functions of CISD1 associated with its interaction with Miro2. CISD1 is known to form a homodimer
242 and resided to the contact site between the mitochondrial outer membrane and the ER membrane³²⁻³⁴.
243 Recent findings suggested that it is crucial for intracellular calcium homeostasis and inhibits ferroptosis
244 by preventing mitochondrial lipid peroxidation^{35,36}. Moreover, CISD1 has recently been identified as a
245 previously unrecognized early-stage biomarker of Alzheimer's disease, unlike the established markers
246 VGF, LTF, PARP1, and MAOA. CISD1 deficiency in mice has been linked to cognitive impairment
247 and increased neuroinflammation³⁷⁻³⁹. Our study further demonstrates that CISD1, together with Miro2,
248 plays a critical role in regulating mitochondrial trafficking. Interestingly, CISD1 knockdown in
249 undifferentiated HCN cells did not markedly affect cell viability but increased the co-localization of
250 MitoTracker and Lysotracker signals (Supplementary Fig. 12), indicating a previously unreported link
251 between CISD1 and Miro2-mediated mitochondrial trafficking in maintaining mitochondrial integrity.
252 We also found that Miro2 and CISD1 contribute to neural differentiation through increased expression,
253 enhanced interaction, and support of cell survival. During the differentiation of neural stem cells (NSCs)
254 into neurons, mitochondrial dynamics are essential, with morphological remodeling reflecting the
255 metabolic state required for this process^{40,41}. These findings suggest that Miro2 and CISD1 may act
256 cooperatively to preserve mitochondrial integrity and thereby influence NSC fate, although further
257 epistasis analysis is needed to clarify their mechanistic relationship and confirm their cooperative role
258 in neurogenesis.

259 In conclusion, utilizing proximity labeling technology, we successfully mapped the functional
260 complexes associated with Miro2 and conducted integrative bioinformatic analyses to provide detailed
261 functional annotations of the Miro2 interactome. These results reveal a distinctive molecular signature
262 within the Miro2 interactome connected to degenerative disorders originating in neural stem cells.

263 Moreover, CISD1 was identified as a novel regulator of mitochondrial trafficking, shedding light on
264 mechanisms of mitochondrial transport. These findings thus advance our understanding surrounding
265 Miro2.

266

267 **Methods**

268 **Adult HCN cell culture, transfection, and differentiation.** HCN cells were kindly provided by the
269 laboratory of Dr. Fred Gage. HCN cells were cultured in serum-free Dulbecco's modified Eagle's
270 medium mixture F-12 (Invitrogen) supplemented with 1.27 g/L sodium bicarbonate (Invitrogen),
271 100 mg/L transferrin (Sigma), 30 nM sodium selenite (Sigma), 16 mg/L putrescine dihydrochloride
272 (Sigma), 20 nM progesterone, 100 µg/mL streptomycin, and 100 U/mL penicillin (Invitrogen).
273 Furthermore, 20 ng/mL fibroblast growth factor β (FGF-β) (Invitrogen) and 5 µg/mL insulin (Sigma)
274 were added to the media before use. All plates for HCN cells were coated with 10 mg/L poly-L-
275 ornithine (Sigma) and 1 mg/L laminin (BD bioscience). siRNA duplexes were purchased from Bioneer.
276 Transient transfection was conducted using Oligofectamine (Invitrogen) according to the
277 manufacturer's instructions. For differentiation, HCN cells were plated into coated µ-Dish 35 mm
278 confocal dishes (Ibidi), and 24 hours later, the culture medium was replaced with medium containing
279 1 µM retinoic acid (Tokyo Chemical Industry, # R0064), 5 µM forskolin (Sigma, # F3917), and 0.1%
280 fetal bovine serum (Corning #35-015-CV)⁴².

281

282 **Cell viability assays.** To identify the cytotoxicity during differentiation, LDH in conditioned medium
283 was measured using the LDH release assay (Promega, # J2380). Viability was measured by staining
284 with Hoechst 33342 and PI. Hoechst 33342 (5 µg/mL) and PI (1 µg/mL) were added to the culture
285 media, and cells were maintained at 37°C. After 5 min, the observed fields were randomly selected (>
286 8 fields, > 200 cells/field) and imaged under a fluorescence microscope.

287

288 **Construction of plasmids.** The Tom20-TID plasmid was previously described⁴³. The control plasmid,
289 TID, was generated by the elimination of Tom20. To create the Miro2-TID plasmid, the full-length
290 sequences of Miro2 were incorporated into the XhoI site of the TID plasmid. The TID-Miro2 plasmid
291 was constructed by inserting the full-length Miro2 sequence into the KpnI site of the TID plasmid. For
292 lentivirus production, the TID, TID-Miro2, and Tom20-TID cDNA clones were transferred into the
293 pLenti-suCMV vector (GenTarget) via the ClaI/NheI site. All the plasmids contained a V5 tag.

294

295 **Proximity labeling and enrichment of biotinylated peptides.** Biotin (50 μ M) was added to TID,
296 Miro2-TID and Tom20-TID stable cells (100 mm dish, three replicates) for six hours. After incubation
297 with chilled acetone (4 vol.) with cell lysates at -20° C for at least 2 h, samples were centrifuged at
298 13,000 \times g for 10 min at 4° C. The pellet was resuspended in 500 μ L of 8 M urea in 50 mM ammonium
299 bicarbonate. And then, samples were denatured at 650 rpm for 1 h at 37° C. Sample reduction and
300 alkylation were performed by 10 mM dithiothreitol and 40 mM iodoacetamide at 650 rpm for 1 h at
301 37° C. The samples were diluted 8-fold with 50 mM ABC, after which CaCl_2 was added at a final
302 concentration of 1 mM. The samples were digested with trypsin (50:1 w/w) and the insoluble material
303 was removed by centrifugation. After incubating streptavidin beads (150 μ L), the samples were washed
304 with 2 M urea in 50 mM ABC two times and washed with pure water. For the elution of the biotinylated
305 peptides from the streptavidin beads, 150 μ L of elution solution (80% acetonitrile, 20% water, 0.2%
306 trifluoroacetic acid, and 0.1% formic acid) was incubated with a 60° C thermomixer three times. The
307 total elution fractions were dried using a HyperVAC speedvac (GYROZEN, #VC2200). The samples
308 were stored at -20° C before use in MS analyses after being cleaned with C18 tips (Thermo Scientific).

309

310 **Liquid chromatographic tandem mass spectrometric analysis (LC–MS/MS) and data analysis.**
311 The tryptic peptides were analyzed by LC–MS/MS. Analyses were performed on a Q Exactive Plus
312 Orbitrap mass spectrometer (Thermo Fisher Scientific) equipped with a nanoelectrospray ion source.
313 To separate the peptide mixture, we used a C18 reverse-phase HPLC column (500 mm \times 75 μ m ID)

314 with an acetonitrile/0.1% formic acid gradient from 4 to 32.5% for 120 min at a flow rate of 300 nL/min.
315 For MS/MS analysis, the precursor ion scan MS spectra (m/z 400~2000) were acquired in the Orbitrap
316 at a resolution of 70,000 at m/z 400 with an internal lock mass. The 15 most intensive ions were isolated
317 and fragmented by high-energy collision-induced dissociation (HCD). MS/MS data were analyzed
318 using the MaxQuant platform (version 2.4.2.0) with the Andromeda search engine at a 10 ppm precursor
319 ion mass tolerance against the SwissProt and TrEMBL *Rattus norvegicus* (Rat) proteome databases
320 (92,930 entries, UniProt). The label-free quantification and match-between runs were used with the
321 following search parameters: semi-tryptic digestion, fixed modification with iodoacetamide on cysteine,
322 dynamic oxidation of methionine, protein-N-terminal acetylation, acetylation on lysine, biotinylation
323 on lysine and deamidation on asparagine and glutamine as variable modifications. A false discovery
324 rate of less than 1% was obtained for unique peptides as well as unique proteins. LFQ intensity values
325 were log₂-transformed for further analysis, including data normalization, and missing values were filled
326 with imputed values representing a normal distribution around the detection limit. All further processing
327 was conducted under Perseus package (<https://maxquant.net/perseus/>).

328

329 **Bioinformatic analysis of the Miro2 interactome.** We used reference databases from BioPlex
330 (<https://bioplex.hms.harvard.edu/explorer/>), IntAct (<https://www.ebi.ac.uk/>), and BioGRID
331 (<https://thebiogrid.org/>). Gene Ontology analysis and pathway enrichment analysis were conducted
332 using Enrichr online server (<https://maayanlab.cloud/Enrichr/>). For pathway enrichment analysis, the
333 Kyoto Encyclopedia of Genes and Genomes (KEGG) 2021 database was utilized to retrieve pathways.
334 A list of differentially expressed proteins generated from the Miro2 interactome was uploaded to the
335 Enrichr tool. Venn diagrams comparing the overlapping proteins identified across the four conditions
336 were generated using the Venn diagram webtool (<https://bioinformatics.psb.ugent.be/webtools/Venn/>).

337

338 **Immunoprecipitation and western blot analysis.** HCN cells were harvested and lysed in M-per buffer
339 (Thermo Fisher Scientific, 78501) containing protease inhibitors (Merck, P8340) and phosphatase

340 inhibitors (Merck, P5726). The protein contents of the cell lysates were measured using the Pierce
341 bicinchoninic acid (BCA) protein assay kit (#23225), and 15–20 µg of protein was used for western
342 blot analysis. The primary antibodies used were as follows: anti-Miro2 (1:1,000, Proteintech, 11237-1-
343 AP), anti-CISD1 (1:000, Proteintech, 16001-1-AP) and anti-β-actin (1:100,000, Sigma, A5441). After
344 incubating peroxidase-conjugated secondary antibodies with membrane, images were detected using an
345 enhanced chemiluminescence (ECL) system (Thermo Fisher Scientific, 32106). For
346 immunoprecipitation, HCN cells were lysed in RIPA buffer (10% Triton X-100, 5 M sodium chloride,
347 1 M HEPES, 0.5 M EDTA, 0.5 M EGTA) containing protease inhibitors and phosphatase inhibitors.
348 500 ug of cell lysate was incubated overnight with 3 µg of primary antibody, followed by incubation
349 for 1 h with 60 µl of protein A/G magnetic beads (Thermo Fisher Scientific, 88803). The samples were
350 diluted with 1x Laemmli protein sample buffer (Bio-Rad) containing 10% β-mercaptoethanol and
351 heated to denature the proteins. Proteins were loaded with 10–20 µl of lysates. All experiments were
352 conducted in at least three independent biological replicates.

353

354 **Immunofluorescence microscopy.** HCN cells were prepared in µ-Dish (Ibidi, 81156) and transfected
355 with Miro2 and CISD1 siRNAs for 24 h. After being dyed with MitoTracker™ Deep Red (Invitrogen,
356 M22426), images were obtained using a confocal microscope (Carl Zeiss, LSM 880). The distance
357 between the surface of the nucleus and that of the mitochondria was measured using Imaris (Microscopy
358 Image Analysis Software). HCN cells were stained with markers to confirm their differentiation.
359 Primary antibodies are followed: Nestin (Millipore, # MAB353), PAX6 (Thermo Fisher Scientific, #
360 5080-RBM3-P0), MAP2 (Millipore, # MAB3418), GFAP (DAKO, # Z0334). Nucleus were stained
361 with DAPI (1 µg/ml).

362

363 **Transmission electron microscopy.** The cells were prefixed with 2% paraformaldehyde and 2.5%
364 glutaraldehyde in 0.15 M sodium cacodylate buffer (pH 7.4) for 1 h. After washing three times with
365 0.15 M cacodylate buffer, cells were postfixed in 2% osmium tetroxide (EMS, 19150) with 1.5%

366 ferrocyanide in 0.1 M sodium cacodylate buffer on ice for 1 h. After washing three times in ice-cold
367 ddH₂O, cells were stained with 1% uranyl acetate (overnight, 4 °C in the dark). For embedding, samples
368 were dehydrated through a graded ethanol series (30, 50, 70, 80, 90, 100 and 100% for 20 min each,
369 4 °C) followed by epoxy resin infiltration by immersion into 3:1, 1:1, and 1:3 mixtures of ethanol and
370 Epon 812 resin (EMS). Then, samples were incubated in pure resin overnight and placed in an inverted
371 capsule on a confocal dish (70 °C) for 48 h. After trimming, ultrathin serial sections 70 nm thick were
372 cut using an ultramicrotome (Leica, EM UC7) and mounted on 0.25% formvar coated on hole grids. To
373 enhance the electron density, the sections were stained with UranylLess (EMS, #22409) and 3% lead
374 citrate (EMS, #22410). TEM images were acquired using a Tecnai G220 (Thermo Fisher Scientific) at
375 120 kV with a US1000XP CCD detector (Gatan).

376

377 **Statistics and reproducibility.** All the experiments were performed independently (culture
378 batches/transfections) in triplicate or quadruplicate (MS analysis of proximity labeled samples), and all
379 the quantitative results are presented as the means ± standard deviations (SDs). The type of experiments,
380 exact n values and p values were described in the figure legends. Statistical analysis was performed
381 with Prism 10 software (GraphPad). Student's t tests (two-sided) were used to determine statistical
382 significance between siCON-treated group and an individual siRNA-treated group (siMiro2, siCISD1,
383 siMiro2+siCISD1). Differences between means were considered statistically significant at the
384 following values: *p < 0.05, **p < 0.01, ***p < 0.001.

385

386 **Data availability**

387 The datasets supporting the conclusions of this article are available in the ProteomeXchange
388 consortium via MassIVE (<https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp>) repository
389 (Accession no. PXD055479) (Download link: <https://www.ebi.ac.uk/pride/archive/projects/PXD055479/private>) (reviewer ID:
390 reviewer_pxd055479@ebi.ac.uk, PW: BEA01x5QI5dk). Uncropped blot images are provided in
391 Supplementary Figure 13. Newly generated plasmids are deposited in Addgene and are available under
392 the following IDs: pLenti-suCMV-TurboID (ID: 247066), pLenti-suCMV-TOM20-TurboID (ID:
393 247067), pLenti-suCMV-TurboID-Miro2 (ID: 247068). Source data underlying all graphs can be found

395 in Supplementary Data 1. Quantile-normalized entire dataset can be found in Supplementary Data 2.

396

397 **References**

398

399 1 Boldrini, M. *et al.* Human Hippocampal Neurogenesis Persists throughout Aging. *Cell Stem Cell* **22**, 589-599 e585 (2018). <https://doi.org/10.1016/j.stem.2018.03.015>

400 2 Salta, E. *et al.* Adult hippocampal neurogenesis in Alzheimer's disease: A roadmap to clinical relevance. *Cell Stem Cell* **30**, 120-136 (2023). <https://doi.org/10.1016/j.stem.2023.01.002>

401 3 Moreno-Jimenez, E. P. *et al.* Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer's disease. *Nat Med* **25**, 554-560 (2019). <https://doi.org/10.1038/s41591-019-0375-9>

402 4 Yu, S. W. *et al.* Autophagic death of adult hippocampal neural stem cells following insulin withdrawal. *Stem Cells* **26**, 2602-2610 (2008). <https://doi.org/10.1634/stemcells.2008-0153>

403 5 Woo, H. N. *et al.* miR-351-5p/Miro2 axis contributes to hippocampal neural progenitor cell death via unbalanced mitochondrial fission. *Mol Ther Nucleic Acids* **23**, 643-656 (2021). <https://doi.org/10.1016/j.omtn.2020.12.014>

404 6 Vakifahmetoglu-Norberg, H., Ouchida, A. T. & Norberg, E. The role of mitochondria in metabolism and cell death. *Biochem Biophys Res Commun* **482**, 426-431 (2017). <https://doi.org/10.1016/j.bbrc.2016.11.088>

405 7 Picard, M. & Shirihi, O. S. Mitochondrial signal transduction. *Cell Metab* **34**, 1620-1653 (2022). <https://doi.org/10.1016/j.cmet.2022.10.008>

406 8 Chen, W., Zhao, H. & Li, Y. Mitochondrial dynamics in health and disease: mechanisms and potential targets. *Signal Transduct Target Ther* **8**, 333 (2023). <https://doi.org/10.1038/s41392-023-01547-9>

407 9 Su, B. *et al.* Abnormal mitochondrial dynamics and neurodegenerative diseases. *Biochim Biophys Acta* **1802**, 135-142 (2010). <https://doi.org/10.1016/j.bbadic.2009.09.013>

408 10 Li, Y., Yang, Z., Zhang, S. & Li, J. Miro-mediated mitochondrial transport: A new dimension for disease-related abnormal cell metabolism? *Biochem Biophys Res Commun* **705**, 149737 (2024). <https://doi.org/10.1016/j.bbrc.2024.149737>

409 11 Lacombe, A. & Scorrano, L. The interplay between mitochondrial dynamics and autophagy: From a key homeostatic mechanism to a driver of pathology. *Semin Cell Dev Biol* **161-162**, 1-19 (2024). <https://doi.org/10.1016/j.semcd.2024.02.001>

410 12 Marabitti, V., Vulpis, E., Nazio, F. & Campello, S. Mitochondrial Transfer as a Strategy for Enhancing Cancer Cell Fitness:Current Insights and Future Directions. *Pharmacol Res* **208**, 107382 (2024). <https://doi.org/10.1016/j.phrs.2024.107382>

411 13 Kay, L., Pienaar, I. S., Cooray, R., Black, G. & Soundararajan, M. Understanding Miro GTPases:

431 Implications in the Treatment of Neurodegenerative Disorders. *Mol Neurobiol* **55**, 7352-
432 7365 (2018). <https://doi.org/10.1007/s12035-018-0927-x>

433 14 Cho, K. F. *et al.* Proximity labeling in mammalian cells with TurboID and split-TurboID. *Nat*
434 **Protoc** **15**, 3971-3999 (2020). <https://doi.org/10.1038/s41596-020-0399-0>

435 15 Lee, Y. B. & Rhee, H. W. Spray-type modifications: an emerging paradigm in post-
436 translational modifications. *Trends Biochem Sci* **49**, 208-223 (2024).
<https://doi.org/10.1016/j.tibs.2024.01.008>

438 16 Branon, T. C. *et al.* Efficient proximity labeling in living cells and organisms with TurboID.
439 *Nat Biotechnol* **36**, 880-887 (2018). <https://doi.org/10.1038/nbt.4201>

440 17 Park, I. *et al.* Mitochondrial matrix RTN4IP1/OPA10 is an oxidoreductase for coenzyme Q
441 synthesis. *Nat Chem Biol* **20**, 221-233 (2024). <https://doi.org/10.1038/s41589-023-01452-w>

442 18 Shin, S. *et al.* Super-resolution proximity labeling with enhanced direct identification of
443 biotinylation sites. *Commun Biol* **7**, 554 (2024). <https://doi.org/10.1038/s42003-024-06112-w>

445 19 Gage, F. H. *et al.* Survival and differentiation of adult neuronal progenitor cells transplanted
446 to the adult brain. *Proc Natl Acad Sci U S A* **92**, 11879-11883 (1995).
<https://doi.org/10.1073/pnas.92.25.11879>

448 20 Meng, H. *et al.* Quiescent Adult Neural Stem Cells: Developmental Origin and Regulatory
449 Mechanisms. *Neurosci Bull* **40**, 1353-1363 (2024). <https://doi.org/10.1007/s12264-024-01206-1>

451 21 Lipovsek, M. & Grubb, M. S. Boosting adult neurogenesis to enhance sensory performance.
452 *EMBO J* **38** (2019). <https://doi.org/10.15252/embj.2019101589>

453 22 Tamai, S., Sanada, K. & Fukada, Y. Time-of-day-dependent enhancement of adult
454 neurogenesis in the hippocampus. *PLoS One* **3**, e3835 (2008).
<https://doi.org/10.1371/journal.pone.0003835>

456 23 Cribbs, A. P., Kennedy, A., Gregory, B. & Brennan, F. M. Simplified production and
457 concentration of lentiviral vectors to achieve high transduction in primary human T cells.
458 *BMC Biotechnol* **13**, 98 (2013). <https://doi.org/10.1186/1472-6750-13-98>

459 24 Su, Y. *et al.* Study of FOXO1-interacting proteins using TurboID-based proximity labeling
460 technology. *BMC Genomics* **24**, 146 (2023). <https://doi.org/10.1186/s12864-023-09238-z>

461 25 Baltrusaitis, E. E. *et al.* Interaction between the mitochondrial adaptor MIRO and the motor
462 adaptor TRAK. *J Biol Chem* **299**, 105441 (2023). <https://doi.org/10.1016/j.jbc.2023.105441>

463 26 Lopez-Domenech, G. *et al.* Miro proteins coordinate microtubule- and actin-dependent
464 mitochondrial transport and distribution. *EMBO J* **37**, 321-336 (2018).
<https://doi.org/10.15252/embj.201696380>

466 27 Misko, A., Jiang, S., Wegorzewska, I., Milbrandt, J. & Baloh, R. H. Mitofusin 2 is necessary for
467 transport of axonal mitochondria and interacts with the Miro/Milton complex. *J Neurosci*

468 28 **30**, 4232-4240 (2010). <https://doi.org/10.1523/JNEUROSCI.6248-09.2010>

469 28 Niescier, R. F., Hong, K., Park, D. & Min, K. T. MCU Interacts with Miro1 to Modulate
470 Mitochondrial Functions in Neurons. *J Neurosci* **38**, 4666-4677 (2018).
<https://doi.org/10.1523/JNEUROSCI.0504-18.2018>

471 29 Fransson, S., Ruusala, A. & Aspenstrom, P. The atypical Rho GTPases Miro-1 and Miro-2
473 have essential roles in mitochondrial trafficking. *Biochem Biophys Res Commun* **344**, 500-
474 510 (2006). <https://doi.org/10.1016/j.bbrc.2006.03.163>

475 30 Perinan, M. T. *et al.* The role of RHOT1 and RHOT2 genetic variation on Parkinson disease
476 risk and onset. *Neurobiol Aging* **97**, 144 e141-144 e143 (2021).
<https://doi.org/10.1016/j.neurobiolaging.2020.07.003>

477 31 Ren, X. *et al.* MIRO-1 interacts with VDAC-1 to regulate mitochondrial membrane potential
479 in *Caenorhabditis elegans*. *EMBO Rep* **24**, e56297 (2023).
<https://doi.org/10.15252/embr.202256297>

481 32 Wiley, S. E., Murphy, A. N., Ross, S. A., van der Geer, P. & Dixon, J. E. MitoNEET is an iron-
482 containing outer mitochondrial membrane protein that regulates oxidative capacity. *Proc
483 Natl Acad Sci U S A* **104**, 5318-5323 (2007). <https://doi.org/10.1073/pnas.0701078104>

484 33 Lin, J., Zhou, T., Ye, K. & Wang, J. Crystal structure of human mitoNEET reveals distinct
485 groups of iron sulfur proteins. *Proc Natl Acad Sci U S A* **104**, 14640-14645 (2007).
<https://doi.org/10.1073/pnas.0702426104>

487 34 Kwak, C. *et al.* Contact-ID, a tool for profiling organelle contact sites, reveals regulatory
488 proteins of mitochondrial-associated membrane formation. *Proc Natl Acad Sci U S A* **117**,
489 12109-12120 (2020). <https://doi.org/10.1073/pnas.1916584117>

490 35 Ham, S. J. *et al.* PINK1 and Parkin regulate IP(3)R-mediated ER calcium release. *Nat Commun*
491 **14**, 5202 (2023). <https://doi.org/10.1038/s41467-023-40929-z>

492 36 Jiang, Y., Yu, Y., Pan, Z., Glandorff, C. & Sun, M. Ferroptosis: a new hunter of hepatocellular
493 carcinoma. *Cell Death Discov* **10**, 136 (2024). <https://doi.org/10.1038/s41420-024-01863-1>

494 37 Geldenhuys, W. J. *et al.* Loss of the mitochondrial protein mitoNEET in mice is associated
495 with cognitive impairments and increased neuroinflammation. *J Alzheimers Dis* **103**, 429-
496 440 (2025). <https://doi.org/10.1177/13872877241302456>

497 38 Martinez, A. *et al.* Mitochondrial CISD1/Cisd accumulation blocks mitophagy and genetic or
498 pharmacological inhibition rescues neurodegenerative phenotypes in Pink1/parkin models.
499 *Mol Neurodegener* **19**, 12 (2024). <https://doi.org/10.1186/s13024-024-00701-3>

500 39 Singh, R. *et al.* Proteomic insights into early-stage Alzheimer's disease: Identifying key
501 neuronal proteins impacted by amyloid beta oligomers in an in vitro model. *Neuroscience*
502 **560**, 254-262 (2024). <https://doi.org/10.1016/j.neuroscience.2024.09.050>

503 40 Iwata, R. *et al.* Mitochondrial dynamics in postmitotic cells regulate neurogenesis. *Science*
504 **369**, 858-862 (2020). <https://doi.org/10.1126/science.aba9760>

505 41 Soares, R. *et al.* Lineage-specific changes in mitochondrial properties during neural stem
506 cell differentiation. *Life Sci Alliance* **7**, e202302473 (2024). <https://doi.org:10.26508/lsa.202302473>

508 42 Ha, S. *et al.* Autophagy Mediates Astrogenesis in Adult Hippocampal Neural Stem Cells. *Exp
509 Neurobiol* **28**, 229-246 (2019). <https://doi.org:10.5607/en.2019.28.2.229>

510 43 Cho, K. F. *et al.* Split-TurboID enables contact-dependent proximity labeling in cells. *Proc
511 Natl Acad Sci U S A* **117**, 12143-12154 (2020). <https://doi.org:10.1073/pnas.1919528117>

512

513 **Acknowledgements**

514 This work was supported by grants from the Basic Science Research Program through the
515 National Research Foundation of Korea [RS-2025-00563415 to H. Lee],
516 [2021R1I1A1A01048638 to HN. Woo] and [2022R1A2C1009376 to JY. Mun] and supported
517 by the National Science Challenge Initiatives [RS-2024-00419699 to JY. Mun] through
518 National Research Foundation (NRF) grants funded by the Ministry of Science and ICT (MSIT),
519 Korea.

520

521 **Author contributions**

522 H.L., JY.M., and HN.W. supervised the study; IK.K., TK.M., AR.H. and C.K. performed the in
523 vitro experiments and analyzed the data; IK.K., HN.W., MK.J., JK.S. and HW.R. designed the
524 experiments, and IK.K., HN.W., S.L. and C.K. wrote the paper. H.L., JY.M., AR.H., DB.Y. and
525 SW.K. reviewed and edited the manuscript. All the authors have read and agreed to the
526 published version of the manuscript.

527

528 **Competing interests**

529 The authors declare no competing interests.

530 **Figure Legends**

531 **Fig. 1 TurboID-based proximity labeling system verification.** **a** Construction of plasmid for
532 proximity labeling. All the plasmids contained a V5 tag. **b** Streptavidin-horseradish peroxidase
533 (SA-HRP) and anti-V5 western blotting under the expression of TurboID constructs (i.e., TID,
534 Miro2-TID, TID-Miro2, and Tom20-TID) in 293T cells. **c** Anti-Miro2 and V5
535 immunofluorescence results for the expression of TurboID constructs in HeLa cells. The scale
536 bar represents 10 μ m. **d** Pearson's coefficient of TurboID constructs. Miro2-TID *** p =0.0001,
537 TID-Miro2 *** p <0.0001. **e** Overlap coefficient of TurboID constructs. *** p <0.0001. n=3
538 biologically independent experiments. The data represent the means \pm SDs.

539 **Fig. 2 Miro2 proximal protein identification.** **a** Schematic of the process used to obtain the
540 enriched Miro2-interacting proteins. **b** PCA plot showing the segregation of the identified
541 interactomes between the control (Whole cell, Tom20) and the Miro2 interactome (Miro2)
542 across the two PCA axes. Data points for Miro2 (solid circles), Tom20 (white circles), and
543 Whole cell (triangles); four biological replicates are shown. The percentages correspond to
544 the relative contribution of each axis to the overall variation in protein expression. **c** Heatmap
545 of the log2-fold change (FC) in the abundance of proteins identified for each sample with Miro2,
546 Tom20 and Whole cell enrichment. **d** Volcano plots display quantified protein interactors of
547 Miro2 compared with those in Whole cell. Red dots represent enriched proteins (fold change
548 \geq 2, p -value < 0.05). **e** Venn diagram of Miro2 interactors shows unique and overlapping
549 interactors of Miro2 and Tom20, which are filtered by Whole cell interactors.

550 **Fig. 3 Miro2 proximal protein functional annotations.** **a** Venn diagram of Miro2 interactors
551 shows the overlapping proteins between our experiment and other references. (i.e.,
552 Biophysical Interactions of ORFeome-based Complexes (BioPlex), IntAct, and Biological
553 General Repository for Interaction Datasets (BioGRID)) and the unique proteins in our
554 experiment. Dot plot of the most significant GO biological processes (**b**) and KEGG pathways

555 (c) associated with Miro2 interactors. **d** Bar plot of ShinyGO 0.80 enrichment analysis data
556 (top 15) associated with Miro2 interactors.

557 **Fig. 4 Verification of the interaction between Miro2 and CISD1 in the cells.** **a** Top 5
558 heatmaps of \log_2 (FC) abundances for Miro2 interactors. **b** Coimmunoprecipitation of
559 endogenous Miro2 and CISD1 in HCN cells. **c** Immunofluorescence images of colocalization
560 of Miro2 and CISD1 in HCN cells overexpressing Myc-Miro2. Miro2 was stained with anti-Myc
561 antibody and CISD1 was stained with anti-CISD1 antibody. Yellow areas within merging
562 images indicate that co-localization of Miro2 and CISD1. Nucleus was stained with DAPI.
563 Scale bar: 2 μ m. **d** Immunofluorescence images of SH-SY5Y cells overexpressing Myc-Miro2
564 and HA-CISD1. Miro2 was stained with anti-Myc antibody and CISD1 was stained with anti-
565 HA antibody. Scale bar: 10 μ m.

566 **Fig. 5 Investigation of Miro2 and CISD1 involvement on mitochondria.** **a** Representative
567 transmission electron microscopy images acquired after transfection of siMiro2 and/or
568 siCISD1. Scale bar: 1 μ m. **b** Reconstructed images of TMRM-stained mitochondria following
569 Miro2 and/or CISD1 knockdown, processed using the Imaris program. Scale bar: 10 μ m. **c**
570 Quantification of aspect ratio (M/m) after Miro2 and CISD1 siRNA treatment. “M” and “m”
571 represent the major and minor axes of mitochondria respectively. Created in BioRender. Woo,
572 H. (2025) <https://BioRender.com/ije8ur1>. **d** Quantification of the distance from the nucleus to
573 the mitochondria after Miro2 and CISD1 siRNA treatment. “D” represents the distance from
574 the nucleus to the mitochondria. Created in BioRender. Woo, H. (2025)
575 <https://BioRender.com/nygjckv>. n=3, 15 mitochondria per cell, biologically independent
576 experiments. *** $p=0.0000$. The data in the graphs represent the means \pm SDs.

577 **Fig. 6 Suppression of HCN cell differentiation under the downregulation of Miro2 and**
578 **CISD1.** **a** Examination of capacity of neural differentiation of the cells. After induction of
579 differentiation using retinoic acid and forskolin, the cells were stained with Nestin and PAX6
580 which are NSC-specific markers, at the indicated time point. Nestin (green) and PAX6 (red)

581 show high intensity signals in undifferentiated HCN cells (D0) and decrease signal with
582 differentiation. The cells were stained with MAP2, a neuronal marker and GFAP, an astrocyte
583 marker. MAP2 (green) was stained along the neurites. GFAP (red) was rarely stained. **b**
584 Western blot analysis of Miro2 and CISD1 during 4 days after differentiation (D0 ~ D4). **c**
585 Quantification of the amount of Miro2 and CISD1 proteins during 4 days of differentiation.
586 n=3~7 biologically independent experiments. Miro2: D1 $p=0.5646$, D2 * $p=0.0561$, D3
587 * $p=0.0226$, D4 * $p=0.0317$, CISD1: D1 ** $p=0.0053$, D2 *** $p=0.0000$, D3 *** $p=0.0000$, D4
588 * $p=0.0488$. **d** HCN cells were stained with PI at D4 of differentiation following siRNA treatment.
589 Suppression of Miro2 and CISD1 induced cell death in the cells. Scale bar: 50 μ m. **e** Lactate
590 dehydrogenase (LDH) release assay on D1 and D4 of differentiation following Miro2 and CISD1
591 siRNA treatment in HCN cells. Relative LDH release increased at D4 in the siRNA treated group
592 compared with MT (no treated) and siCON group. Both siMiro2 and siCISD1 treated groups
593 significantly increased in LDH. n=3~7 biologically independent experiments. D4; siMiro2
594 ** $p=0.0037$, siCISD1 ** $p=0.0068$, siMiro2+siCISD1 *** $p=0.0002$. The data in the graphs
595 represent the means \pm SDs.