Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Vutiglabridin Alleviates Cellular Senescence with Metabolic Regulation and Circadian Clock in Human Dermal Fibroblastsopen access

Authors
Heo, Jin-WoongLee, Hye-EunLee, JiminChoi, Leo SungwongShin, JaejinMun, Ji-YoungPark, Hyung-SoonPark, Sang-ChulNam, Chang-Hoon
Issue Date
Jan-2024
Publisher
MDPI
Keywords
human dermal fibroblasts; cellular senescence; circadian clocks; metabolism; mitochondrial homeostasis
Citation
ANTIOXIDANTS, v.13, no.1
Journal Title
ANTIOXIDANTS
Volume
13
Number
1
URI
http://scholarworks.bwise.kr/kbri/handle/2023.sw.kbri/1144
DOI
10.3390/antiox13010109
ISSN
2076-3921
2076-3921
Abstract
The process of cellular senescence, which is characterized by stable cell cycle arrest, is strongly associated with dysfunctional cellular metabolism and circadian rhythmicity, both of which are reported to result from and also be causal to cellular senescence. As a result, modifying any of them-senescence, metabolism, or the circadian clock-may affect all three simultaneously. Obesity accelerates aging by disrupting the homeostasis of reactive oxygen species (ROS) via an increased mitochondrial burden of fatty acid oxidation. As a result, if senescence, metabolism, and circadian rhythm are all linked, anti-obesity treatments may improve metabolic regulation while also alleviating senescence and circadian rhythm. Vutiglabridin is a small molecule in clinical trials that improves obesity by enhancing mitochondrial function. We found that chronic treatment of senescent primary human dermal fibroblasts (HDFs) with vutiglabridin alleviates all investigated markers of cellular senescence (SA-beta-gal, CDKN1A, CDKN2A) and dysfunctional cellular circadian rhythm (BMAL1) while remarkably preventing the alterations of mitochondrial function and structure that occur during the process of cellular senescence. Our results demonstrate the significant senescence-alleviating effects of vutiglabridin, specifically with the restoration of cellular circadian rhythmicity and metabolic regulation. These data support the potential development of vutiglabridin against aging-associated diseases and corroborate the intricate link between cellular senescence, metabolism, and the circadian clock.
Files in This Item
There are no files associated with this item.
Appears in
Collections
연구본부 > 신경회로 연구그룹 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Mun, Ji Young photo

Mun, Ji Young
연구본부 (신경회로 연구그룹)
Read more

Altmetrics

Total Views & Downloads

BROWSE