Transcutaneous auricular vagus nerve stimulation in anesthetized mice induces antidepressant effects by activating dopaminergic neurons in the ventral tegmental area
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Choi, Tae-Yong | - |
dc.contributor.author | 김정섭 | - |
dc.contributor.author | Koo, Ja Wook | - |
dc.date.accessioned | 2024-12-03T02:00:06Z | - |
dc.date.available | 2024-12-03T02:00:06Z | - |
dc.date.issued | 2024-11 | - |
dc.identifier.issn | 1756-6606 | - |
dc.identifier.uri | http://scholarworks.bwise.kr/kbri/handle/2023.sw.kbri/1214 | - |
dc.description.abstract | Depression, a prevalent neuropsychiatric disorder, involves the dysregulation of neurotransmitters such as dopamine (DA). The restoration of DA balance is a pivotal therapeutic target for this condition. Recent studies have indicated that both antidepressant medications and non-pharmacological treatments, such as transcutaneous auricular vagus nerve stimulation (taVNS), can promote recovery from depressive symptoms. Despite the promise of taVNS as a non-invasive depression therapy, its precise mechanism remains unclear. We hypothesized that taVNS exerts antidepressant effects by modulating the DAergic system. To investigate this, we conducted experiments demonstrating that taVNS in anesthetized mice reduced depressive-like behaviors. However, this effect was abolished when DA neurons in the ventral tegmental area (VTADA) were inhibited. Additionally, taVNS in anesthetized mice enhanced VTADA activity, providing further evidence to support its antidepressant effects. Overall, our findings suggest that taVNS alleviates depression by augmenting VTADA activity, thereby contributing to a more comprehensive understanding of its therapeutic mechanisms. | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | BioMed Central | - |
dc.title | Transcutaneous auricular vagus nerve stimulation in anesthetized mice induces antidepressant effects by activating dopaminergic neurons in the ventral tegmental area | - |
dc.type | Article | - |
dc.publisher.location | 영국 | - |
dc.identifier.doi | 10.1186/s13041-024-01162-x | - |
dc.identifier.wosid | 001366180100003 | - |
dc.identifier.bibliographicCitation | Molecular Brain, v.17, no.1 | - |
dc.citation.title | Molecular Brain | - |
dc.citation.volume | 17 | - |
dc.citation.number | 1 | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Neurosciences & Neurology | - |
dc.relation.journalWebOfScienceCategory | Neurosciences | - |
dc.subject.keywordAuthor | Depression | - |
dc.subject.keywordAuthor | Transcutaneous auricular vagus nerve stimulation | - |
dc.subject.keywordAuthor | Antidepressant | - |
dc.subject.keywordAuthor | Ventral tegmental area | - |
dc.subject.keywordAuthor | Dopamine | - |
dc.subject.keywordAuthor | Chronic social defeat stress | - |
dc.subject.keywordAuthor | Forced swim test | - |
dc.subject.keywordAuthor | Fiber photometry | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
61, Cheomdan-ro, Dong-gu, Daegu, Republic of Korea , 41062 053-980-8114
COPYRIGHT Korea Brain Research Institute. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.