Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Noncanonical PDK4 action alters mitochondrial dynamics to affect the cellular respiratory status

Authors
Thoudam, ThemisChanda, DipanjanSinam, Ibotombi SinghKim, Byung-GyuKim, Mi-JinOh, Chang JooLee, Jung YiKim, Min-JiPark, Soo YeunLee, Shin YupJung, Min-KyoMun, Ji YoungHarris, Robert A.Ishihara, NaotadaJeon, Jae-HanLee, In-Kyu
Issue Date
Aug-2022
Publisher
National Academy of Sciences
Keywords
pyruvate dehydrogenase kinase 4; mitochondrial fission; dynamin-related protein 1; septin 2; OCR
Citation
Proceedings of the National Academy of Sciences of the United States of America, v.119, no.34
Journal Title
Proceedings of the National Academy of Sciences of the United States of America
Volume
119
Number
34
URI
http://scholarworks.bwise.kr/kbri/handle/2023.sw.kbri/213
DOI
10.1073/pnas.2120157119
ISSN
0027-8424
Abstract
<jats:p>Dynamic regulation of mitochondrial morphology provides cells with the flexibility required to adapt and respond to electron transport chain (ETC) toxins and mitochondrial DNA-linked disease mutations, yet the mechanisms underpinning the regulation of mitochondrial dynamics machinery by these stimuli is poorly understood. Here, we show that pyruvate dehydrogenase kinase 4 (PDK4) is genetically required for cells to undergo rapid mitochondrial fragmentation when challenged with ETC toxins. Moreover, PDK4 overexpression was sufficient to promote mitochondrial fission even in the absence of mitochondrial stress. Importantly, we observed that the PDK4-mediated regulation of mitochondrial fission was independent of its canonical function, i.e., inhibitory phosphorylation of the pyruvate dehydrogenase complex (PDC). Phosphoproteomic screen for PDK4 substrates, followed by nonphosphorylatable and phosphomimetic mutations of the PDK4 site revealed cytoplasmic GTPase, Septin 2 (SEPT2), as the key effector molecule that acts as a receptor for DRP1 in the outer mitochondrial membrane to promote mitochondrial fission. Conversely, inhibition of the PDK4-SEPT2 axis could restore the balance in mitochondrial dynamics and reinvigorates cellular respiration in mitochondrial fusion factor, mitofusin 2-deficient cells. Furthermore, PDK4-mediated mitochondrial reshaping limits mitochondrial bioenergetics and supports cancer cell growth. Our results identify the PDK4-SEPT2-DRP1 axis as a regulator of mitochondrial function at the interface between cellular bioenergetics and mitochondrial dynamics.</jats:p>
Files in This Item
There are no files associated with this item.
Appears in
Collections
연구본부 > 신경회로 연구그룹 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Mun, Ji Young photo

Mun, Ji Young
연구본부 (신경회로 연구그룹)
Read more

Altmetrics

Total Views & Downloads

BROWSE