Detailed Information

Cited 2 time in webofscience Cited 0 time in scopus
Metadata Downloads

Automated Synapse Detection Method for Cerebellar Connectomics

Full metadata record
DC Field Value Language
dc.contributor.authorPark Changjoo-
dc.contributor.authorGim Ja won-
dc.contributor.authorLee Sungjin-
dc.contributor.authorLee Kea Joo-
dc.contributor.authorKim Jinseop S.-
dc.date.accessioned2023-08-16T09:30:17Z-
dc.date.available2023-08-16T09:30:17Z-
dc.date.created2022-05-31-
dc.date.issued2022-03-
dc.identifier.issn1662-5129-
dc.identifier.urihttp://scholarworks.bwise.kr/kbri/handle/2023.sw.kbri/243-
dc.description.abstractThe connectomic analyses of large-scale volumetric electron microscope (EM) images enable the discovery of hidden neural connectivity. While the technologies for neuronal reconstruction of EM images are under rapid progress, the technologies for synapse detection are lagging behind. Here, we propose a method that automatically detects the synapses in the 3D EM images, specifically for the mouse cerebellar molecular layer (CML). The method aims to accurately detect the synapses between the reconstructed neuronal fragments whose types can be identified. It extracts the contacts between the reconstructed neuronal fragments and classifies them as synaptic or non-synaptic with the help of type information and two deep learning artificial intelligences (AIs). The method can also assign the pre- and postsynaptic sides of a synapse and determine excitatory and inhibitory synapse types. The accuracy of this method is estimated to be 0.955 in F1-score for a test volume of CML containing 508 synapses. To demonstrate the usability, we measured the size and number of the synapses in the volume and investigated the subcellular connectivity between the CML neuronal fragments. The basic idea of the method to exploit tissue-specific properties can be extended to other brain regions.-
dc.language영어-
dc.language.isoen-
dc.publisherFrontiers Media S.A.-
dc.titleAutomated Synapse Detection Method for Cerebellar Connectomics-
dc.typeArticle-
dc.contributor.affiliatedAuthorGim Ja won-
dc.contributor.affiliatedAuthorLee Kea Joo-
dc.identifier.doi10.3389/fnana.2022.760279-
dc.identifier.wosid000783747700001-
dc.identifier.bibliographicCitationFrontiers in Neuroanatomy, v.16-
dc.relation.isPartOfFrontiers in Neuroanatomy-
dc.citation.titleFrontiers in Neuroanatomy-
dc.citation.volume16-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaAnatomy & Morphology-
dc.relation.journalResearchAreaNeurosciences & Neurology-
dc.relation.journalWebOfScienceCategoryAnatomy & Morphology-
dc.relation.journalWebOfScienceCategoryNeurosciences-
dc.subject.keywordPlusDIRECTION-SELECTIVITY-
dc.subject.keywordPlusWIRING SPECIFICITY-
dc.subject.keywordPlusCIRCUIT-
dc.subject.keywordPlusNETWORKS-
dc.subject.keywordAuthorconnectomics-
dc.subject.keywordAuthorcerebellum-
dc.subject.keywordAuthorsynapse-
dc.subject.keywordAuthorelectron microscopy-
dc.subject.keywordAuthorimage analysis-
dc.subject.keywordAuthormachine learning-
dc.subject.keywordAuthorcomputer algorithm-
Files in This Item
There are no files associated with this item.
Appears in
Collections
연구본부 > 신경회로 연구그룹 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Gim, Ja won photo

Gim, Ja won
연구본부 (신경회로 연구그룹)
Read more

Altmetrics

Total Views & Downloads

BROWSE