Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

Gintonin influences the morphology and motility of adult brain neurons via LPA receptorsopen access

Authors
Kim, Do-GeunKim, Hyeon-JoongChoi, Sun-HyeNam, Sung MinKim, Hyoung-ChunRhim, HyewhonCho, Ik-HyunRhee, Man HeeNah, Seung-Yeol
Issue Date
May-2021
Publisher
고려인삼학회
Keywords
Gintonin; Morphology and migration; LPA receptors; Adult brain neuron
Citation
Journal of Ginseng Research, v.45, no.3, pp.401 - 407
Journal Title
Journal of Ginseng Research
Volume
45
Number
3
Start Page
401
End Page
407
URI
http://scholarworks.bwise.kr/kbri/handle/2023.sw.kbri/324
DOI
10.1016/j.jgr.2020.06.003
ISSN
1226-8453
Abstract
Background: Gintonin is an exogenous ginseng-derived G-protein-coupled lysophosphatidic acid (LPA) receptor ligand. LPA induces in vitro morphological changes and migration through neuronal LPA1 receptor. Recently, we reported that systemic administration of gintonin increases blood-brain barrier (BBB) permeability via the paracellular pathway and its binding to brain neurons. However, little is known about the influences of gintonin on in vivo neuron morphology and migration in the brain. Materials and methods: We examined the effects of gintonin on in vitro migration and morphology using primary hippocampal neural precursor cells (hNPC) and in vivo effects of gintonin on adult brain neurons using real time microscopic analysis and immunohistochemical analysis to observe the morphological and locational changes induced by gintonin treatment. Results: We found that treating hNPCs with gintonin induced morphological changes with a cell rounding following cell aggregation and return to individual neurons with time relapses. However, the in vitro effects of gintonin on hNPCs were blocked by the LPA1/3 receptor antagonist, Ki16425, and Rho kinase inhibitor, Y27632. We also examined the in vivo effects of gintonin on the morphological changes and migration of neurons in adult mouse brains using anti-NeuN and -neurofilament H antibodies. We found that acute intravenous administration of gintonin induced morphological and migrational changes in brain neurons. Gintonin induced some migrations of neurons with shortened neurofilament H in the cortex. The in vivo effects of gintonin were also blocked by Ki16425. Conclusion: The present report raises the possibility that gintonin could enter the brain and exert its influences on the migration and morphology of adult mouse brain neurons and possibly explains the therapeutic effects of neurological diseases behind the gintonin administration. (C) 2020 The Korean Society of Ginseng. Publishing services by Elsevier B.V.
Files in This Item
There are no files associated with this item.
Appears in
Collections
연구본부 > 치매 연구그룹 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Do Geun photo

Kim, Do Geun
연구본부 (치매 연구그룹)
Read more

Altmetrics

Total Views & Downloads

BROWSE