Detailed Information

Cited 8 time in webofscience Cited 8 time in scopus
Metadata Downloads

Hypoxia regulates allele-specific histone modification of the imprinted H19 gene

Authors
Moon, YunwonKim, IngyumChang, SoojeongPark, BongjuLee, SeongyeolYoo, SeongwookChae, SehyunHwang, DaeheePark, Hyunsung
Issue Date
Nov-2020
Publisher
ELSEVIER
Keywords
Hypoxia Imprinted gene; H19; HIF-1 alpha; Histone modification; DNA methylation
Citation
BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, v.1863, no.11
Journal Title
BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS
Volume
1863
Number
11
URI
http://scholarworks.bwise.kr/kbri/handle/2023.sw.kbri/565
DOI
10.1016/j.bbagrm.2020.194643
ISSN
1874-9399
Abstract
H19 is a maternally-expressed imprinted gene that encodes long non-coding RNA. Chromatin immunoprecipitation (ChIP)-sequencing analyses of human adipose-derived stem cells (hADSCs) showed that hypoxia induced trimethylation of 4th lysine residue of histone 3 (H3K4me3) in the H19 gene, among the 40 known human imprinted genes, to the greatest extent. We investigated whether hypoxia changed the DNA and histone methylation levels of the imprinted H19 gene in an allele-specific (AS) manner. Using AS primer sets for the human H19 gene, we conducted ChIP-quantitative polymerase chain reaction, which revealed that hypoxia increased the active histone marks, H3K4me3 and H3K9/14Ac, in one allele (named B allele) but not in the other allele (named A allele). In contrast, hypoxia did not change the H3K9me3 levels in either allele. Hypoxiainducible factor 1 (HIF-1) directly bound to the H19 promoter only in the B allele. HIF-1 alpha knock-down prevented the increase in the active histone modification and mRNA expression of the B allele under hypoxia, indicating that HIF-1 alpha caused AS changes in the histone modification of the H19 gene. Long-term hypoxia did not change the AS DNA methylation throughout the cell cycle. Thus, hypoxia changed the histone modification of the active allele in an HIF-1 alpha-dependent manner, without changing the imprinted status of the H19 gene.
Files in This Item
There are no files associated with this item.
Appears in
Collections
연구본부 > 신경·혈관 단위체 연구그룹 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Chae, Se hyun photo

Chae, Se hyun
연구본부 (신경·혈관단위체 연구그룹)
Read more

Altmetrics

Total Views & Downloads

BROWSE