Detailed Information

Cited 31 time in webofscience Cited 32 time in scopus
Metadata Downloads

alpha-Synucleinopathy associated c-Abl activation causes p53-dependent autophagy impairment

Full metadata record
DC Field Value Language
dc.contributor.authorKarim, Md. Razaul-
dc.contributor.authorLiao, Elly E.-
dc.contributor.authorKim, Jaekwang-
dc.contributor.authorMeints, Joyce-
dc.contributor.authorMartinez, Hector Martell-
dc.contributor.authorPletnikova, Olga-
dc.contributor.authorTroncoso, Juan C.-
dc.contributor.authorLee, Michael K.-
dc.date.accessioned2023-08-16T09:48:25Z-
dc.date.available2023-08-16T09:48:25Z-
dc.date.created2022-01-11-
dc.date.issued2020-04-
dc.identifier.issn1750-1326-
dc.identifier.urihttp://scholarworks.bwise.kr/kbri/handle/2023.sw.kbri/635-
dc.description.abstractBackground Studies link c-Abl activation with the accumulation of pathogenic alpha-synuclein (alpha S) and neurodegeneration in Parkinson's disease (PD). Currently, c-Abl, a tyrosine kinase activated by cellular stress, is thought to promote alpha S pathology by either directly phosphorylating alpha S or by causing autophagy deficits. Methods alpha S overexpressing transgenic (Tg) mice were used in this study. A53T Tg mice that express high levels of human mutant A53T alpha S under the control of prion protein promoter. Two different approaches were used in this study. Natural aging and seeding model of synucleinopathy. In seeding model, intracortical/intrastriatal (IC/IS) stereotaxic injection of toxic lysates was done using tissue lysates from end-stage symptomatic mice. In this study, nilotinib and pifithrin-alpha was used as a c-Abl and p53 inhibitor, respectively. Both Tg and non-transgenic (nTg) mice from each group were subjected to nilotinib (10 mg/kg) or vehicle (DMSO) treatment. Frozen brain tissues from PD and control human cases were analyzed. In vitro cells study was implied for c-Abl/p53 genetic manipulation to uncover signal transduction. Results Herein, we show that the pathologic effects of c-Abl in PD also involve activation of p53, as c-Abl activation in a transgenic mouse model of alpha-synucleinopathy (TgA53T) and human PD cases are associated with the increased p53 activation. Significantly, active p53 in TgA53T neurons accumulates in the cytosol, which may lead to inhibition of autophagy. Thus, we hypothesized that c-Abl-dependent p53 activation contributes to autophagy impairment in alpha-synucleinopathy. In support of the hypothesis, we show that c-Abl activation is sufficient to inhibit autophagy in p53-dependent manner. Moreover, inhibition of either c-Abl, using nilotinib, or p53, using pifithrin-alpha, was sufficient to increase autophagic flux in neuronal cells by inducing phosphorylation of AMP-activated kinase (AMPK), ULK1 activation, and down-regulation of mTORC1 signaling. Finally, we show that pharmacological attenuation of c-Abl activity by nilotinib treatment in the TgA53T mouse model reduces activation of p53, stimulates autophagy, decreases accumulation alpha S pathology, and delays disease onset. Conclusion Collectively, our data show that c-Abl activation by alpha-synucleinopathy causes p53 dependent autophagy deficits and both c-Abl and p53 represent therapeutic target for PD.-
dc.language영어-
dc.language.isoen-
dc.publisherBMC-
dc.titlealpha-Synucleinopathy associated c-Abl activation causes p53-dependent autophagy impairment-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Jaekwang-
dc.identifier.doi10.1186/s13024-020-00364-w-
dc.identifier.scopusid2-s2.0-85083631875-
dc.identifier.wosid000528915600001-
dc.identifier.bibliographicCitationMOLECULAR NEURODEGENERATION, v.15, no.1-
dc.relation.isPartOfMOLECULAR NEURODEGENERATION-
dc.citation.titleMOLECULAR NEURODEGENERATION-
dc.citation.volume15-
dc.citation.number1-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaNeurosciences & Neurology-
dc.relation.journalWebOfScienceCategoryNeurosciences-
dc.subject.keywordPlusPARKINSONS-DISEASE-
dc.subject.keywordPlusTYROSINE KINASE-
dc.subject.keywordPlusOXIDATIVE STRESS-
dc.subject.keywordPlusPROTEIN-KINASE-
dc.subject.keywordPlusMOUSE MODEL-
dc.subject.keywordPlusP53-
dc.subject.keywordPlusPHOSPHORYLATION-
dc.subject.keywordPlusCLEARANCE-
dc.subject.keywordPlusNEURODEGENERATION-
dc.subject.keywordPlusINHIBITION-
dc.subject.keywordAuthorNeurodegeneration-
dc.subject.keywordAuthorParkinson&apos-
dc.subject.keywordAuthors disease (PD)-
dc.subject.keywordAuthoralpha-Synuclein-
dc.subject.keywordAuthorC-Abl-
dc.subject.keywordAuthorp53-
dc.subject.keywordAuthorAutophagy-
dc.subject.keywordAuthormTOR-
dc.subject.keywordAuthorAMPK-
dc.subject.keywordAuthorNilotinib-
dc.subject.keywordAuthorPifithrin-alpha-
Files in This Item
There are no files associated with this item.
Appears in
Collections
연구본부 > 치매 연구그룹 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Jae kwang photo

Kim, Jae kwang
연구본부 (치매 연구그룹)
Read more

Altmetrics

Total Views & Downloads

BROWSE