Therapeutic Potential of AAV1-Rheb(S16H) Transduction Against Alzheimer's Disease
- Authors
- Moon, Gyeong Joon; Kim, Sehwan; Jeon, Min-Tae; Lee, Kea Joo; Jang, Il-Sung; Nakamura, Michiko; Kim, Sang Ryong
- Issue Date
- Dec-2019
- Publisher
- MDPI
- Keywords
- Alzheimer' s disease; Rheb(S16H); neurotrophic signaling; beta-amyloid; cognitive impairment
- Citation
- JOURNAL OF CLINICAL MEDICINE, v.8, no.12
- Journal Title
- JOURNAL OF CLINICAL MEDICINE
- Volume
- 8
- Number
- 12
- URI
- http://scholarworks.bwise.kr/kbri/handle/2023.sw.kbri/652
- DOI
- 10.3390/jcm8122053
- ISSN
- 2077-0383
- Abstract
- We recently reported that adeno-associated virus serotype 1-constitutively active Ras homolog enriched in brain [AAV1-Rheb(S16H)] transduction of hippocampal neurons could induce neuron-astroglia interactions in the rat hippocampus in vivo, resulting in neuroprotection. However, it remains uncertain whether AAV1-Rheb(S16H) transduction induces neurotrophic effects and preserves the cognitive memory in an animal model of Alzheimer's disease (AD) with characteristic phenotypic features, such as beta-amyloid (A beta) accumulation and cognitive impairments. To assess the therapeutic potential of Rheb(S16H) in AD, we have examined the beneficial effects of AAV1-Rheb(S16H) administration in the 5XFAD mouse model. Rheb(S16H) transduction of hippocampal neurons in the 5XFAD mice increased the levels of neurotrophic signaling molecules, including brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF), and their corresponding receptors, tropomyosin receptor kinase B (TrkB) and CNTF receptor alpha subunit (CNTFR alpha), respectively. In addition, Rheb(S16H) transduction inhibited A beta production and accumulation in the hippocampus of 5XFAD mice and protected the decline of long-term potentiation (LTP), resulting in the prevention of cognitive impairments, which was demonstrated using novel object recognition testing. These results indicate that Rheb(S16H) transduction of hippocampal neurons may have therapeutic potential in AD by inhibiting A beta accumulation and preserving LTP associated with cognitive memory.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - 연구본부 > 신경회로 연구그룹 > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.