Detailed Information

Cited 52 time in webofscience Cited 53 time in scopus
Metadata Downloads

Gating mechanism of the extracellular entry to the lipid pathway in a TMEM16 scramblase

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Byoung-Cheol-
dc.contributor.authorKhelashvili, George-
dc.contributor.authorFalzone, Maria-
dc.contributor.authorMenon, Anant K.-
dc.contributor.authorWeinstein, Harel-
dc.contributor.authorAccardi, Alessio-
dc.date.accessioned2023-08-16T09:49:39Z-
dc.date.available2023-08-16T09:49:39Z-
dc.date.created2022-01-11-
dc.date.issued2018-08-
dc.identifier.issn2041-1723-
dc.identifier.urihttp://scholarworks.bwise.kr/kbri/handle/2023.sw.kbri/732-
dc.description.abstractMembers of the TMEM16/ANO family of membrane proteins are Ca2+-activated phospholipid scramblases and/or Cl-channels. A membrane-exposed hydrophilic groove in these proteins serves as a shared translocation pathway for ions and lipids. However, the mechanism by which lipids gain access to and permeate through the groove remains poorly understood. Here, we combine quantitative scrambling assays and molecular dynamic simulations to identify the key steps regulating lipid movement through the groove. Lipid scrambling is limited by two constrictions defined by evolutionarily conserved charged and polar residues, one extracellular and the other near the membrane mid-point. The region between these constrictions is inaccessible to lipids and water molecules, suggesting that the groove is in a non-conductive conformation. A sequence of lipid-triggered reorganizations of interactions between these residues and the permeating lipids propagates from the extracellular entryway to the central constriction, allowing the groove to open and coordinate the headgroups of transiting lipids.-
dc.language영어-
dc.language.isoen-
dc.publisherNATURE PUBLISHING GROUP-
dc.titleGating mechanism of the extracellular entry to the lipid pathway in a TMEM16 scramblase-
dc.typeArticle-
dc.contributor.affiliatedAuthorLee, Byoung-Cheol-
dc.identifier.doi10.1038/s41467-018-05724-1-
dc.identifier.scopusid2-s2.0-85051644778-
dc.identifier.wosid000441518800005-
dc.identifier.bibliographicCitationNATURE COMMUNICATIONS, v.9-
dc.relation.isPartOfNATURE COMMUNICATIONS-
dc.citation.titleNATURE COMMUNICATIONS-
dc.citation.volume9-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.subject.keywordPlusACTIVATED CHLORIDE CHANNEL-
dc.subject.keywordPlusPHOSPHATIDYLSERINE EXPOSURE-
dc.subject.keywordPlusFORCE-FIELD-
dc.subject.keywordPlusPHOSPHOLIPID FLIPPASES-
dc.subject.keywordPlusAPOPTOTIC CELLS-
dc.subject.keywordPlusCRYO-EM-
dc.subject.keywordPlusMEMBRANE-
dc.subject.keywordPlusPROTEINS-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusSIMULATIONS-
Files in This Item
There are no files associated with this item.
Appears in
Collections
연구본부 > 신경·혈관 단위체 연구그룹 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Byoung-Cheol photo

Lee, Byoung-Cheol
연구본부 (신경·혈관 단위체 연구그룹)
Read more

Altmetrics

Total Views & Downloads

BROWSE