Detailed Information

Cited 44 time in webofscience Cited 0 time in scopus
Metadata Downloads

An Intrinsic Transcriptional Program Underlying Synaptic Scaling during Activity Suppression

Authors
Schaukowitch, KatieReese, Austin L.Kim, Seung-KyoonKilaru, GokhulJoo, Jae-YeolKavalali, Ege T.Kim, Tae-Kyung
Issue Date
Feb-2017
Publisher
CELL PRESS
Citation
CELL REPORTS, v.18, no.6, pp.1512 - 1526
Journal Title
CELL REPORTS
Volume
18
Number
6
Start Page
1512
End Page
1526
URI
http://scholarworks.bwise.kr/kbri/handle/2023.sw.kbri/834
DOI
10.1016/j.celrep.2017.01.033
ISSN
2211-1247
Abstract
Homeostatic scaling allows neurons to maintain stable activity patterns by globally altering their synaptic strength in response to changing activity levels. Suppression of activity by the blocking of action potentials increases synaptic strength through an upregulation of surface alpha-amino-3-hydroxy-5methyl-4-isoxazolepropionic acid (AMPA) receptors. Although this synaptic upscaling was shown to require transcription, the molecular nature of the intrinsic transcription program underlying this process and its functional significance have been unclear. Using RNA-seq, we identified 73 genes that were specifically upregulated in response to activity suppression. In particular, Neuronal pentraxin-1 (Nptx1) increased within 6 hr of activity blockade, and knockdown of this gene blocked the increase in synaptic strength. Nptx1 induction is mediated by calcium influx through the T-type voltage-gated calciumchannel, as well as two transcription factors, SRF and ELK1. Altogether, these results uncover a transcriptional program that specifically operates when neuronal activity is suppressed to globally coordinate the increase in synaptic strength.
Files in This Item
There are no files associated with this item.
Appears in
Collections
연구본부 > 퇴행성 뇌질환 연구그룹 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE