N-Acetylated Proline-Glycine-Proline Accelerates Cutaneous Wound Healing and Neovascularization by Human Endothelial Progenitor Cells
- Authors
- Kwon, Yang Woo; Heo, Soon Chul; Lee, Tae Wook; Park, Gyu Tae; Yoon, Jung Won; Jang, Il Ho; Kim, Seung-Chul; Ko, Hyun-Chang; Ryu, Youngjae; Kang, Hyeona; Ha, Chang Man; Lee, Sang Chul; Kim, Jae Ho
- Issue Date
- Feb-2017
- Publisher
- NATURE PUBLISHING GROUP
- Citation
- SCIENTIFIC REPORTS, v.7, pp.1 - 13
- Journal Title
- SCIENTIFIC REPORTS
- Volume
- 7
- Start Page
- 1
- End Page
- 13
- URI
- http://scholarworks.bwise.kr/kbri/handle/2023.sw.kbri/836
- DOI
- 10.1038/srep43057
- ISSN
- 2045-2322
- Abstract
- Human endothelial progenitor cells (hEPCs) are promising therapeutic resources for wound repair through stimulating neovascularization. However, the hEPCs-based cell therapy has been hampered by poor engraftment of transplanted cells. In this study, we explored the effects of N-acetylated Proline-Glycine- Proline (Ac-PGP), a degradation product of collagen, on hEPC-mediated cutaneous wound healing and neovascularization. Treatment of hEPCs with Ac-PGP increased migration, proliferation, and tube-forming activity of hEPCs in vitro. Knockdown of CXCR2 expression in hEPCs abrogated the stimulatory effects of Ac-PGP on migration and tube formation. In a cutaneous wound healing model of rats and mice, topical application of Ac-PGP accelerated cutaneous wound healing with promotion of neovascularization. The positive effects of Ac-PGP on wound healing and neovascularization were blocked in CXCR2 knockout mice. In nude mice, the individual application of Ac-PGP treatment or hEPC injection accelerated wound healing by increasing neovascularization. Moreover, the combination of Ac-PGP treatment and hEPC injection further stimulated wound healing and neovascularization. Topical administration of Ac-PGP onto wound bed stimulated migration and engraftment of transplanted hEPCs into cutaneous dermal wounds. Therefore, these results suggest novel applications of Ac-PGP in promoting wound healing and augmenting the therapeutic efficacy of hEPCs.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - 연구전략실 > 연구전략실 > 1. Journal Articles
- 연구전략실 > 첨단뇌연구장비센터 > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.