Estimating explainable Alzheimer?s disease likelihood map via clinically-guided prototype learning
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mulyadi, Ahmad Wisnu | - |
dc.contributor.author | Jung, Wonsik | - |
dc.contributor.author | Oh, Kwanseok | - |
dc.contributor.author | Yoon, Jee Seok | - |
dc.contributor.author | Lee, Kun Ho | - |
dc.contributor.author | Suk, Heung-Il | - |
dc.date.accessioned | 2023-08-17T02:03:45Z | - |
dc.date.available | 2023-08-17T02:03:45Z | - |
dc.date.created | 2023-05-26 | - |
dc.date.issued | 2023-06 | - |
dc.identifier.issn | 1053-8119 | - |
dc.identifier.uri | http://scholarworks.bwise.kr/kbri/handle/2023.sw.kbri/917 | - |
dc.description.abstract | Identifying Alzheimer's disease (AD) involves a deliberate diagnostic process owing to its innate traits of irre-versibility with subtle and gradual progression. These characteristics make AD biomarker identification from structural brain imaging (e.g., structural MRI) scans quite challenging. Using clinically-guided prototype learn-ing, we propose a novel deep-learning approach through eXplainable AD Likelihood Map Estimation (XADLiME) for AD progression modeling over 3D sMRIs. Specifically, we establish a set of topologically-aware prototypes onto the clusters of latent clinical features, uncovering an AD spectrum manifold. Considering this pseudo map as an enriched reference, we employ an estimating network to approximate the AD likelihood map over a 3D sMRI scan. Additionally, we promote the explainability of such a likelihood map by revealing a comprehensi-ble overview from clinical and morphological perspectives. During the inference, this estimated likelihood map served as a substitute for unseen sMRI scans for effectively conducting the downstream task while providing thorough explainable states. | - |
dc.language | 영어 | - |
dc.language.iso | en | - |
dc.publisher | Academic Press | - |
dc.title | Estimating explainable Alzheimer?s disease likelihood map via clinically-guided prototype learning | - |
dc.type | Article | - |
dc.contributor.affiliatedAuthor | Lee, Kun Ho | - |
dc.identifier.doi | 10.1016/j.neuroimage.2023.120073 | - |
dc.identifier.scopusid | 2-s2.0-85151677524 | - |
dc.identifier.wosid | 000981499700001 | - |
dc.identifier.bibliographicCitation | NeuroImage, v.273 | - |
dc.relation.isPartOf | NeuroImage | - |
dc.citation.title | NeuroImage | - |
dc.citation.volume | 273 | - |
dc.type.rims | ART | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Neurosciences & Neurology | - |
dc.relation.journalResearchArea | Radiology, Nuclear Medicine & Medical Imaging | - |
dc.relation.journalWebOfScienceCategory | Neurosciences | - |
dc.relation.journalWebOfScienceCategory | Neuroimaging | - |
dc.relation.journalWebOfScienceCategory | Radiology, Nuclear Medicine & Medical Imaging | - |
dc.subject.keywordPlus | CORTICAL THICKNESS | - |
dc.subject.keywordPlus | DISCOVERY | - |
dc.subject.keywordAuthor | Alzheimer?s Disease | - |
dc.subject.keywordAuthor | Explainable AI | - |
dc.subject.keywordAuthor | Prototype Learning | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
61, Cheomdan-ro, Dong-gu, Daegu, Republic of Korea , 41062 053-980-8114
COPYRIGHT Korea Brain Research Institute. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.