Detailed Information

Cited 1 time in webofscience Cited 4 time in scopus
Metadata Downloads

Estimating explainable Alzheimer?s disease likelihood map via clinically-guided prototype learning

Full metadata record
DC Field Value Language
dc.contributor.authorMulyadi, Ahmad Wisnu-
dc.contributor.authorJung, Wonsik-
dc.contributor.authorOh, Kwanseok-
dc.contributor.authorYoon, Jee Seok-
dc.contributor.authorLee, Kun Ho-
dc.contributor.authorSuk, Heung-Il-
dc.date.accessioned2023-08-17T02:03:45Z-
dc.date.available2023-08-17T02:03:45Z-
dc.date.created2023-05-26-
dc.date.issued2023-06-
dc.identifier.issn1053-8119-
dc.identifier.urihttp://scholarworks.bwise.kr/kbri/handle/2023.sw.kbri/917-
dc.description.abstractIdentifying Alzheimer's disease (AD) involves a deliberate diagnostic process owing to its innate traits of irre-versibility with subtle and gradual progression. These characteristics make AD biomarker identification from structural brain imaging (e.g., structural MRI) scans quite challenging. Using clinically-guided prototype learn-ing, we propose a novel deep-learning approach through eXplainable AD Likelihood Map Estimation (XADLiME) for AD progression modeling over 3D sMRIs. Specifically, we establish a set of topologically-aware prototypes onto the clusters of latent clinical features, uncovering an AD spectrum manifold. Considering this pseudo map as an enriched reference, we employ an estimating network to approximate the AD likelihood map over a 3D sMRI scan. Additionally, we promote the explainability of such a likelihood map by revealing a comprehensi-ble overview from clinical and morphological perspectives. During the inference, this estimated likelihood map served as a substitute for unseen sMRI scans for effectively conducting the downstream task while providing thorough explainable states.-
dc.language영어-
dc.language.isoen-
dc.publisherAcademic Press-
dc.titleEstimating explainable Alzheimer?s disease likelihood map via clinically-guided prototype learning-
dc.typeArticle-
dc.contributor.affiliatedAuthorLee, Kun Ho-
dc.identifier.doi10.1016/j.neuroimage.2023.120073-
dc.identifier.scopusid2-s2.0-85151677524-
dc.identifier.wosid000981499700001-
dc.identifier.bibliographicCitationNeuroImage, v.273-
dc.relation.isPartOfNeuroImage-
dc.citation.titleNeuroImage-
dc.citation.volume273-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaNeurosciences & Neurology-
dc.relation.journalResearchAreaRadiology, Nuclear Medicine & Medical Imaging-
dc.relation.journalWebOfScienceCategoryNeurosciences-
dc.relation.journalWebOfScienceCategoryNeuroimaging-
dc.relation.journalWebOfScienceCategoryRadiology, Nuclear Medicine & Medical Imaging-
dc.subject.keywordPlusCORTICAL THICKNESS-
dc.subject.keywordPlusDISCOVERY-
dc.subject.keywordAuthorAlzheimer?s Disease-
dc.subject.keywordAuthorExplainable AI-
dc.subject.keywordAuthorPrototype Learning-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE