Detailed Information

Cited 0 time in webofscience Cited 2 time in scopus
Metadata Downloads

Individualized Diagnosis of Preclinical Alzheimer's Disease using Deep Neural Networks

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Jinhee-
dc.contributor.authorJang, Sehyeon-
dc.contributor.authorGwak, Jeonghwan-
dc.contributor.authorKim, Byeong C.-
dc.contributor.authorLee, Jang Jae-
dc.contributor.authorChoi, Kyu Yeong-
dc.contributor.authorLee, Kun Ho-
dc.contributor.authorJun, Sung Chan-
dc.contributor.authorJang, Gil-Jin-
dc.contributor.authorAhn, Sangtae-
dc.date.accessioned2023-08-17T02:03:47Z-
dc.date.available2023-08-17T02:03:47Z-
dc.date.created2022-12-19-
dc.date.issued2022-12-
dc.identifier.issn0957-4174-
dc.identifier.urihttp://scholarworks.bwise.kr/kbri/handle/2023.sw.kbri/924-
dc.description.abstractThe early diagnosis of Alzheimer's Disease (AD) plays a central role in the treatment of AD. Particularly, identifying the preclinical AD (pAD) stage could be crucial for timely treatment in the elderly. However, screening participants with pAD requires a series of psychological and neurological examinations. Thus, an efficient diagnostic tool is needed. Here, we recruited 91 elderly participants and collected 1 minute of resting-state electroencephalography data to classify participants as normal aging or diagnosed with pAD. We used deep neural networks (Deep ConvNet, EEGNet, EEG-TCNet, and cascade CRNN) in the within-and cross-subject paradigms for classification and found individual variations of classification accuracy in the cross-subject paradigm. Further, we proposed an individualized diagnostic strategy to identify neurophysiological similarities across participants and the proposed approach considering individual characteristics improved the diagnostic performance by approximately 20%. Our findings suggest that considering individual characteristics would be a breakthrough in diagnosing AD using deep neural networks.-
dc.language영어-
dc.language.isoen-
dc.publisherPergamon Press Ltd.-
dc.titleIndividualized Diagnosis of Preclinical Alzheimer's Disease using Deep Neural Networks-
dc.typeArticle-
dc.contributor.affiliatedAuthorLee, Kun Ho-
dc.identifier.doi10.1016/j.eswa.2022.118511-
dc.identifier.scopusid2-s2.0-85136731128-
dc.identifier.wosid000884789600015-
dc.identifier.bibliographicCitationExpert Systems with Applications, v.210-
dc.relation.isPartOfExpert Systems with Applications-
dc.citation.titleExpert Systems with Applications-
dc.citation.volume210-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaOperations Research & Management Science-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryOperations Research & Management Science-
dc.subject.keywordPlusMILD COGNITIVE IMPAIRMENT-
dc.subject.keywordPlusALPHA RHYTHMS-
dc.subject.keywordPlusEEG-
dc.subject.keywordPlusDEFINITION-
dc.subject.keywordPlusBIOMARKERS-
dc.subject.keywordAuthorPreclinical Alzheimer?s Disease-
dc.subject.keywordAuthorElectroencephalography-
dc.subject.keywordAuthorDeep Neural Networks-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE