Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Predicting mild cognitive impairments from cognitively normal brains using a novel brain age estimation model based on structural magnetic resonance imaging

Full metadata record
DC Field Value Language
dc.contributor.authorChoi, Uk-Su-
dc.contributor.authorPark, Jun Young-
dc.contributor.authorLee, Jang Jae-
dc.contributor.authorChoi, Kyu Yeong-
dc.contributor.authorWon, Sungho-
dc.contributor.authorLee, Kun Ho-
dc.date.accessioned2023-10-13T10:30:01Z-
dc.date.available2023-10-13T10:30:01Z-
dc.date.created2023-10-13-
dc.date.issued2023-09-
dc.identifier.issn1047-3211-
dc.identifier.urihttp://scholarworks.bwise.kr/kbri/handle/2023.sw.kbri/996-
dc.description.abstractBrain age prediction is a practical method used to quantify brain aging and detect neurodegenerative diseases such as Alzheimer's disease (AD). However, very few studies have considered brain age prediction as a biomarker for the conversion of cognitively normal (CN) to mild cognitive impairment (MCI). In this study, we developed a novel brain age prediction model using brain volume and cortical thickness features. We calculated an acceleration of brain age (ABA) derived from the suggested model to estimate different diagnostic groups (CN, MCI, and AD) and to classify CN to MCI and MCI to AD conversion groups. We observed a strong association between ABA and the 3 diagnostic groups. Additionally, the classification models for CN to MCI conversion and MCI to AD conversion exhibited acceptable and robust performances, with area under the curve values of 0.66 and 0.76, respectively. We believe that our proposed model provides a reliable estimate of brain age for elderly individuals and can identify those at risk of progressing from CN to MCI. This model has great potential to reveal a diagnosis associated with a change in cognitive decline.-
dc.language영어-
dc.language.isoen-
dc.publisherOXFORD UNIV PRESS INC-
dc.titlePredicting mild cognitive impairments from cognitively normal brains using a novel brain age estimation model based on structural magnetic resonance imaging-
dc.typeArticle-
dc.contributor.affiliatedAuthorLee, Kun Ho-
dc.identifier.doi10.1093/cercor/bhad331-
dc.identifier.wosid001067030600001-
dc.identifier.bibliographicCitationCEREBRAL CORTEX-
dc.relation.isPartOfCEREBRAL CORTEX-
dc.citation.titleCEREBRAL CORTEX-
dc.type.rimsART-
dc.type.docTypeArticle; Early Access-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaNeurosciences & Neurology-
dc.relation.journalWebOfScienceCategoryNeurosciences-
dc.subject.keywordPlusCORTICAL THICKNESS-
dc.subject.keywordPlusALZHEIMERS-DISEASE-
dc.subject.keywordPlusLONGITUDINAL PATTERN-
dc.subject.keywordPlusOLDER-ADULTS-
dc.subject.keywordPlusATROPHY-
dc.subject.keywordPlusVOLUME-
dc.subject.keywordPlusPROGRESSION-
dc.subject.keywordPlusDEMENTIA-
dc.subject.keywordPlusRISK-
dc.subject.keywordPlusMRI-
dc.subject.keywordAuthorAlzheimer&apos-
dc.subject.keywordAuthors disease-
dc.subject.keywordAuthorbrain age prediction-
dc.subject.keywordAuthorbrain volume-
dc.subject.keywordAuthorcortical thickness-
dc.subject.keywordAuthormild cognitive impairment-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE