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Abstract: The location analysis of logistics distribution centers is one of the most critical issues in
large-scale supply chains. While a number of algorithms and applications have been provided for
this end, comparatively fewer investigations have been made into the integration of geographical
information. This study proposes logistic distribution center location analysis that considers current
geographic and embedded information gathered from a geographic information system (GIS). After
reviewing the GIS, the decision variables and parameters are estimated using spatial analysis. These
variables and parameters are utilized during mathematical problem-based analysis stage. While
a number of existing algorithms have been proposed, this study applies a hybrid metaheuristic
algorithm integrating particle swarm optimization (PSO) and genetic algorithm (GA). Using the
proposed method, a more realistic mathematical model is established and solved for accurate analysis
of logistics performance. To demonstrate the effectiveness of the proposed method, Korea Post
distribution centers were considered in South Korea. Through tests with several real-world scenarios,
it is proven experimentally that the proposed solution is more effective than existing PSO variations.

Keywords: logistics centers location; spatial analysis; geographic information system; hybrid meta-
heuristics; particle swarm optimization; genetic algorithm

1. Introduction

The efficiency of logistics networks and systems in decreasing travel time and reach-
ing longer-distance markets is considered important for enhanced economic growth [1].
By acknowledging the importance of logistics activities, the World Bank helps countries
measure their improvement by providing a logistics performance index (LPI). The updated
LPI methodology [2] features micro-level performance data and geospatial data in their
qualitative assessments, demonstrating that geospatial data plays an important role in
measuring logistics performance.

Most countries consider their transportation infrastructure and logistics centers as
business generators [3]. The location decision of logistics centers and their performances
are crucial, as they help companies not only minimize costs, traffic congestion, and environ-
mental pollution levels, but also improve the scheduling system and vehicle routing [4–7].
This is especially the case with environmental concerns since it is not only the responsibility
of logistics companies but also an issue for government and other stakeholders, as well as
one of customers awareness [8].

Furthermore, Europlatforms [9] has explained that logistics centers not only operate a
commercial basis to benefit transport, logistics and distribution but also offer key logistical
functions, such as coordination, centralization, consolidation, collaboration, and integration
in a specific area’s hub. Then, in the process of formulating these logistical functions, the
system will be not only working for the logistics companies but also has the ability to
minimize or even overcome the general issues mentioned above [10]. Creating specific
strategies and human research evaluation are also needed to see the system’s overall
efficiency [11,12].
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While a number of research studies have been proposed for analyzing logistic facilities,
efforts to incorporate real-world data, such as geographic information system (GIS) data
including facility information, have more recently begun. The integration of GIS data and
existing algorithms can help enhance the performance of logistics facilities. This study
proposes a hybrid metaheuristic model based on spatial analysis for measuring distribution
performance of logistic centers quantitatively. In particular, post-logistics in South Korea
are examined in this research.

The methodology of this study mainly consists of two parts: (a) spatial and network
analysis using GIS, and (b) mathematical model-based location analysis using hybrid PSO-
GA model. Hybrid of PSO-GA is effective in incorporating very large-scale instances and
can be developed using various parameters.

To validate our research findings, we performed logistic center location analysis on
the GIS data of Korea Post locations around the country, including population density and
other information. South Korea has a total land area of 97,230 km2, with 81.8% of the 2020
population being urban and uneven population density [9,13].

The remainder of this paper is organized as follows. Section 2 provides relevant back-
ground knowledge and a literature review. Section 3 proposes the model and methodology
with a deeper theoretical background analysis. Finally, Section 4 presents the application,
and results of the proposed methodology are provided in Section 4.

2. Materials and Method
2.1. Background and Literature Reviews

Rodrigue et al. [14] examined the standardization of logistics centers of various sizes
based on terminal size and logistics facilities hierarchy. Moreover, selecting and evaluating
the size and hierarchy of logistics centers has been one of the essential elements of business
operations. Well-planned logistics center allocation helps reduce logistics costs and improve
the efficiency of distribution flows [15].

Furthermore, delivery options and distribution flows are improved to welcome
changes in shopping behavior, such as extending conventional home delivery to car boot
delivery, in-home delivery, store collection, and more [16]. It is important to note that the
ability to ship goods reliably at a low cost determines a country’s participation strategy in
global value chains [17].

In terms of logistics costs, there are five common components, as indicated by Po-
hit et al. [18]: transportation costs, warehousing costs for both in-house and outsource,
administration costs, inventory-holding costs, and inventory-carrying costs. In addition
to considering the aforementioned roles, logistics center locations should be suitable for
integrated and other transportation modes. In fact, the fluidity of transport flows and prof-
itability are closely interlinked by transport accessibility, market coverage, land availability,
and other spatial factors.

Furthermore, in reaching the optimal decisions is needed in the least amount of time.
The possibility in transitioning the predictive analytics and planning of just-in-time man-
agement to develop the dynamics physical distribution can be reached by implementing
the mathematical model as well as artificial intelligence [19].

For this reason, a number of existing studies have mentioned the importance of
building larger and more efficient facilities to meet regional and national demands [20]. The
larger the size of the logistics network, the greater the complexity of its functions [21–23].
Thus, logistics centers should tackle this issue by adopting a spatial strategy to evaluate the
optimal location for maximizing service coverage [24].

Identifying suitable logistics locations can be conducted in a number of ways. Quan-
titative analyses such as those performed by Hagino and Endo [25] have estimated the
location of facilities and distribution centers using a multinomial logit model (MNL). Many
metaheuristics, including adaptive PSO, have been applied to achieve the location of
logistics centers as well [26].
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High performance optimization of a large-scale logistic network is carried out using
a modified discrete algorithm of PSO that handles binary decision variables (BPSO) [27].
Satisfactory results are also achieved considering the updated inertia weight, best-fit
solutions, and worst-fit solutions from a hybrid PSO and genetic algorithm [28]. This study
applied an integrated PSO–genetic algorithm approach for logistics network performance
analysis. Table 1 shows the results of several existing studies on metaheuristic-based
logistic centers.

Table 1. Metaheuristic-based decision of logistic networks.

Research Studies Applications Applied Metaheuristics

Location Analysis [29]
(Cakmak et al.)

Analyzing the location of logistics
centers BPSO

Logistics Network [30]
(Yoshiaki Shimizu et al.) Large-scale Logistics Network BPSO

Routing Problem [31]
(A. Hiassat et al.)

Location-Inventory Routing
Problem with Perishable Products GA

Vehicle Routing [32]
(Y. Gajpal et al.)

Vehicle Routing Problem with
simultaneous delivery and pickup Ant Colony System (ACS)

Supply Chain Network [33]
(A. Shoja et al.)

Supply Chain Network Design
with Direct Shipment GA, PSO

Vehicle Routing [34]
(V. Kachitvichyanukul et al.)

Multi-depot Vehicle Routing with
multiple Delivery and Pickup PSO

Vehicle Routing [35]
(M. Marinaki et al.)

Vehicle Routing Problem with
Stochastic Demands

Glowworm Swarm
Optimization (GSO)

Vehicle Routing [36]
(M. Albayrak et al.) Traveling Salesman Problem GA

Alternatively, spatial density analysis highlights trip distance minimization as a major
factor in choosing the location of facilities in the real world [37]. Similar analyses have
been noticed in that the logistics activities concentration or spatial clusters are counted
while having logistics relocation [38]. GISs handle all the necessary physical and environ-
mental constraints and have a significant role as a decision support tool for optimizing
locations [39]. The implementation of GIS also improves service quality and employee
performance by providing optimum routes [40]. Furthermore, GIS can compute distances
in the network location model to obtain the shortest or fastest routes and solve logistics
network problems. For instance, Klose and Drexl [41] proposed the location of logistics
facilities using the criteria of minimizing the sum of distances between nodes and the
nearest facility.

Respecting the complexity of logistics, we considered a well-formulated geographical-
area-and-mathematical-model combination for evaluating and selecting the appropriate
location of logistics centers [42]. Optimal clustering of numerous logistics activities can be
approached by employing GIS as a spatial analyzer and BPSO as a metaheuristic model [29].
Therefore, the aim of this study was to integrate GIS and metaheuristic algorithms that
will manage large-scale, real-world logistics instances. In this research, a comprehensive
integrated solution for the selection of logistics center locations is presented using real
GIS data.

2.2. Integration of GIS Data and PSO-GA Algorithm

As mentioned previously, there are two stages used in this study to achieve an efficient
solution for analyzing the logistics center location problem. While most of the research
studies focused on quantitative analysis of distribution network using mathematical frame-
works, the proposed method provides how GIS information is used for the quantitative
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analyses and their mathematical models. These incorporations and the detailed mechanism
are the contributions of this study.

The proposed method is provided in Figure 1.
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The first step is a geographic analysis that involves spatial analysis and network anal-
ysis. Spatial analysis calculates the logistics densities by mapping the smaller Korea Post
locations (demands) and showing the priority values of the demands. Network analysis
provides the exact distances between demands. In this stage, the calculated densities
and distances among the demands are considered when choosing the optimal route. The
next step is to analyze the influence of the location utilizing the hybrid PSO-GA as the
metaheuristic tool. There are several existing research studies that evaluate the logistics
center’s performance using PSO and GA separately. Table 1 shows the performances of
methods using PSO and GA, and the standalone tests and combination tests using these
metaheuristics are performed. As the result, the PSO-GA algorithm has better performances
in this study.

2.2.1. Spatial and Network Analysis Using GIS

Geospatial analysis provides effective and value-based decision making and the
best potential analysis using the capabilities of GIS in geospatial data management [43].
In general, the spatial network structure is constructed using the shortest paths among
facilities as an adjacency matrix. Additionally, the characteristics of the network should be
accounted for to build a hierarchical transportation system. Moreover, the logistics center
is expressed by a candidate point (on the geographic data vector) and located on the vertex
nodes of the road transportation system [44].

The prepared network will then be calculated to find its Origin–Destination (OD) dis-
tance (distance between any selected demands) with distance metrics to obtain the shortest
paths or time metrics to obtain the fastest paths using Dijkstra’s algorithm. In addition
to finding the shortest and fastest paths, spatial analysis also applies powerful statistical
tools to address dependence and heterogeneity through essential event frequencies at
neighboring locations (hotspots identification) [45].

The statistical tools in GIS were assigned in the initial analysis to determine the
autocorrelation using the global Moran’s I calculation [46]. Moran’s I uses the position,
distance, and value of neighbor characteristics. The index value ranges from −1 to 1,
where −1 indicates dispersed activities, and 1 indicates clustered activities. If a value is
approximately zero, it indicates a random pattern [46].
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Mathematically, Moran’s I statistic for spatial autocorrelation is given in Equation (1).

Moran′s I =
[n ∑n

i=1 ∑n
j=1 Wij

(
Xi − X

)(
Xj − X

)
]

[n ∑n
i=1 ∑n

j=1 Wij
(
Xi − X

)2
]

(1)

where

n = total number of features/spatial units;
Xi = the index value at location j;
X = the global mean value;
and, Wij = the spatial weight among location “i” and location “j”.

To exhibit significant clustering or dispersion statistically, the z-score and p-value are
required. As shown in Equation (2), z-score is the standard deviation of a feature from its
mean and is based on randomization null hypothesis computation.

z =
I − E[I]√

V[I]
(2)

Used in (2), E[I] and V[I] are defined in Equations (3) and (4), respectively.

E[I] = − 1
(n− 1)

(3)

V[I] = E[I2]− E[I]2 (4)

When the p-value is very, the observed spatial pattern is the result of a random process,
and the null hypothesis should be rejected. On the other hand, the higher (or lower) the
z-score, the more intense the clustering. As with global Moran’s I index value, a near-zero z-
score indicates no apparent spatial clustering [39]. The decision to reject the null hypothesis
is determined by the confidence level as shown in Table 2.

Table 2. The uncorrected critical z-scores and p-values for different confidence levels.

z-Score (Standard Deviations) p-Value (Probability) Confidence Level

<−1.65 or >+1.65 <0.10 90%
<−1.96 or >+1.96 <0.05 95%
<−2.58 or >+2.58 <0.01 99%

Finally, hot spot values are calculated using Getis-Ord tools as shown in Equation (5)
and used in the mathematical model as hi parameters.

Gi(d) =
∑n

j=1 wij(d)xj

∑n
j=1 xj

(5)

2.2.2. Mathematical Model for Logistics Network Analysis

Most location allocation problems involve selecting a certain number of logistics cen-
ters, and mapping to the demand or destination points within a maximized or minimized
distance. One of the optimization problems allocates facilities (logistics centers) and assigns
them to the demand or destination points. This optimization also minimizes the sum
of the weighted distances between all destination points and related facilities [47]. The
minimized weighted demand distance between the destinations and facilities is given
by a set of destinations: D = (d1, d2, . . . , dn). Each destination (di) has coordinates and
demands. The number of required facilities is labeled as p and the p-facility locations (x) out
of the n-destinations are selected to map each destination to a facility. A binary parameter
is applied to denote the destination di mapped to facility xj. For each destination, the
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binary parameter is expressed by aij as shown in Equation (6) and followed by the objective
function cost(x) in Equation (7). Table 3 provides the parameter descriptions.

p

∑
j=1

aij = 1 (6)

aij

{
1, i f the destination i is assigned to f acility at point j

0, otherwise

Minimize cost(X) =
n

∑
i=1

p

∑
j=1

aijhidij, (7)

Table 3. Parameter descriptions.

Parameters Description

dij Distance between origin and destination
hi Logistics density
p Number of logistics centers
n Number of destination nodes
aij Binary parameter for assigned case

As shown in Table 4, this mathematical model is solved using an integrated model,
including PSO and GA. PSO is a stochastic optimization-based method that uses observed
social behavior and initializes a random solution through a potential solution in the prob-
lem space.

Table 4. Mathematical Models.

Mathematical Models

xi = (xi1, xi1, . . . , xiD) ∈ S (8)
vi = (vi1, vi1, . . . , viD) (9)

pi = (pi1, pi1, . . . , piD) ∈ S (10)
x(t+1)

i = x(t)i + v(t+1)
i , i = 1, . . . , P (11)

x(t+1)
i = x(t)i + v(t+1)

i , i = 1, . . . , P (12)

v(t+1)
i = v(t)i + c1ri1 ×

(
pbest(t)i − x(t)i

)
+ c2ri2 ×

(
gbest(t)i − x(t)i

)
(13)

Presented as dimensional vectors (D), each particle is described in Equation (9) using
the randomly generated initial velocity in Equation (10). Equation (11) defines the best
local position of each particle, while Equations (12) and (13) are their adjusted personal
positions and velocities according to the best solution for each particle (pbest) and the best
solution of all populations (gbest) among particles in their neighborhood.

This study uses PSO because of it is simple, easy to implement, requires few parameters
and has an important characteristic that GA does not have [48]. One drawback of PSO is
premature convergence.

On the other hand, GA, developed by John Holland, uses recombination, mutation,
and selection processes as its operators. GA has been applied to wide-range optimization
problems and discrete and continuous systems. GA features enable the calculation of vari-
ous type of optimizations because multiple offspring act independently in a population and
explore the search space simultaneously in many directions [49]. Despite the advantages
of GA, population size, new population and other selection parameters should be chosen
wisely. Otherwise, it will be difficult to converge and may produce meaningless results.

To obtain an objective function that is superior to PSO and GA individually, we added
the capability to present pbest and gbest. We expected the potential to achieve a more
robust solution in a reasonable time and the detailed procedures are provided in Table 5.
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Table 5. The procedures of the proposed PSO-GA model.

Procedures Description

Step 1. Initialization (for k = 0) Set the starting value of pbest and gbest as zero.

Step 2. For i = 1 to N Calculating the solution for the first iteration.

Step 3. Generate the initial
solution randomly

Make an initial random population/particles as basic
starting solution to generate an initial population.

Step 4. Calculate the initial solution
By using the objective function, the fitness for all
solutions is calculated. The objective function will
maximize the profit.

Step 5. Assign pbest Get the best solution for each particle/initial position
and update the pbest with the best solution (pbest’).

Step 6. Assign gbest Get the best position among all particles and update
the gbest with the best solution (gbest’).

Step 7. Generate initial velocities Velocities are generated randomly.

Step 8. Storing the solution Store the best solution, best cost, and worst cost.

Step 9. Crossover process 1
(for k = 1: nc/2)

Children are generated from all current populations
(half of current populations)—Group A.

Step 10. Generate the solution The fitness for the Group A solution.

Step 11. Crossover process 2 Children are generated from all current populations
with its pbest solution—Group B.

Step 12. Generate the solution The fitness for Group B solution.

Step 13. Crossover process 3 Children are generated from all current populations
with its gbest solution—Group C.

Step 14. Generate the solution The fitness for Group C solution.

Step 15. Mutation process
(for k = 1: nm)

Select the mutation operator by a limited
predetermined random rate.

Step 16. Generate the solution The fitness for mutation solution.

Step 17. Merge all solutions All solutions from current populations, Crossover
groups, and mutation populations.

Step 18. Sort the best solution Select the best ones to form the next iteration
population.

Step 19. Update velocities Applying the velocity limits.

Step 20. Modify the current positions Using the updated velocities.

Step 21. Generate the solution Calculating the initial solutions.

Step 22. Update pbest The best position of the ith particle.

Step 23. Update gbest The best position of the particle group.

Step 24. Finalize the algorithm For k = itermax.

Step 25. Assign gbest and stop The best solution and stop.

During this process, there were three crossover actions. The first is to generate the
offspring/children from all populations to be half of the population (Group A). The second
crossover process generates the children with the pbest solution to obtain the solution
(Group B). The last crossover process contains the solution generated from all populations
with its gbest (Group C). After performing crossover three times, the process continues to
carry out the mutation and obtain the fitness solution. Finally, Groups A, B, and C and the
mutation solution are sorted to obtain the best solutions for the next iteration.
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3. Result
3.1. Initial Analysis

For the initial evaluation, the locations of logistics centers along with the Korea Post
amenities dataset from the IGIS were assigned to the study area [50]. The dataset includes
1999 nodes (centers and demands) from around the country, including place name, address,
amenity type, and latitude-longitudinal locations. The dataset is presented on a layer of
shape-file from IGIS and is processed using QGIS 3.20 Odense software [51].

In Figures 2 and 3, the red dots represent Korea Post Distribution (KPD) center loca-
tions while the blue dots represent the small retail Korea Post locations (demands). Using
the OpenStreetMap layer, Figure 2 shows the detailed environment of the dot locations in
the Seoul area, and Figure 3 shows all of the demands in South Korea. Because Seoul is
the largest metropolitan city in South Korea, with more than 10 million people, its logistics
demand is also extremely high. This is revealed by the number of blue dots on the Korea
Post locations map in comparison to the population map [13], with clustered demands
shown in Figure 3.

Figure 2. KPD centers and Korea Post facilities in Seoul.
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The dark red hexagons in Figure 4 represent the area with the highest number of
demands (blue dots) within 10 km. The number of demand dots is important for setting
the network and spatial characteristics of logistics systems.
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3.2. Spatial and Network Analysis for Location Section

The model parameters for analyzing spatial analysis involve the distance matrix and
logistics densities as priority values in choosing alternative locations. The distance matrix
can be plotted using the GIS software distance matrix toolbox. The aim matrices calculate
the exact length and clusters of the network used in the mathematical model.

In this research, we complete the clustering process by dividing the study area using
the hot spot analysis plugin in GIS software with a hexagon-shaped grid, as shown in
Figure 4. Note that the hexagon can be replaced by other shapes. The coverage area
for each hexagon was 10 km and the mapped points were counted within each hexagon
region. After that, the number of facilities is counted to obtain the weighted points within
the radius.

The facilities locations were analyzed using the Moran’s I pattern analysis. The
analysis contains three types of disparities: distributed, centralized, and clustered, as
shown in Figure 5. Moran’s I is calculated to ensure the logistics demands in South Korea
are clustered (+1). By comparing the Figures 4 and 5, we can also obtain the general picture
of logistics demands in South Korea that are clustered because the darker red hexagons are
located in dense areas such as Seoul, Busan, and Daegu.
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The QGIS analysis revealed the disparities in logistics facilities around South Korea
and confirmed that facilities are clustered in regions. Using the Getis-Ord toolbox, a
weighted value is generated to provide the environmental difference between the high-
and low-demand areas as shown in Figure 6. The estimated weighted value is then used
with the PSO-GA method for location analysis.
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3.3. Location Selection Using PSO-GA

As explained in the previous section, location selection is a part of the logistics network
problem in this study where “p” centers on a network and “m” nodes are considered for
“n” candidate facilities, with parameters being the minimum total weighted or unweighted
distances of the related.

The logistics network analysis is calculated with the weighted and unweighted areas
that were estimated in the previous section. The mathematical model is solved using the
hybrid PSO-GA method, as provided in Section 3.2. Then, the results are compared with
existing methods, such as the BPSO and PSO algorithms.

As mentioned previously, the size of a logistics network problem is variously based
on the number of nodes and the number of related “p” centers. This study considers five
demand-number scenarios to test the model: 100, 150, 200, 350, and 600.

The demand numbers reflect the solution time differences and help us choose the
proper network structure. As another performance distances travelled between demands
are counted and reported. Table 6 lists the proposed parameter.

The three algorithms (the proposed hybrid PSO-GA, PSO, and BPSO) were calculated
using © MATLAB 2021Ra and run on an AMD Ryzen 3 4300U laptop with Radeon Graphics,
2.70 GHz with installed 16.00 GB RAM.

The proposed hybrid PSO-GA model uses an initial population size of 100 demands
and the same number is applied for the BPSO and PSO algorithms, as provided in Table 4.
The iteration number was set to 500 for PSO and 500 for GA in the PSO-GA process. For
comparison, the iteration number set to 1000 for both BPSO and PSO. A small maximum
velocity (Vmax) determines a value of 0 and promotes exploration as a pure random search.
On the other hand, a large maximum velocity indicates limited exploration. In the latter
case, the maximum velocity is set to 10 for maximum and the minimum velocity is set to
−10 and is updated for each iteration.
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Table 6. PSO-GA parameters.

Parameters Value

Population size 100
PSO itermax 500
GA itermax 500

w 0.9
c1, c2 2.0

Velocity max 10
Velocity min −10

Pcros 0.8
Extra range factor for crossover 0.4

Pmut 0.3
Mutation rate 0.1

Choosing the inertia factor (w) to slow particle velocities is a challenging step. If the
value is less than 1, convergence is prevented. If it is set to −1 < w < 1, Vij becomes zero
over time. In this experiment, all of the algorithms used 0.9 for the inertia factor value. The
learning factors (c1 and c2) are both 2.0. There were no hardware or software differences in
the processing of the solver operations.

3.4. PSO-GA, BPSO and PSO Comparison

The idea of the proposed algorithm is to improve the solution generation with each
iteration by selection, mutation, and crossover operators. GA operators run until significant
improvements are provided to the next generation. The best solutions are selected to
achieve better solutions with each iteration. Therefore, the proposed PSO-GA is expected
to provide superior logistics in less time.

The three algorithms PSO-GA, BPSO, and PSO are tested using two types of logistics
network problems: weighted and unweighted. The weighted logistics network problem
means that an area has a demand density value from GIS and, the unweighted logistics
network problem means that an area has demand density with only area size. Both of the
logistics network problems are applied for 100, 150, 200, 350, and 600 nodes with various
numbers of medians. The results of solving for the solution time and total cost are given in
Tables 7 and 8 respectively. To add complexity, the p-number is involved in the calculation
for each network size using one to five instances.

Table 7 presents the solution times of each method, separated mainly based on their
demand densities (weighted and unweighted). Moreover, the total cost values differ among
these performances.

Consider the first case, for instance, when the network size is 100, and p is 1: the center
that considers a weighted priority area calculates the total cost as $6,784,846, while the
unweighted one calculates the total cost as $6,185,364. Calculations were performed repeat-
edly using the PSO-GA, BPSO, and PSO algorithms to validate the superior effectiveness of
PSO-GA. Detailed performances and analyses are provided in the following section.

Table 7. Solution time (Unit: s) for weighted and unweighted center locations analysis.

Network
Size

Center
Numbers

Weighted Unweighted

PSO-GA BPSO PSO PSO-GA BPSO PSO

100 1 17.8 19.51 * 15.26 17.8 19.37 * 16.6
2 26.88 28.92 * 23.6 * 26.05 27.3 28.5
3 40.15 42.04 * 35.18 34.44 35.42 * 33.94
4 * 52.48 52.55 64.27 36.85 36.87 36.33
5 * 64.75 64.75 74.17 * 52.55 * 52.55 55.59
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Table 7. Cont.

Network
Size

Center
Numbers

Weighted Unweighted

PSO-GA BPSO PSO PSO-GA BPSO PSO

150 1 * 18.9 21.71 25.13 * 18.6 20.24 22.9
2 * 29.22 31.81 43.96 * 28.22 28.72 35.81
3 * 37.62 38.5 51.57 * 36.48 36.82 44.61
4 * 48.19 48.45 68.77 * 44.08 44.1 56.6
5 * 60.92 60.93 108.49 * 58.24 58.25 88.27

200 1 * 19.6 21.74 29.19 * 19.28 20.48 29.99
2 * 28.98 31.34 55 * 26.9 27.51 43.43
3 * 38.28 38.79 67.59 * 32.94 33.34 59.2
4 * 45.11 45.33 87.86 * 44.77 44.8 82.69
5 * 62.99 63.00 126.19 * 56.64 * 56.64 105.79

350 1 * 19.74 21.6 51.84 * 19.7 21.41 51.74
2 * 29.61 31.93 74.61 * 28.53 29.97 69.55
3 * 39.71 40.7 103.72 * 35.68 35.75 95.28
4 * 50.72 50.75 137.03 * 47.54 47.58 126.75
5 * 58.6 58.7 165.31 * 53.23 * 53.23 142.4

600 1 * 24.8 26.02 114.17 * 24.8 25.95 114.43
2 * 34.82 35.61 154.72 * 34.21 34.73 148.92
3 * 45.01 45.28 188.21 * 43.97 44.04 169.55
4 * 53.23 53.28 219.24 * 51.47 * 51.47 193.34
5 * 62.45 62.46 240.98 * 59.6 * 59.6 210.95

*_: The fastest solution time between PSO-GA, BPSO, and PSO.

Table 8. Total cost for weighted and unweighted logistics network.

Network
Size

Center
Numbers

Weighted Unweighted

PSO-GA BPSO PSO PSO-GA BPSO PSO

100 1 * 6,784,846 7,353,068 7,595,956 * 6,185,364 6,377,843 7,298,906
2 * 4,877,929 5,069,910 5,153,367 * 4,043,637 4,072,727 4,511,696
3 * 3,393,564 3,431,927 3,533,054 * 3,092,517 3,095,316 3,275,586
4 * 2,818,272 2,821,072 2,932,206 * 2,518,855 2,520,151 2,543,161
5 * 1,763,366 1,763,368 1,911,054 * 1,171,394 1,171,394 1,207,847

150 1 * 9,042,946 9,522,318 10,321,644 * 7,216,475 7,377,402 8,450,483
2 * 7,644,466 7,823,251 8,507,561 * 6,939,100 7,003,634 7,128,716
3 * 5,876,466 5,934,848 6,083,765 * 5,736,261 5,746,503 5,856,881
4 * 5,080,874 5,084,548 5,203,901 * 4,356,967 4,358,221 4,424,943
5 * 3,080,313 3,080,313 3,243,602 * 2,244,773 2,244,773 2,294,832

200 1 * 15,455,923 15,896,683 16,815,694 * 12,499,662 12,820,065 14,220,570
2 * 12,216,102 12,406,546 12,686,042 * 10,278,325 10,361,579 11,198,613
3 * 11,042,848 11,133,431 11,378,345 * 6,035,975 6,042,011 6,128,438
4 * 9,160,556 9,163,436 9,312,371 * 4,298,386 4,298,898 4,355,599
5 * 7,617,892 7,617,895 7,835,134 * 3,726,939 3,726,939 3,822,474

350 1 * 25,315,342 26,120,812 28,088,155 * 19,474,204 19,920,594 21,923,949
2 * 24,563,141 25,024,504 26,237,113 * 16,656,473 16,947,256 18,272,058
3 * 21,098,567 21,158,469 21,207,856 * 11,942,141 11,947,902 12,279,723
4 * 18,541,254 18,542,777 18,903,948 * 9,574,292 9,574,534 9,749,230
5 * 18,020,026 18,020,026 18,593,405 * 7,127,513 7,127,514 7,290,892

600 1 * 38,488,771 39,248,242 40,652,671 * 32,133,546 32,354,354 34,253,238
2 * 33,516,097 33,819,787 34,586,945 * 28,340,069 28,388,247 28,817,317
3 * 27,389,279 27,422,565 27,601,760 * 22,638,103 22,651,939 22,713,302
4 * 24,102,650 24,103,432 24,322,685 * 21,442,838 21,443,453 21,501,632
5 * 22,455,322 22,455,324 22,898,416 * 13,796,729 13,796,729 13,891,560

*_: The lowest cost between PSO-GA, BPSO, and PSO.
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4. Analysis and Discussion

This study analyzes the performance of logistics centers by providing the hybrid PSO-
GA algorithm, and the result is compared with the existing techniques and approaches
such as BPSO and PSO to evaluate the performance of proposed method.

Reviewing the Tables 7 and 8, the solution times and total costs of the three algorithms
can be compared. Using the same parameters, the hybrid PSO-GA shows better perfor-
mance in terms of solution time and total cost compared to the BPSO, and Tables 9 and 10
provide a comparison for the solution times and total costs respectively. The negative value
indicates that the PSO-GA has better results than BPSO or PSO.

Table 9. The comparative solution time comparison for weighted and unweighted networks of
each solver.

Network
Size

Centers
Number

Weighted Unweighted

BPSO vs.
PSO-GA

PSO vs.
PSO-GA

BPSO vs.
PSO-GA

PSO vs.
PSO-GA

100 1 −8.78% −18.34% −8.12% −8.61%
2 −7.05% −12.70% −4.60% −5.47%
3 −4.48% 13.91% −2.78% 1.42%
4 −0.14% 14.14% −0.05% 1.46%
5 0.00% 16.67% 0.00% 7.25%

150 1 −12.94% −43.84% −8.12% −34.02%
2 −8.15% −33.53% −1.75% −22.12%
3 −2.28% −29.93% −0.92% −21.19%
4 −0.55% −27.05% −0.05% −18.77%
5 0.00% −24.79% 0.00% −18.23%

200 1 −9.84% −50.08% −5.87% −46.46%
2 −7.52% −48.65% −2.21% −45.87%
3 −1.32% −47.31% −1.18% −44.35%
4 −0.48% −43.37% −0.08% −38.05%
5 0.00% −2.84% 0.00% −35.71%

350 1 −8.59% −64.55% −7.97% −62.62%
2 −7.25% −62.99% −4.82% −62.55%
3 −2.43% −61.92% −0.18% −62.49%
4 −0.07% −61.71% −0.07% −61.92%
5 0.00% −60.31% 0.00% −58.98%

600 1 −4.70% −78.28% −4.42% −78.33%
2 −2.23% −77.50% −1.49% −77.03%
3 −0.59% −76.08% −0.15% −74.07%
4 −0.10% −75.72% 0.00% −73.38%
5 0.00% −74.09% 0.00% −71.75%

Compared to BPSO, PSO-GA offers an 80% better solution-time performance among
the repetition. On the same hand, PSO-GA provides approximately 88% better solution-
time performance compared to the PSO algorithm. At a higher p-number, based on the
presented results, the proposed PSO-GA shows very small differences, at some points
almost 0%.

The proposed PSO-GA also provides better performance compared to BPSO in weighted
logistics networks in both solution time and total cost results. The PSO-GA hybrid is 80%
more effective than BPSO in solving the cost calculation. However, at a higher level of
complexity, the PSO-GA and BPSO provide the same quality of performance with almost
zero difference between the two solvers.
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Table 10. The comparative total cost comparison for unweighted and weighted logistics network of
each solver compared to PSO-GA solver.

Network
Size

Center
Numbers

Weighted Unweighted

BPSO vs.
PSO-GA

PSO vs.
PSO-GA

BPSO vs.
PSO-GA

PSO vs.
PSO-GA

100 1 −7.73% −10.68% −3.02% −15.26%
2 −3.79% −7.73% −0.71% −10.37%
3 −1.12% −5.34% −0.09% −5.59%
4 −0.10% −3.95% −0.05% −3.02%
5 0.00% −3.89% 0.00% −0.96%

150 1 −5.03% −12.39% −2.18% −14.60%
2 −2.29% −10.15% −0.92% −2.66%
3 −0.98% −5.03% −0.18% −2.18%
4 −0.07% −3.41% −0.03% −2.06%
5 0.00% −2.36% 0.00% −1.54%

200 1 −2.77% −8.09% −2.50% −12.10%
2 −1.54% −3.70% −0.80% −8.22%
3 −0.81% −2.95% −0.10% −2.50%
4 −0.03% −2.77% −0.01% −1.51%
5 0.00% −1.63% 0.00% −1.31%

350 1 −3.08% −9.87% −2.24% −11.17%
2 −1.84% −6.38% −1.72% −8.84%
3 −0.28% −3.08% −0.05% −2.75%
4 −0.01% −1.92% 0.00% −2.24%
5 0.00% -0.52% 0.00% −1.79%

600 1 −1.94% −5.32% −0.68% −6.19%
2 −0.90% −3.10% −0.17% −1.66%
3 −0.12% −1.94% −0.06% −0.68%
4 0.00% −0.90% 0.00% −0.33%
5 0.00% −0.77% 0.00% −0.27%

In PSO-GA and BPSO comparisons, PSO-GA provides a slightly faster solution time
for the weighted logistics network compared to the unweighted one. On the other hand,
PSO-GA provides 88% faster solution during repetition when handling unweighted p-
median problems compare to the original PSO. A noticeable characteristic is that the larger
the network size of a problems, the longer PSO needs to solve it. On the other hand, PSO
solves higher-complexity problems faster.

PSO-GA solved the problems within a significantly shorter period of time compared
to PSO. The proposed algorithm sorts the offspring solution and takes only the best to be
reviewed as a new population for the next iteration; PSO-GA searches for the optimum
solution among the best solutions, so it saves time providing the final solution. The best
solutions of PSO-GA result not only from crossing the population over its pbest and gbest,
but also through crossover and population mutation.

Therefore, obtaining the best solution is achieved faster than by reviewing ordinary
populations. Figure 7 shows the effectiveness of the proposed model.

Despite solving the weighted logistics network 78% faster than the unweighted net-
work, the total cost calculation demonstrates that PSO-GA provides a slightly better
management cost for unweighted logistics network problems. In particular, PSO-GA
offers 4.71% better average cost-saving performance for weighted problems, and 4.79%
for unweighted.
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Despite the good result, this study has limitation in terms of distribution scale. Since
logistics is not restricted to the distribution between one city and another but also includes
the distribution between countries, this should be considered to obtain a broad perspective
in distribution processes globally. Having a positive result compared to existing studies,
the proposed model is expected to be improved in the future to signify the differences and
help researchers in reviewing the performance of logistics centers.

5. Conclusions

The selection of a logistic center requires a solution that can connect transportation
nodes and minimize the transportation cost between those nodes. This study proposes the
integration of a geographic information system with a hybrid metaheuristic algorithm. The
first step uses a GIS-based analysis, which provides spatial and network analysis using
hotspot analysis. The calculation uses Moran’s index considering z-score, p-value, and
Getis-Ord statistics. These values are important because they provide network priorities.
These priorities are determined using demand density values.

The next step is an analyzing process using the proposed PSO-GA method. The
parameters are driven from the previous GIS analysis. The proposed method provides
shorter solution times for both weighted and unweighted logistics networks compared
to other existing metaheuristics, such as BPSO and PSO. However, in solving larger and
higher levels of network complexity, the difference in solution times between PSO-GA
and BPSO is almost zero. The total cost difference between PSO-GA and BPSO is also
small, but the proposed PSO-GA does provide a comparatively lower total cost. PSO-GA
also demonstrates better performance in both weighted and unweighted logistics network
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solutions compared to PSO alone. Overall, PSO-GA is proven to be an efficient method for
logistics center location analysis compared to the existing optimization models.

In this study, Seoul, South Korea, was a test site for the analysis. In future studies,
much broader regions for logistic selection should be considered. Modification of the
proposed method is expected.
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