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Abstract: A simulation model can provide insight into the characteristic behaviors of different health
states of an actual system; however, such a simulation cannot account for all complexities in the
system. This work proposes a transfer learning strategy that employs simple computer simulations
for fault diagnosis in an actual system. A simple shaft-disk system was used to generate a substantial
set of source data for three health states of a rotor system, and that data was used to train, validate,
and test a customized deep neural network. The deep learning model, pretrained on simulation data,
was used as a domain and class invariant generalized feature extractor, and the extracted features
were processed with traditional machine learning algorithms. The experimental data sets of an RK4
rotor kit and a machinery fault simulator (MFS) were employed to assess the effectiveness of the
proposed approach. The proposed method was also validated by comparing its performance with
the pre-existing deep learning models of GoogleNet, VGG16, ResNet18, AlexNet, and SqueezeNet
in terms of feature extraction, generalizability, computational cost, and size and parameters of
the networks.

Keywords: computer simulations; actual systems; deep learning; transfer learning; autonomous
feature extraction; machine learning

1. Introduction

Rotating machinery is a common and critical type of mechanical equipment used in a
wide variety of modern industrial applications. Catastrophic failure of rotating machinery
may result in substantial economic loss and injury to personnel. Turbines are key rotating
parts of power plants and are susceptible to mechanical defects, such as unbalance [1,2],
misalignment [3,4] rubbing [5,6], oil whirl [7], and oil whip [8,9], during operation. The
presence of defects in turbines may cause performance degradation or even collapse of
the entire system if not rectified in a timely manner. To ensure safe and reliable operation
of rotating machinery, it is imperative that operators be able to promptly detect, isolate,
and quantify different faults using vibration signals obtained through accelerometers or
proximity sensors.

The most commonly used methods of fault diagnosis include model-based methods
and data-driven methods [10–13]. In model-based methods, the physics underlying the
system’s behavior are modeled and used for fault diagnosis. It is difficult or even impossible
to precisely model the behavior of complex systems, owing to the wide range of structural
complexities and environmental uncertainties that affect such systems [14]. Data-driven
methods use data obtained from sensors in the system to carry out fault diagnosis; these
methods do not require much knowledge about the underlying kinematics and physics of
the failure of the system [15,16]. In traditional data-driven fault diagnosis methods using
machine learning, the signals from sensors are usually subjected to preprocessing (e.g.,
noise removal, domain transformation (time to frequency), signal decomposition (empirical
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mode decomposition)), extraction of discriminative features (e.g., time and frequency
domain statistical features), selection of features that are more sensitive to damage (e.g.,
feature ranking), and processing of the selected features with supervised or unsupervised
machine learning algorithms [17]. The performance of machine learning algorithms for
fault diagnosis is heavily dependent on the set of discriminative features that is selected [18].
A set of statistical features may work well for one problem and may fail completely for
another problem in the same domain but on a different scale [19]. In general, there is no
optimized set of processing steps for fault diagnosis using handcrafted statistical features
from sensor data and machine learning algorithms. For instance, a data-driven diagnostic
strategy that uses simulation data may not be generalized to a dataset from an experimental
setup of the same problem without a complex process of model updating [20,21]. Moreover,
the extraction of damage-sensitive features is labor-intensive and requires considerable
diagnostic skills and domain expertise [22,23]. In addition, even an experienced diagnostic
expert may spend a long time optimizing the set of discriminative features to diagnose a
certain problem.

Deep learning has been successfully implemented for a variety of applications, such
as image classification, speech recognition, computer vision, medical diagnosis, finance,
marketing, and a multitude of other applications [23–26]. The inherent capability of deep
learning models to automatically extract features from raw data to describe the underlying
problem is one of their most celebrated benefits. Additionally, deep learning models
can deal with unstructured data in different formats (e.g., texts, images, pdf files, etc.)
to uncover the latent relationships between different data types and make important
predictions [27,28]. In general, data-driven methods that use deep learning algorithms
require sufficient data on the healthy and faulty states of the system for the development
of robust and effective fault diagnosis strategies. Although data on the healthy state of a
system is generally available in sufficient amounts, data on different defective states can be
limited or even completely unavailable due to the high cost associated with running the
machinery in the presence of defects. To make up for the dearth of failure data from different
defective states of expensive machinery, computer simulations can be employed to generate
a sufficient amount of healthy and faulty data using simplified mathematical models of
the actual machinery [29]. However, there are gaps between the data from simulations
and actual systems and a labor-intensive process is required to identify the parameters of
the actual system and tune those parameters to bring the response characteristics of the
simulation model closer to those of the actual system [30]. Additionally, despite the process
of parameter identification from the actual system, it is not guaranteed that a diagnostic
strategy developed from a simulation model will perform equally well for the detection,
isolation, and quantification of different defects in the actual system. In general, the better
a computer simulation represents the response behavior of an actual system, the greater its
computational cost, and vice versa.

One way to bridge the gap between computer simulation and actual systems while
keeping the simulation as simple as possible involves transfer leaning or cross-domain
knowledge transfer [31,32]. The fundamental idea of transfer learning is to leverage the
knowledge from a semantically related problem to solve a new problem with a different
domain distribution. In the general framework of transfer learning, a learning body learns
the required properties and parameters from a source task with a substantial amount of
labeled data and transfers/tunes those parameters to a target task with a limited amount
of labeled or unlabeled data [12,33]. Generally, the source and target data have different
statistical distributions [31,34]. Cao et al. [35] proposed transfer learning from a pretrained
deep convolutional neural network (CNN) for fault diagnosis of a gearbox with limited
data. The source domain consisted of a large number of labeled natural images and the
target domain comprised graphical images from the gearbox vibration signals. Xu et al. [36]
presented transfer CNNs for online fault diagnosis of bearings and pumps. In their work,
related datasets were used to train several offline CNNs, then their shallow layers were
transferred to an online CNN to improve its diagnostic performance. Yan et al. [37]
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studied the application of knowledge transfer for fault diagnosis in rotary machines while
considering the variation of working conditions, fault locations, types of machines, and
different faults. Hasan and Kim [38] studied transfer learning for fault diagnosis of bearings
under different working conditions. The only difference between the source and target tasks
was the speed of rotation. Li et al. [39] studied the fault diagnosis of rolling bearings via
deep convolution domain adversarial transfer learning. Zhang et al. [40] proposed a fault
diagnosis strategy for bearings under different working conditions using transfer learning
with neural networks. Huang et al. [41] presented a boosted algorithm (SharedBoost) to
explore transfer learning for multiple data sources and compared its results with those of
other transfer learning methods.

This paper attempted to employ simple simulation models of a rotor system to devise
a robust and autonomous diagnostic strategy for actual rotating machinery. First principles
were used to develop a simple two degree of freedom model of a rotor system with three
types of defects (unbalance, parallel misalignment, and point rubbing). The simple rotor
model was used to generate a large amount of vibration data by considering different
operation speeds and different defect severity levels. For robustness, the simulation data
was also contaminated with different levels of white Gaussian noise. The vibration signals
from the simulation models were transformed into scalograms [42,43], which were then
used to obtain a pretrained customized deep neural network. The pretrained network
was employed as a generalized autonomous feature extractor from the experimental data
sets of an RK4 rotor kit and a machinery fault simulator (MFS). The extracted features
were processed with several conventional machine learning algorithms and an optimum
classifier was identified. The performance of the customized deep learning network for
autonomous feature extraction is also compared to that of other existing pretrained models,
such as AlexNet [44], GoogleNet [45], ResNet [46], Vgg16 [47], etc. The proposed approach
is invariant to the number of health states in the simulation and experimental domains,
while no attempts are made to minimize the gap between the two domains.

2. Proposed Methodology

The limited nature of data from different defective states of actual machinery prohibits
the use of deep learning models for autonomous feature extraction and diagnostics. Devel-
opment of exact simulation models that replicate the response characteristics of the actual
machinery is often computationally expensive. Although simple simulation models can
provide insights into the characteristic behaviors of actual machinery in the presence of
defects and are less computationally expensive, they do not account for all the uncertainties
in the actual system. Transfer learning or cross-domain knowledge transfer could help
to leverage the advantages of simple simulation models for fault diagnosis of the actual
system. A schematic illustration of the basic idea of transfer learning in the context of the
current problem is shown in Figure 1.

A large amount of source data is required to train, validate, and test a deep learning
model with the highest possible degree of accuracy. That pretrained model can be used for
automatic feature extraction from a limited dataset for a target task, or its weights and bias
can be transferred to a limited target dataset using the concept of fine tuning [48,49]. In
our case, the parameters of the model trained on simulation data are employed to extract
high-level discriminative features from the target task of the experimental data. In transfer
learning, the types of defects in the source data and target data are not necessarily the
same [35,37,50]. A schematic illustration of the general workflow of the current work, which
involves employing simple simulation models to detect, isolate, and quantify different
types of defects in actual mechanical systems, is depicted in Figure 2.
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Herein, a simple simulation model was employed to generate a large amount of source
data for the representative health states of the source task. For robustness, the simulation
data was contaminated with different levels of white Gaussian noise. The noisy source
data was transformed into scalograms via MATLAB and the scalograms were used to train,
validate, and test a customized CNN.

The neural network trained on simulation data was used to automatically extract
discriminative features from the response scalograms of the experimental data of real
machines. The discriminative features were processed using traditional machine learning
algorithms, such as support vector machine (SVM), tree classifier, K-nearest neighbor
(KNN), etc. The results of the autonomous feature extraction via a customized neural
network trained on simulation data are also compared with the results of feature extraction
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via available pretrained deep learning models (e.g., Alexnet, GoogLeNet, VGG16) in terms
of classification accuracy, generalization, computational cost, hardware requirement, etc.
The proposed approach was validated for two datasets from an RK4 rotor kit by GE
Bently Nevada (1631 Bently Parkway South, Minden, Nevada USA 89423) and a machinery
fault simulator (MFS) by SpectraQuest (8227 Hermitage Road, Richmond, VA 23228 USA).
Although, in the current work, the proposed approach was employed for the diagnosis
of rotating machinery, this approach could be extended to the damage assessment of
laminated composites, civil infrastructures, industrial robots, gearboxes, and others, where
simple simulations could be developed to gain insights into the fault characteristics of the
actual systems.

2.1. Simulation Model and Source Data Generation

As described in the previous sections, developing a simulation model that precisely
matches the response characteristics of an actual system in the absence and presence of de-
fects is either too computationally expensive or completely impossible for complex systems.
Although simple simulation models of different types of actual machinery (e.g., a turbine
simplified as a shaft-disk system) have been used to gain insight into the characteristics
of various defects in the actual system, it is never a guarantee that the simulation models
can be employed to assess damage in the actual system using a conventional approach. To
bridge the gap between the actual systems and their simulated counterparts, transfer learn-
ing or cross-domain knowledge transfer provides a natural solution. However, transfer
learning requires a large amount of data from the source task. This section describes the
simple mathematical models of a shaft-disk system with different defects that were used
to generate a large dataset for the source task. The simple rotor system considered in this
work consists of a single disk of mass m mounted at the center of a shaft with length L, as
shown in Figure 3.
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The shaft is supported by two bearings at the ends; the bearings are linearized, ideally
with stiffness and damping. The support and/or foundation are assumed to be rigid. The
dynamic response of the shaft-disk system is represented by a fixed coordinate system at
the center of the disk. The system is characterized in terms of transverse displacements,
and the vibration along the axis of the shaft is ignored. For the isotropic properties of the
bearings at the two ends, and the disk mounted at the center of the shaft, the dynamics of
the system in Figure 3 can be defined by a time-dependent equation, as follows:

m
..
x(t) + cxT

.
x(t) + kxTx(t) = Fx(t)

m
..
y(t) + cyT

.
y(t) + kyTy(t) = Fy(t)

(1)

where x and y are the displacements at the disk along the x and y axes, respectively, m is
the mass of the disk, cxT and cyT, respectively, denote the total damping at the two bearings
along the x and y axes, and kxT and kyT denote the total stiffness at the two bearings along
the x and y axes, respectively. The terms Fx and Fy refer to the general forces acting on
the system along the x and y direction, respectively. The anisotropic supports can be
modeled using the approach proposed by Filippi et al. [51]. The characteristic behavior of
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the forcing functions acting on the system depends on the type of defect in the system. In
this work, three defects (unbalance, misalignment, and rubbing) of different magnitudes
were considered in the system shown in Figure 3 to generate a large amount of source data.
In practice, the pristine or healthy state of the rotating machinery has a small amount of
residual unbalance that cannot be completely removed despite efforts at balancing. This
small amount of residual unbalance is considered to be within the acceptable range (i.e.,
the system is considered to be healthy) if the amplitude of the vibration signals is within
a certain level of the root mean square (rms) as prescribed by the standards of ISO 7919-
2 [52–54]. Residual unbalance in the system exists when the center of mass is not coincident
with the center of rotation. The motion equation used to simulate the residual unbalance in
the rotor system is shown as follows in Equation (2):

m
..
x(t) + cxT

.
x(t) + kxTx(t) = merΩ2 cos(Ωt + α)

m
..
y(t) + cyT

.
y(t) + kyTy(t) = merΩ2 sin(Ωt + α)

(2)

where er is the eccentricity between the center of mass and center of rotation, α is the phase
angle of residual unbalance, and Ω is the rotational speed of the shaft.

The presence of unbalance, misalignment, and rubbing can be simulated as additional
forces along with the residual unbalance. The forcing functions for the three defects are
shown by Equations (3)–(5), respectively, as follows:

Fx_unb = maeaΩ2 cos(Ωt + β)
Fy_unb = maeaΩ2 sin(Ωt + β)

(3)

Fx_mis = FX2 cos(Ωt + ψ) + FX2 cos(2Ωt + ψ)
Fy_mis = FY2 sin(Ωt + ψ) + FY2 sin(2Ωt + ψ)

(4)

Fx_rub = −kr(x − δ0)H(x − δ0)
Fy_rub = f kr(x − δ0)H(x − δ0)

(5)

where ma is the added unbalance to the disk with an eccentricity of ea and phase angle of β.
The term Ω denotes the speed of rotation. The terms FXi and FYi (i = 1, 2) are the external
forces due to parallel misalignment with a phase angle of ψ. The term kr is the stiffness
of the axial rub-impact rod, f is the friction coefficient of between the two parts, H is the
Heaviside function, and δ0 is the gap between the rotor and stator. Further details on the
mathematical modeling can be found in Appendix A.

The mathematical models of unbalance (Equation (3)), misalignment (Equation (4)),
and rubbing (Equation (5)) were employed to generate the large amount of source data
necessary for the transfer learning strategy shown in Figure 2. The basic parameters of the
three simulation models are given in Table 1.

Herein, the added unbalance was simulated with a fixed value of eccentricity (ea) by
varying the value of the added mass from 1 to 20 g at increments of 2 g, misalignment was
simulated with a parallel misalignment along the y-bending angular flexibility rate axis
from 8 to 26 mm at increments of 2 mm, and rubbing was simulated by reducing the values
of clearance between the rotor and stator from 9.2 × 10−8 to 4.7 × 10−8 m at decrements of
0.5 × 10−8 m. For the three defects (unbalance, misalignment, and rubbing) of the shaft-disk
system, ten different levels of severity were considered, and each defective case of the
system was operated at 50 different speeds of rotation from 300 to 6810 rpm at increments
of 120 rpm. The steady-state vibration responses of the system were obtained along the x
and y axes at the disk location by solving the differential equation (Equations (3)–(5)) of
each defect via Newmark’s time integration algorithm [55]. The number of steady-state
responses for each defect with all severity levels was 20 × 50 = 1000 samples.
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Table 1. Material properties and parameters of the simulation models.

Model Parameter Value

General

Length of shaft (L) 1 m

Modulus of elasticity (E) 211 × 109 Pa

Modulus of Rigidity (G) 81.1 × 109 Pa

Diameter of shaft (ds) 0.01 m

Diameter of disk (d) 0.075 m

Thickness of disk (h) 0.0254 m

Density of shaft and disk (ρ) 7810 kg/m3

Mass of disk m = ρhπd2/4 0.8764 kg

Stiffness at bearing 1 along x-axis (kx1) 1.0 × 106 N/m

Stiffness at bearing 1 along y-axis (ky1) 1.0 × 106 N/m

Stiffness at bearing 2 along x-axis (kx2) 1.0 × 106 N/m

Stiffness at bearing 2 along y-axis (ky2) 1.0 × 106 N/m

Damping at bearing 1 along x-axis (cx1) 1000 Ns/m

Damping at bearing 1 along y-axis (cy1) 1000 Ns/m

Damping at bearing 2 along x-axis (cx2) 1000 Ns/m

Damping at bearing 2 along y-axis (cy2) 1000 Ns/m

Residual
Unbalance

Mass eccentricity (er) 0.000015 m

Phase angle (α) 0◦

Unbalance
Added masses (ma) (1:2:20) g

Phase angle (β) 0◦

Misalignment

Misalignment along x-axis (∆X1 = −∆X2) 0 m

Misalignment along y-axis (∆Y1= −∆Y2) (8:2:26) mm

Center of articulation (Z3) 0.024 m

Bending angular flexibility rate (Kb) 0.35 degree/Nm

Power of Motor (P) 700 Watt

Rubbing

Clearance between rotor and stator (δ0) (9.2: −0.5:4.7) × 10−8 m

Stiffness of axial rub-impact rod (kr) 1.2 × 107 Pa

Coefficient of friction (f ) 0.7

To account for noise in the signals from actual systems, all steady-state responses of
the three defects were added to white Gaussian noise with a signal-to-noise ratio (SNR) of
31 to 40 using the MATLAB function awgn (add white Gaussian noise to signal). The basic
mathematical form of the awgn function is shown by Equation (6).

Snoise = S + Z
Z ∼ N(0, µ)

(6)

where S is the original signal without noise and Z refers to the random noise having
normal/Gaussian distribution with zero mean and µ variance. Snoise is the output signal
contaminated with noise. Additional mathematical details of adding white Gaussian noise
can be found in the MATLAB documentation and the published literature, as shown in the
references [56–58]. The decision to use a range of SNR from 31 to 40 was made after looking
at the effect of different SNR values on the original signals obtained from simulations. The
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effect of different values of SNR on the original signal of 9 g unbalance at 300 rpm is shown
in Figure 4.
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simulation model.

As shown in Figure 4, it was observed that the SNR range of 31 to 40 accounts for the
higher and lower levels of noise in the source simulation data.

This noise contamination of the 1000 steady-state signals of each defect resulted in
20 × 50 × 10 = 10,000 samples for each defect. The steady-state response signals of the three
defects with and without noise were combined, resulting in 33,000 samples (11,000 samples
for each defect) that served as the source data from the simulation model.

2.2. Deep Learning Model for Simulation Data

The 33,000 response signals from the simulation model were transformed into scalo-
grams using continuous wavelet transform (CWT). A scalogram is essentially a time-
frequency representation of a time domain signal that is generated from the absolute
value of the CWT coefficients of that signal. The mathematical details regarding the trans-
formation of a time series to a scalogram using wavelet analysis can be found in the
references [59,60]. In this work, MATLAB was used to design a CWT filter bank with a
sampling frequency of 8500 Hz (the same as the signal acquisition frequency) and the de-
fault number of voices per octave (10 wavelet bandpass filters per octave) [61]. The analytic
Morse wavelet with the default values of the symmetry parameter and time-bandwidth
product was used in the filter bank [62–64]. More details on the parametric study of the ef-
fect of the parameters of wavelet transform can be found in the references [65–67]. The filter
bank was used to transform all the time series from the simulation models to scalograms.
Figure 5 depicts some samples of unbalance, misalignment, and rubbing scalograms for a
given speed of rotation out of 33,000 scalograms from the simulation data.
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Figure 5. Sample unbalance, misalignment, and rubbing scalograms in the simulation model at
a steady state of 3660 rpm with y-axis on a logarithmic scale; (a) Unbalance; (b) Misalignment;
(c) Rubbing.

The scalograms of the three defects have distinct characteristics in the time-frequency
domain. In general, the presence of unbalance, misalignment, and rubbing in a rotating
system are characterized by the presence of distinct frequency spectra at 1X (speed of
rotation) [68], frequency spectra at 1X and the integral multiples thereof (2X, 3X), and
frequency spectra at 1X and its sub- and super-harmonics depending on the speed of
rotation [69,70], respectively. The general characteristics of unbalance, misalignment, and
rubbing can be observed in the scalograms in Figure 5, where the presence of unbalance,
misalignment, and rubbing are shown by a distinct frequency component at the speed of
rotation, the speed of rotation and its integral multiples, and by super harmonics (dashed
red rectangle), respectively. In addition, note that the y-axis is a logarithmic scale.

The scalograms of the source data from the simulation were used to train, validate,
and test a convolutional neural network (CNN). Figure 6 depicts the detailed architecture
of the CNN used in the current work.
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In the CNN architecture, convolutional, batch normalization, and ReLU layers are
used to extract high-level features from the input scalograms, and max pooling layers are
employed to down-sample those features [35]. A dropout layer is inserted to minimize
the chances of overfitting during the training process [71]. The classification layer adopts
a SoftMax function [72,73] to classify the extracted features into three different classes:
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unbalance, misalignment, and rubbing in the shaft-disk system. In the current architecture,
the max pooling layers in the first, second, and fourth hidden layers were used to account for
invariances in the simulation scalograms. Since the pretrained model was to be employed
as a generalized feature extractor from the experimental data, the max pooling layers in
the third and fifth hidden layers were excluded to accommodate the local variations in the
autonomous features of the target task.

To train the CNN, the weights were randomly initialized and tuned from scratch using
Adam optimizer as an optimization function. The data set of 33,000 scalograms was split
into 80% training, 10% validation during the training, and 10% independent test datasets.
To avoid memory problems, the scalograms were loaded in the form of an image data store
using the function “imageDatastore” in MATLAB. Figure 7 shows the accuracy and loss for
the training and validation of the network.
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Figure 7. Training and validation of the customized deep learning model using simulation data.

Here, 80% of the data (training data) was used to train the CNN, while 10% of the data
(validation data) was used to evaluate the performance of the model at each iteration of the
training process. The training/validation accuracy refers to the classification/validation
accuracy for each mini batch of the training/validation dataset. The training/validation
loss indicates the performance of the model after each iteration of optimization and denotes
the sum of errors for each example of the training/validation data. From Figure 7, the
overlap between the training and validation accuracies and losses as well as the validation
accuracy of 91.5% imply that the network is optimally learning from the training data and
could be generalized to unseen instances.

To verify the generalization of the pretrained CNN to an unseen data set, the model
was tested on the remaining 10% of the dataset (testing data). Figure 8 shows the test
confusion matrix.
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As shown in Figure 8, the pretrained network successfully identified the presence
of misalignment and rubbing with 100% accuracy; however, it confused 29.2% instances
(321 observations) of unbalance with misalignment. The reason for the confusion between
unbalance and misalignment is that the misalignment model in Equation (4) only simulates
parallel misalignment along the y-axis, resulting in misaligned response characteristics
along the y-axis and unbalance response characteristics along the x-axis. For lower values
of added unbalance, the unbalance response from the misalignment model along the x-axis
and the actual added unbalance will be confused. Thus, 29.2% instances of unbalance were
confused with misalignment.

2.3. Experimental Data

Two experimental data sets were employed to validate the effectiveness of the pro-
posed approach. The first experimental vibration data for different health states of the
shaft-disk system was obtained from an RK4 rotor kit, a product of GE Bently Nevada
(1631 Bently Parkway South, Minden, Nevada USA 89423). The vibration signals were
obtained via proximity sensors for the following health states: normal (residual unbalance),
unbalance, rubbing, misalignment, and oil whirl. The experimental configuration of the
different health states of the rotor system is shown in Figure 9.
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Despite efforts to perfectly balance the system in the normal state, there existed a small
amount of unbalance in the system; the amplitude of the resulting vibration signal was
within the acceptable range of 10 µm of the root mean square (rms) level, as determined by
the ISO standard 7919-2.

The unbalance state was induced by attaching a 15 g screw to the disk (Figure 9d).
A special jig (Figure 9b) was employed to induce a parallel misalignment of 20 µm along
the y-axis at the coupling location. The rubbing state was simulated with a rubbing screw
(Figure 9c) that contacted the shaft when a 15 g mass was attached to the disk. The position
of the rubbing screw was adjusted such that the shaft contacted the rubbing screw once per
revolution at 3600 rpm (steady-state condition for all health conditions). An additional tool
kit (Figure 9e) was used to induce the oil whirl phenomenon at an oil pressure of 35 kPa.

Two sets of proximity sensors placed near each bearing were used to acquire the
vibration response signals for all the health states of the rotor kit; for each set of proximity
sensors, the two were installed at right angles along the x and y axes. To ensure repeatability
and account for experimental uncertainty, each health state was executed five times, and
the rotor kit was reassembled before each experiment. All five health states of RK4 were
studied at a steady-state condition of 3600 rpm. The dataset for all health states consisted
of 100 signals, with 20 signals for each case (4 signals for each health state × 5 executions
of each experiment).

The CWT filter bank designed for the simulation data was used to transform the
vibration signals from the RK4 rotor kit for all health states to scalograms without any
preprocessing. We aimed to gain insight into the characteristics of different defects and
compare the results with the outcomes of the simple simulations. Figure 10 depicts sample
scalograms of the experimental data for the different health states.
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3600 rpm: (a) normal; (b) unbalance; (c) misalignment; (d) rubbing; and (e) oil whirl (y-axis is a
logarithmic scale).

In Figure 10, some high-frequency contents are observed in the scalogram of the
normal state, implying either the presence of noise or some other small unavoidable defects
alongside the small unbalance in the system. Additionally, comparing the scalograms from
the experimental data with their simulated counterparts shows that the scalograms of the
experimental data demonstrate more complex behavior in terms of time-frequency content,
which confirms that extremely simple mathematical models cannot replicate the exact
dynamic response behavior of an actual system with and without defects. Furthermore,
the health states of normal and oil whirl were not considered in the source simulation data.
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In the next section, the CNN model pretrained on simulation data is used to automatically
extract discriminative features from the scalograms of experimental data.

2.4. Autonomous Feature Extraction Using Pretrained Models

In transfer learning, a model developed and trained for one task is reused as a start-
ing point for another related task, without expending much time or computational re-
sources [33]. As stated previously, the inner layers of a CNN autonomously extract high-
level features from the input images and use those features in the last fully connected and
classification layers to distinguish between different classes of input images. In the archi-
tecture of a pretrained network, some layers can be eliminated to retrieve the high-level
features from layer activation, and those features can be processed with traditional machine
learning algorithms, as depicted in Figure 11.
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Figure 11. Autonomous feature extraction via a pretrained deep learning model.

The automatically extracted high-level features can be used to train, validate, and test
traditional machine learning algorithms, such as SVM, tree classifier, KNN, etc. In this
work, the activations from the last max pooling layer of the CNN trained on simulation data
were used as discriminative features for the scalograms of the experimental data from the
RK4 rotor kit. The autonomously extracted features were processed with several different
machine learning classifiers; Figure 12 shows a comparison of the different classifiers
in terms of overall classification accuracy and area under the ROC (receiver operating
characteristic) curve. The ROC area is obtained by graphing the true and false positive rates
and its value implies a tradeoff between recall and fallout. An ROC area close to 1 indicates
that the model is able to achieve a high recall (true positive rate) while maintaining a low
fallout (false positive rate) [74].
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As shown in Figure 12, the minimum and maximum training accuracies were 72.5%
and 91.3%, for the naïve Bayes and KNN classifiers, respectively. However, the overall
training accuracy could be deceiving, and the model may have overfitted the training data.
The matrices of ROC area and prediction results on an independent test set would help to
fully explore the behavior of the supervised learning classifiers.

In Figure 12, SVM stands out as the optimum classifier in terms of training accuracy
(88.8%), ROC area (98%), and test accuracy (90%). Figure 13 shows the confusion matrix
of SVM on the 80% training dataset, created to gain further insight into the classification
performance of SVM.
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Figure 13. Training/validation confusion matrix of cubic SVM on the features automatically extracted
by the pretrained deep learning model from the original RK4 data.

During the training process, the classifier confused 6.2% of the instances of normal
as unbalance and misalignment, 12.5% of the instances of unbalance as normal, 6.2% of
the instances of unbalance as misalignment, 12.5% of the instances of misalignment as
unbalance, 6.2% of the instances of rubbing as misalignment, and 6.2% of the instances of
oil whirl as unbalance. Here, 6.2% and 12.5% instances refer to one and two observations,
respectively. According to the training confusion matrix, the loss of accuracy was mainly
due to the confusion of 12.5% instances of misalignment with unbalance and 12.5% instances
of unbalance with the normal state. The physical reason for this confusion is that only
parallel misalignment was induced along the y-axis, while the response along the x-axis is
purely due to residual unbalance that may coincide with the added unbalance. Similarly, a
possible explanation for confusing unbalance with the normal state is that the two share the
same response characteristics and only differ in amplitude. The domain and class invariance
of the proposed approach is verified from the high classification accuracy of the health
states of normal and oil whirl, which were not considered in the source simulation domain.

The results of the pretrained cubic SVM on the unseen test dataset are shown in the
form of a confusion matrix in Figure 14.
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As shown in Figure 14, 25% of instances of misalignment were confused with rubbing
and 25% of the instances of rubbing were confused with misalignment. The results of the
test confusion matrix are within an acceptable range, as 25% of instances is equivalent to
one observation out of four from the 20% test data.

Given the above discussion, the results of autonomous feature extraction via a CNN
that was pretrained on simulation data are physically reasonable. However, the limited
size of the training and the test datasets make it difficult to draw a general conclusion. One
option is to obtain more data from the testbed by repeating the experiments; however, the
experiments have already been repeated five times.

Another option is to employ the concept of virtual sensors around the shaft, as intro-
duced by Jung et al. [75], to artificially augment the data without performing any further
experiments. In this work, the concept of virtual sensors is adopted to synthetically aug-
ment the experimental data. The main idea of virtual sensors is to obtain synthetic vibration
signals from the vibration signals of the actual orthogonal proximity sensors by rotating
the cartesian coordinate system with respect to the z-axis, as depicted in Figure 15.
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The virtual signals are obtained from the actual signals using the following coordi-
nate transformation:

xVm = cos(m∆θ)xa + sin(m∆θ)ya
yVm = − sin(m∆θ)xa + cos(m∆θ)ya

(m = 1, 2, . . . ., M)
(7)
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where xVm and yVm are virtual signals along the rotated x and y axes, respectively. The terms
ax and ay refer to the actual signals obtained via the proximity sensors along the original
x and y axes, respectively, ∆θ is the angle of rotation for the coordinate system of virtual
signals, and M denotes the number of virtual signals. Owing to symmetry around the shaft,
the maximum number of virtual sensors is M = π/∆θ. As shown in a previous paper [75],
xVm is equal to yVm+M/2; hence, in this work only xVm was retained from Equation (6) for
synthetic data augmentation. To identify the optimum number of virtual sensors for the
current task, a parametric study was carried out for different numbers of virtual sensors
and the effect was evaluated terms of training/validation accuracy, ROC area, and the
number of instances per class as a result of data augmentation, as shown in Figure 16.
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Figure 16. Different numbers of virtual sensors and their effect on the classification performance and
size of dataset.

To obtain the results shown in Figure 16, the original and augmented datasets were
transformed into scalograms and processed via the pretrained CNN to extract discrimina-
tive features. A cubic SVM was employed to classify the extracted features into different
classes using 10-fold cross-validation. The results showed that the training and validation
accuracy could be increased to 99.5% by synthetic data augmentation using virtual sensors;
however, the increase in the evaluation matrices of training/validation accuracy and ROC
are relatively small compared with the increase in the size of the augmented dataset. Thus,
because of this tradeoff between the size of the augmented dataset and classification ac-
curacy, the number of virtual sensors was set at 12 for further analysis. To provide more
insight into the problem, the augmented data was split into 80% training and 20% test data.
Figure 17 shows the per class training/validation performance of the cubic SVM on the
training data in the form of a confusion matrix with 97.3% accuracy.
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from the pretrained deep learning model with 12 virtual sensors on RK4.

The cubic SVM was trained via 10-fold cross-validation on the synthetically augmented
data using 12 virtual sensors. In Figure 17, the higher true positive rate and the lower
false positive rate for each class demonstrate the optimum performance of the proposed
methodology on the experimental data set. Additionally, note that the per class classification
performance increased compared with the results from the data without augmentation
in Figure 13. To show that the vibration signals synthesized through virtual sensors did
not cause overfitting of the machine learning model, the cubic SVM pretrained on the
augmented data (synthesized and measured) was employed to make predictions on the
20% unseen test data. Here, the unseen data describes a data set not seen by the network
during the training/validation process. The pretrained model showed a test accuracy of
97.14%, with the confusion matrix shown in Figure 18.
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As shown in Figure 18, the test accuracy on the augmented data increased from 90%
to 97.14% in comparison with the performance on the measured data, which would not
have been possible in the case of overfitting due to synthesized signals.

To further explore the robustness of the proposed approach and its ability to bridge
the gap between simple computer simulations and actual experiments, the deep learning
model trained on simulation data was compared with pre-existing deep learning mod-
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els of GoogleNet, Vgg16, ResNet18, AlexNet, and SqueezeNet [76] in terms of feature
extraction. The pre-existing deep learning models are trained and optimized on natural
images and have fixed network architectures [31]. The image dataset that is commonly
employed to train the existing pretrained networks is usually a subset of the ImageNet
database [77]. For instance, Vgg16 is pretrained on approximately 1.5 million images with
41 layers, and Alexnet is pretrained on approximately 1.2 million images with eight layers
and 60 million parameters. To verify the performance of the customized deep learning
model for autonomous feature extraction from a limited amount of experimental data, the
performance of the cubic SVM on autonomously extracted features from the simulation
model was compared with the performance of Googlenet, Vgg16, Resnet18, Alexnet, and
Squeezenet, as shown in Table 2.

Table 2. Comparison of the customized pretrained simulation model with existing pretrained deep
learning models (12 virtual sensors and cubic SVM).

Training/Validation Accuracy % ROC Area% Testing Accuracy %

Simulation Model 97.5 100 97.14

GoogleNet 93.8 99 83.57

Vgg16 95 100 83.5

Resnet18 97.1 100 86.43

Alexnet 95.2 99 85.71

SqueezeNet 90.2 99 81.43

For the results in Table 2, the features extracted by all the deep learning models were
split into 80:20 for training and testing, respectively. The 80% training data was used
to train a cubic SVM through 10-fold cross-validation, and the resulting trained model
was employed to make predictions on the 20% test dataset. According to the results
shown in Table 2, all the deep learning models performed reasonably well in terms of
training/validation accuracy, ROC area, and test accuracy, which validates the performance
of the customized deep learning model.

The results shown in Table 2 bring up an obvious question: if the existing pretrained
models perform equally well on the limited experimental dataset, then why bother using a
simulation dataset and a customized deep learning model?

The motivation behind the customized deep learning model is that the existing pre-
trained networks (AlexNet, VGG16) have fixed architectures, a fixed number of parameters,
and limited flexibility for controlling the dimensions of the extracted discriminative fea-
tures, whereas the customized deep learning model offers more flexibility in terms of
network size, number of parameters, and dimensions of the extracted discriminative fea-
tures. Furthermore, as seen from the test classification accuracy of the simulation model
in Table 2, a deep learning model pretrained on source data that resembles the target data
of the transfer learning scheme would provide better generalizability. To further support
the effectiveness of the proposed approach, the autonomous feature extraction through a
customized deep learning model for the data of 12 virtual sensors was compared with the
feature extraction through the pre-existing deep learning models in terms of size of the
network, parameters of the network, and computational time, as shown in Table 3.
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Table 3. Comparison of customized deep learning model with pre-existing deep learning models.

Name Size of Network (Bytes) Number of Network Parameters Computational Time (sec)

CPU * GPU **

Simulation Model 631,037 139,587 4.542 1.65

GoogleNet 29,670,809
(191.7%)

6,698,552
(192.2%)

25.66
(139.8%)

2.55
(42.7%)

Vgg16 554,895,306
(199.5%)

138,357,54
(199.6%)

149.47
(188.2%)

6.33
(117.2%)

Resnet18 47,156,446
(194.7%)

11,694,312
(195.2%)

23.56
(135.3%)

2.33
(34.1%)

Alexnet 245,283,524
(198.9%)

60,965,224
(199.0%)

10.14
(76.3%)

1.86
(12.12)

SqueezeNet 5,232,394
(156.9%)

1,235,496
(159.4%)

17.59
(117.9%)

1.89
(13.3%)

* CPU: Intel i7-4790 with 32 GB RAM, ** GPU: NVIDIA GeForce RTX 2080 Ti.

In Table 3, the percentage value in each cell is the percentage of the difference between
the value for the customized deep learning model and that of a pre-existing deep learning
model. One can observe that the customized deep learning model with relatively simple
architecture outperformed the pre-existing deep models developed and trained by experts
with a massive amount of training data.

In addition, as seen from the computation time, the problem-specific customized
deep learning model has more potential for practical implementation with less hardware
requirements than pre-existing deep learning models. Furthermore, in the framework of
transfer learning, the input data to the pretrained models must be of the same size as that
of the original data used during the pretraining of the network (e.g., image size, number
of channels etc.); resizing a data set as per the requirement of pre-existing deep learning
models may remove significant information in terms of the image size reduction or image
size increment. However, such issues could be easily handled with a customized deep
learning model specifically designed, trained, and transferred for a given engineering
problem as achieved in the current work.

In the previous discussion, the experimental data set from RK4 rotor kit consisted of
five health states at a steady state speed of 3600 rpm and a single severity level of each
health state. To further verify the robustness of the proposed approach, a more extensive
data set from SpectraQuest’s machinery fault simulator (MFS) [78] kit was employed.
In this work, five health states (normal, horizontal misalignment, unbalance, outer race
fault in bearing, and rolling element fault in bearing) with different speeds of operation
(49 speeds for each health state) and different severity levels (two severity levels) of each
health state were considered. Furthermore, the bearing defects were studied in the presence
of a 6 g and 35 g unbalanced mass. A detailed discussion of the data set can be referred
to in reference [79] and it is available for download at the website in reference [80]. The
vibration signals from the MFS were transformed into scalograms using the same filter
bank as used for the data from the simulation models and RK4 rotor kit. The deep learning
model pretrained on simulation data was employed to extract discriminative features from
the scalograms of the experimental data from the MFS kit and SVM was employed to
classify those features into different classes. The SVM classifier was trained through 10-fold
cross-validation and Figure 19 shows its training/validation confusion matrix on the 90%
training data with a classification accuracy of 97.8%.
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Figure 19. Training/validation confusion matrix of SVM on automatically extracted features through
the pretrained deep learning model from the data of the MFS kit.

To verify that the SVM did not overfit the training data, Figure 20 shows the testing
performance in the form of a confusion matrix on the 10% independent test data with
97.31% accuracy.
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learning model from the data of the MFS kit.

In Figure 20, the tags should be interpreted as follows: HM 0.5: horizontal misalign-
ment of 0.5 mm; HM 20: horizontal misalignment of 20 mm; UB 10: unbalance with 10 g
mass; UB 25: unbalance with 25 g mass; Nor: normal; BRE 35U: bearing with rolling
element fault and 35 g unbalance mass; BRE 6U: bearing with rolling element fault and
6 g unbalance mass; BOR 35U: bearing with outer race fault and 35 g unbalance mass; and
BOR 6U: bearing with outer race fault and 6 g unbalance mass.

The results show that the model can distinguish different health states and their
severity levels with a minimum accuracy of 94.6% for UB 10 and a maximum accuracy of
99.3% for BRE 6U. The misclassification results are within the acceptable range. The high
accuracy of the model on the features extracted through the simulation model shows that
the model is robust to different speeds of operations (49 different speeds for each health
state) and that the extracted features are only sensitive to the presence of defects in the rotor
system. Additionally, the high accuracy on the bearing faults in the presence of different
unbalance loads confirms the robustness of the model to different loads. Furthermore,
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the target domain class invariance of the customized deep learning model is verified
from the high accuracy on the bearing faults, which were not considered in the source
simulation data.

From the test confusion matrix of Figure 20, the high accuracy of 97.31% on the 10%
independent test data shows that the SVM model pretrained on the discriminative features
of the deep learning model did not overfit the training data. The essence of the current work
is that a domain invariant generalized feature extractor developed from simple simulations
can accommodate the gap in the response characteristics and new health states in the target
domain in a supervised learning framework.

3. Conclusions

This work proposed a domain and class invariant generalized feature extractor using
a supervised learning framework of transfer learning. A source simulation domain with
three health states was employed to detect, isolate, and quantify five health states in the
target experimental domain without minimizing the gap in the response characteristics of
the two domains. The source domain was comprised of the simulation model of a few rep-
resentative health states of the target domain, and simulation models were not required for
all prospective health states of the actual target system. The proposed methodology relies
on transfer learning, where a customized deep learning model is trained, validated, and
tested on a substantial set of simulation data, and then the pretrained model is employed
to autonomously extract discriminative features from a small experimental target dataset.
This work also discussed the synthetic augmentation of the limited experimental data
using virtual sensors, where the output from the virtual sensors was defined in terms of
the actual sensors using the concept of coordinate transformation. Synthetic augmentation
of the experimental data enhanced the performance of the proposed approach in terms
of training/validation accuracy (from 88.8% to 99.5%), test accuracy (90% to 97.14%), and
ROC area (from 97% to 100%). The effectiveness of the proposed approach was validated
by comparing its results with the pre-existing deep learning models of GoogleNet, VGG16,
ResNet18, AlexNet, and SqueezeNet in terms of training, testing, generalization, size of the
network, parameters of the network, and computational time. The current approach was
found to perform relatively better in terms of generalizability and computation cost with
more flexibility for a given engineering problem.

The proposed approach autonomously extracts discriminative features from the
vibration-based scalograms of a limited experimental dataset and eliminates the need
for labor-intensive hand-crafted statistical features. In addition, the source simulation
signals and target experimental signals are directly transformed into scalograms using
a single filter bank that eliminates the need for complex preprocessing. The generalized
autonomous discriminative features are robust to variations in the operating conditions,
severity levels of different health states, and scale of the source and target domains. This
work could be extended to assess faults in laminated composites, gearboxes, industrial
robots, civil infrastructures, etc.
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Appendix A

To simulate the added unbalance in the system, which represents unbalance that
is commonly encountered in practice, a small mass of magnitude ma is attached at an
eccentricity of ea and phase angle of β to the disk, causing a harmonic centrifugal force
of magnitude ma × ea × Ω2 along the x and y axes of the system when the system rotates
at speed Ω. The motion of the system in the presence of added unbalance is expressed
as follows:

m
..
x(t) + cxT

.
x(t) + kxTx(t) = merΩ2 cos(Ωt + α) + maeaΩ2 cos(Ωt + β)

m
..
y(t) + cyT

.
y(t) + kyTy(t) = merΩ2 sin(Ωt + α) + maeaΩ2 sin(Ωt + β)

(A1)

Misalignment is another common defect in rotating machinery. Misalignment in the
coupled machine shafts generates reaction forces in the coupling [4]. In this work, the
Gibbons [5] model was adopted to simulate the presence of misalignment in the rotor-disk
system of Figure 3. A schematic of the Gibbons model of parallel misalignment is shown in
Figure A1 [81,82].
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where Kb is the bending angular flexibility rate of the flexible coupling and Tq is the torque 
of the rotor shaft, which is calculated in terms of motor power P and speed of rotation Ω, 
as given by Equation (A3). 
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Figure A1. Schematic of the Gibbons parallel misalignment model. Reprinted with permission from
ref. [82]. Copyright 2021 Elsevier.

Here, Z1 and Z2, respectively, denote the centerlines of the driver and driven shafts,
which are offset by ∆Y along the vertical direction and by ∆X along the horizontal direction.
The term Z3 denotes the coupling center of articulation; MX, MY, and MZ are the three
moments; and FX, FY, and FZ are the three reaction forces. The moments and forces exerted
by coupling on the driver and driven shafts are shown by Equation (A2).

θ1 = sin−1(∆X1/Z3), θ2 = sin−1(∆X2/Z3)
φ1 = sin−1(∆Y1/Z3), φ2 = sin−1(∆Y2/Z3)

MX1 = Tq sin θ1 + Kbφ1, MX2 = Tq sin θ2 − Kbφ2
MY1 = Tq sin φ1 − Kbθ1, MY2 = Tq sin φ2 + Kbθ2,

FX1 = (−MY1 − MY2)/Z3, FX2 = −FX1
FY1 = (MX1 + MX2)/Z3, FY2 = −FY1

(A2)

where Kb is the bending angular flexibility rate of the flexible coupling and Tq is the torque
of the rotor shaft, which is calculated in terms of motor power P and speed of rotation Ω,
as given by Equation (A3).

P = Tq × Ω (A3)
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The moments and forces of Equation (A2) appear as periodic forces with 1Ω and
2Ω components, and the equation of motion in the presence of parallel misalignment is
modified as follows:

m
..
x(t) + cxT

.
x(t) + kxTx(t) = merΩ2 cos(Ωt + α) + FX2 cos(Ωt + ψ)

+FX2 cos(2Ωt + ψ)
m

..
y(t) + cyT

.
y(t) + kyTy(t) = merΩ2 sin(Ωt + α) + FY2 sin(Ωt + ψ)

+FY2 sin(2Ωt + ψ)

(A4)

where ψ is the phase angle. In addition, note that, besides the misalignment forces, resid-
ual unbalance is present in the system, as shown by the first term on the right side of
Equation (A4).

To simulate the rubbing phenomenon between the rotor and stator, it is assumed that
a single rub-impact occurs at the disk location, as shown by the schematic in Figure A2.
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where the terms FxR and FyR denote the nonlinear forces along the x and y axes, respec-
tively, due to the single rub-impact between the rotor and stator and are expressed as 
follows [83]: 

( ) ( )
( ) ( )

δ δ
δ δ

= − − −

= − −
0 0

0 0

xR r

yR r

F k x H x

F fk x H x
 (A6)

where kr is the stiffness of the axial rub-impact rod, f is the coefficient of friction between 
the rotor and stator, and H is the Heaviside function, which is expressed as follows: 

( ) δ
δ

δ
 <− =  ≥

0
0

0

0
1

if x
H x

if x
 (A7)

References 
1. Sudhakar, G.; Sekhar, A.S. Identification of Unbalance in a Rotor Bearing System. J. Sound Vib. 2011, 330, 2299–2313. 
2. Jain, J.R.; Kundra, T.K. Model Based Online Diagnosis of Unbalance and Transverse Fatigue Crack in Rotor Systems. Mech. Res. 

Commun. 2004, 31, 557–568. 

Figure A2. Schematic of a single rub-impact between the rotor and stator.

It is assumed that there is a small gap of δ0 between the rotor and stator. The rub-
impact occurs when the axial displacement of the shaft due to unbalance is larger than δ0.
The equation of motion in the presence of a single-rub impact is given by Equation (A5):

m
..
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.
x(t) + kxTx(t) = merΩ2 cos(Ωt + α) + FxR(x, y)

m
..
y(t) + cyT

.
y(t) + kyTy(t) = merΩ2 sin(Ωt + α) + FyR(x, y)

(A5)

where the terms FxR and FyR denote the nonlinear forces along the x and y axes, respectively,
due to the single rub-impact between the rotor and stator and are expressed as follows [83]:

FxR = −kr(x − δ0)H(x − δ0)
FyR = f kr(x − δ0)H(x − δ0)

(A6)

where kr is the stiffness of the axial rub-impact rod, f is the coefficient of friction between
the rotor and stator, and H is the Heaviside function, which is expressed as follows:

H(x − δ0) =

{
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