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Abstract: In this paper, an adaptation method for adjusting the scaling parameters of an unscented
Kalman filter (UKF) is proposed to improve the estimation performance of the filter in dynamic
conditions. The proposed adaptation method is based on a sequential algorithm that selects the
scaling parameter using the user-defined distribution of discrete sets to more effectively deal with the
changing measurement distribution over time and avoid the additional process for training a filter
model. The adaptation method employs regularized optimal transport (ROT), which compensates
for the error of the predicted measurement with the current measurement values to select the proper
scaling parameter. In addition, the Sinkhorn–Knopp algorithm is used to minimize the cost function
of ROT due to its fast convergence rate, and the convergence of the proposed ROT-based adaptive
adjustment method is also analyzed. According to the analysis results of Monte Carlo simulations, it
is confirmed that the proposed algorithm shows better performance than the conventional algorithms
in terms of the scaling parameter selection in the UKF.

Keywords: regularized optimal transport (ROT); scaling parameter adaptation; Sinkhorn–Knopp
algorithm; unscented Kalman filter (UKF); stability analysis on UKF

1. Introduction

In recent years, analysis of the state variables estimation of a dynamic system has
played a central role in a variety of research areas such as navigation, target tracking,
etc. [1–7]. Thus, filtering approaches for estimating the state variables were researched to
improve the estimation performance in the case of a nonlinear system and non-Gaussian
noise [8–10]. These methods can be classified into two categories: derivative approxima-
tions and derivative-free approximations [11]. The filtering based on derivative approx-
imation replaces the nonlinear functions in the system description by derivative-based
expansions such as the Taylor or the Fourier–Hermite series expansions [6]. The extended
Kalman filter (EKF) is one of the most widely used derivative approximation methods
based on first order linearization. However, the EKF can produce unstable filters in cases
when local linearity is violated. Thus, derivative-free approximations based on differential
polynomial interpolations, such as an unscented transform (UT) and various numerical
integration rules, were recently studied for nonlinear systems [12]. The unscented Kalman
filter (UKF) is a representative filtering method of derivative-free approximations that
employs selected sigma-points which are propagated through a known nonlinear system
model and measurement model. Some recent works on the UKF have used statistical
regression instead of Taylor series linearization to increase the filter performance [13–15].

In the UKF, the proper positioning of the sigma points is an essential process for reduc-
ing the UT approximation error in dynamic situations. Various algorithms of the UKF have
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been researched on adjusting set volumes according to system dynamics with the fixed scal-
ing parameter in the sigma point [16–20]. The authors proposed the adaptive UKF attempts
to adaptively estimate the means and covariances of both process and measurement noises
in the paper [21]. The article [22] is a moment-matching-based adaptive UKF. However,
the results of recent works have indicated that the spread positions of the sigma points
can be adjusted by the scaling parameter [23–28]. In the recent paper [29], the adaptation
method of the scaling parameter using a random search technique for maximizing posterior
probability (MAP) is applied to simultaneous localization and mapping (SLAM). Besides,
adaptive UKF is applied to SLAM with adjustment of the scaling parameter for maximizing
the likelihood (ML) function in the paper [30]. Similarly, the authors proposed ML as the
criterion for the adaptation of the scaling parameter, and the proposed algorithm is applied
to iterative multiple UKF for estimating the state of charge for lithium-ion batteries [31].
Furthermore, the adaptation of the scaling parameter using model-based optimization
methods [14,15,32–34] leads to an improvement in the estimation performance as compared
with the case in which the fixed recommended scaling parameter is used. However, the
adaptation methods of the scaling parameter [27,28] may have a UT approximated error
when the measurement model changes over time because the predictive measurement
moments are calculated by the distribution in a fixed, pre-determined form of the mea-
surement model. Although the model-based tuning method is performed off-line, thus
incurring no extra cost for the filter during the run time, these methods require a training
sequence for tuning the UT parameters, such as training a Gaussian process model.

In this paper, to more effectively deal with the change of the measurement distribution
in time and avoid the additional process for training a filter model, the proposed algorithm
is designed with regularized optimal transport (ROT), which compensates for the error of
predicted measurement with the current measurement values. It is based on the sequential
algorithm that selects the scaling parameter using the user-defined discrete set of possible
values. The convergence of the proposed ROT-based adaptive adjustment method is also
analyzed in this paper, and we confirm that the estimation error of the UKF with the
adaptive scaling parameter remains bounded under some assumptions. ROT minimizes
the cost function of transporting between a source probability distribution and the desired
probability distribution using a transport map [35–37]. Further, the cost function is regular-
ized by an entropic term to improve the relaxation matching between the two sample sets.
Besides, the Sinkhorn–Knopp algorithm [38] is used to minimize the cost function of ROT
due to its rapid convergence rate.

The rest of this paper is organized as follows. Section 2 presents a brief review of the
UKF and its recommended scaling parameter. In Section 3, the adaptive scaling parameter
adjustment algorithms are introduced, and the modified adaptive adjustment method
using ROT is proposed. Furthermore, the stochastic stability of the proposed algorithm is
analyzed. The performance analysis is carried out through Monte Carlo simulations, with
the results shown in Section 4. Finally, the concluding remarks are given in Section 5.

2. Unscented Kalman Filter

The main algorithm of the UKF is based on the structure of the Kalman filter, where
means and covariance matrices of filter state variables are recursively updated using
moment approximation methods [16,27]. However, in the UKF, predicted moments are
calculated by the UT. In the UT, a fixed number of sigma points that capture the desired
moments (means and covariance) of the distribution of the states is deterministically
selected [5]. The sigma points are then propagated with the nonlinear function, and the
moments of the transformed variable are estimated [5,9]. In this section, the general filter
structure of the UKF is briefly introduced.
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2.1. Structure UT and General Filter Structure

The discrete-time nonlinear system is considered as:

xk+1 = fk(xk) + wk (1)

zk = hk(xk) + vk (2)

where xk represents the state variable of the nonlinear system and zk refers to the mea-
surement at time k, respectively. Further, fk, hk are the system and measurement model,
respectively. wk, vk are the independent nonlinear system and measurement white noises,
respectively, of which the probability density functions (pdfs) are assumed to be the Gaus-
sian pdf with zero means and pre-designed covariance matrices (Qk and Rk, respectively).
In order to estimate the desired moments of the distribution of filter states, a matrix χ of
2n + 1 sigma vector χi is defined by the UT and written as follows [16]:

χ0 = x (3)

χi = x +
(√

(n + κ)Px

)
i
, i = 1, 2, . . . , n (4)

χi = x−
(√

(n + κ)Px

)
i−n

, i = n + 1, n + 2, . . . , 2n (5)

where x is the mean vector of xk, Px is the covariance matrix of xk, and n is the dimension
of xk [16]. The corresponding weights are:

ω0 =
κ

n + κ
, ωi =

κ

2(n + κ)
(6)

Sigma points χi are used in the nonlinear transformation hk, yielding:

ςi = hk(χi), i = 0, 1, 2, . . . , 2n (7)

Finally, the approximated moments zk are expressed by:

zk ≈
2n
∑

i=0
ωiςi,

Pzk ≈
2n
∑

i=0
ωi(ςi − zk)(ςi − zk)

T + Rk

(8)

Using the definition of the UT, the time update and measurement update processes of
the UKF are obtained [16]. According to the process of the UKF, the position of the sigma
points is determined by the estimated moments and the scaling parameter, which influences
the accuracy of the UT approximation [27]. Thus, the appropriate scaling parameter should
be selected to improve the estimation performance.

2.2. Selection of Scaling Parameter

The scaling parameter, which determines the positions of the sigma points, needs to
be appropriately selected to improve the estimation performance of the UKF [27,28]. In
previous works, the recommended setting of the scaling parameter has been proposed as:

κ = 3− n (9)

To maintain the positive semi-definition of the filter parameter κ should be selected as
zero for n > 3 (following the cubature Kalman filter (CKF) [8]). When the recommended
scaling parameter is selected, the fourth-order term of the UT approximation error, which
is only defined when the measurement model is nonlinear [27], is eliminated.



Sensors 2022, 22, 1257 4 of 17

According to previous works [25–28], in some cases, the remaining terms may cause
greater error than when the fourth-order term of the UT approximation error is removed.
Thus, the scaling parameter can be defined as a design parameter depending on the
functions in the filter state and measurement equations, characteristics of the noise, and
operating point on the estimated moments.

Several studies have investigated the selection of the proper scaling parameter of the
UKF, taking both an online approach [25–28] and an offline approach [23,24]. However, the
offline approach for the selection of the scaling parameter causes performance degradation
when it is applied to the dynamic system. Any change of the operating point in the dynamic
situation requires a new training procedure for selecting the proper scaling parameter
because the UT approximation error and selection of the scaling parameter depend on
the estimated state statistics [27]. Thus, for selecting the scaling parameter in this paper,
we focus on the online approach. In the next section, the conventional scaling parameter
adjustment methods based on the online approach and the proposed scaling parameter
adjustment method are introduced.

3. Scaling Parameter Adjustment Method

In general, the adaptive method for adjusting the scaling parameter is based on
selecting the parameter that achieves the highest value of the criterion within a candidate
set of scaling parameters [28]. Besides, the adaptive method is initiated between the time
update process and the measurement update process of the UKF. This section briefly
introduces pdf-based criteria, which use likelihood or posterior probability with predicted
states′ moments [28]. However, approaches employing likelihood or posterior probability
may cause a large UT approximation error when the measurement model changes over
time because only the predicted values of filter states are used, with reduced emphasis on
the current measurement values. Thus, a moment-based criterion based on the innovation
of the filter can serve as an alternative criterion for a time-varying measurement model [28].
In the case of moment-based criterion, measurement noise has a significant effect on the
criterion. Consequently, the moment-based criterion may not be suitable for adjusting the
scaling parameter when the measurement noise increases. Thus, in this paper, ROT [35–38]
is used to compensate for the error of predicted measurement with the current measurement
values to select the appropriate scaling parameter.

3.1. Conventional Adjustment

The criteria for adjusting the scaling parameter used in the previous work [28] can
be classified into two categories: pdf-based approach and moment-based approach. The
pdf-based criteria require the pdf of the state and measurement noise [28]. The pdf of the
predicted states is needed as well. Using likelihood function or posterior probability is a
representative method based on the pdf-based approach. In the first method, the optimal
scaling parameter is determined using the likelihood function as follows [27,28]:

κML
k = argmax

κ
p(zk|xk) (10)

If the predictive pdf and measurement pdf is assumed to be Gaussian, then the
likelihood is obtained as:

p(zk|xk) ≈ N
{

zk : z−k (κ), P−z,k(κ)
}

(11)

where N{} refers to Gaussian distribution (normal distribution) with mean z−k (κ) and
covariance matrix P−z,k(κ). z−k (κ) is the weighted sum of the predicted measurement points
which is obtained by:

z−k (κ) =
2n

∑
i=0

ωihk

(
χ−k,i

)
(12)
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In (12), ωi is the weight of the sigma points and hk

(
χ−k,i

)
is the transformation of

each sigma point, χ−k,i, through the nonlinear function, while the predicted covariance of

hk

(
χ−k,i

)
is expressed by:

P−z,k(κ) =
2n

∑
i=0

ωi

(
hk

(
χ−k,i

)
− z−k (κ)

)(
hk

(
χ−k,i

)
− z−k (κ)

)T
+ Rk (13)

Equation (10) show the selected scaling parameter, which achieves the maximum
value of the likelihood function within a candidate set of scaling parameters. Besides,
the measurement information is only used in the criterion, and the information on the
state dynamics is ignored. Thus, the criterion depends on the quality of the measurement
information in a real situation. To extract the information from the known state dynamics,
a posterior probability based criterion is used, presented as follows [28]:

κMAP
k = argmax

κ
p
(

xk

∣∣∣zk
)

(14)

where zk = {z1, z2, . . . , zk} and the posterior probability is decomposed into likelihood
function and prior probability according to Bayes′ rule. The prior probability denotes the
information of the state dynamics. If the likelihood function and prior probability are
assumed to be Gaussian, then the posterior probability can be obtained as follows:

p
(

xk

∣∣∣zk
)

∝ p(zk|χk)p
(
χk

∣∣∣zk−1
)

≈ N
{

zk : z−k (κ), P−z,k(κ)
}

N
{

xk : x−k (κ), P−x,k(κ)
} (15)

where x−k (κ) =
2n
∑

i=0
wifk

(
χ+

k−1,i

)
, fk() is the system model and

P−x,k(κ) =
2n
∑

i=0
ωi

(
fk

(
χ+

k−1,i

)
− x−k (κ)

)(
fk

(
χ+

k−1,i

)
− x−k (κ)

)T
+ Qk, Qk is the system noise

covariance. Neither adaptive selection using likelihood nor posterior probability is suitable
for selecting the correct scaling parameter when the measurement model changes over
time or when the measurement is obtained using a dynamic situation because aside from
the current measurement values, the adaptive selection methods only use predicted states′

moments. Thus, in previous work [28], an alternative selection of the scaling parameter
using a moment-based criterion was proposed. The moment-based criterion is based on
the innovation of the filter, which refers to the difference (zk) between the measurement
and predicted measurement and can be expressed as [28]:

κMNMPES
k = argmin

κ

[
zk(κ)

TP−1
zk

zk(κ)
]

(16)

In the case of different variances of individual measurement, the covariance of the
measurement prediction error can be used to normalize the innovation square as expressed
in (16). However, a moment-based criterion is sensitive to changes in measurement noise.
Consequently, an incorrect scaling parameter may be selected when the measurement
noise increases.

3.2. Regularized Optimal Transport Based Adjustment

Before explaining the proposed adaptive method, a brief review of ROT is presented.
Optimal transport is proposed to minimize the cost function for transport between a source
probability distribution µ and the desired probability distribution ν using a transport
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map [35–37]. In the case of discrete measures through a finite number of samples, two
distributions can be written as:

µ = ∑
i

piδxi , ν = ∑
j

qjδzj (17)

where δxi , δzj are the Dirac at locations xi, zj, respectively. Further, pi, qj are the probability
masses associated with the i and jth sample, respectively, belonging to the condition:
∑Nx

i=1 pi = ∑Nz
j=1 qj = 1. The source and desired samples are expressed as x = [x1, . . . , xNx ]

T

and z = [z1, . . . , zNz ]
T , respectively. The set of probabilistic couplings between these two

distributions can then be considered as the set of doubly stochastic matrices, S defined as:

S(p, q) =
{
π ∈ RNx×Nz ; π1 = p, πT1 = q

}
(18)

where 1 is an N dimensional vector of ones, and p, q are data set of the probability masses
explained in (17) (p = [p1, p2, . . . , pNx ]

T , q = [q1, q2, . . . , qNz ]
T).

The Kantorovitch formulation is used to obtain the optimal transport π∗ as follows:

π∗ = argmin
πo∈S

{
∑
i, j

πijcij

}
(19)

where cij is the cost function matrix related to the energy needed to move a probability
mass from the source to the desired samples. In general, the cost is chosen as the Euclidian
distance between the two samples sets as follows: cij = ‖xi − zj‖2. However, optimal
transport has a high computational load if the data dimension increases. In order to address
the problem and improve the relaxation matching between the two sample sets, the optimal
transportation problem can be regularized by an entropic term [37]. Finally, the regularized
cost function can be timeously minimized using the Sinkhorn–Knopp algorithm [38], and
ROT π∗γ can then be calculated as:

π∗γ = diag(v)Mdiag(u) (20)

where v ∈ RNx×1, u ∈ RNz×1 are vectors, diag(•) refers to the diagonal matrix, and
Mij = exp

(
−cij/γ

)
. In addition, γ is the regularization parameter, which is the pre-

designed parameter for weighting the cost. The vectors can be computed by Sinkhorn′s
fixed-point iteration (Nrth iteration number) as follows:

uNr =
{

pi/(MvNr−1)i
}

, vNr =

{
qj/
(

MTuNr

)
j

}
(21)

In this paper, the error between the Nz of current measurements (zNz
k ) and the predicted

measurements′ points (
~
z
−
k ) is compensated using ROT. The whole process of ROT is

expressed in Table 1. The complexity of the ROT is O(N log N) which is already analyzed
in [37] (N is the dimension of the input vector).

In this process, when multiple measurements (zNz
k ) are taken at each time sequence,

the value q should be updated every epoch in order to reflect the time-varying distribution
of the measurements. In this way, it is possible to easily solve by clustering a measurement
dataset using Fuzzy C-means clustering [39,40] and giving a weight for setting the q
based on the distance from the clustering center′s value. The weights are set using the
user-defined exponential function and can be set to an appropriate value reflecting the
characteristics of the system to which the algorithm is applied.



Sensors 2022, 22, 1257 7 of 17

Table 1. Pseudocode of the regularized optimal transport.

Input: Measurements : zNz
k =

{
z1

k , z2
k , . . . , zNz

k

}
Predicted measurement points set

(~
z
−
k = hk

(
χ−k
)
)

Sigma points′ weight vector (ωk) using (6)
Regularization parameter (γ )

Output: Compensated point set of predicted measurement,
~
z
+
k

Revalued weights,
~
ωk

Initialization
1 v0 = 1, v0 ∈ RNx

Marginal values calculation
2 p = Nzωk, q = 1, q ∈ RNz

Clustering and updating q in the measurement update
M calculation
3 Mij = e−γ‖zi

k−z̃−k,j‖
2

, M ∈ RNz×Nx

Vectors calculation using (21) : uk = uNr , vk = vNr

Optimal map calculation
4 πk = diag(vk)Mdiag(uk)

5 ~
z
+
k =

~
z
−
k πk

6 ~
ωk = 1

Nz
πk1

In addition, the calculation of the vectors should be performed by Sinkhorn′s fixed-
point iteration to obtain the correct vectors. Using the output values of ROT, the scaling
parameter is adjusted as:

κROT
k = argmax

κ
p
(~

z
+
k : E

[~
z
+
k

]
, var

[~
z
+
k

])
(22)

where the expected value and covariance value of the compensated predicted measurement
can be obtained as:

E
[~
z
+
k

]
=

2n

∑
i=0

ω̃k,i z̃+k,i (23)

var
[~
z
+
k

]
=

2n

∑
i=0

ω̃k,i

(
z̃+k,i − E

[~
z
+
k

])(
z̃+k,i − E

[~
z
+
k

])T
(24)

If the measurement pdf is assumed to be Gaussian, the compensated pdf can be
rewritten as:

p
(~

z
+
k : E

[~
z
+
k

]
, var

[~
z
+
k

])
≈ N

(~
z
+
k : E

[~
z
+
k

]
, var

[~
z
+
k

])
(25)

In general, it is not possible to identify a closed-form of an optimal solution to the
criteria in (10), (14), and (22). Thus, to find a solution to the criteria, the numerical method
needs to be used. While many numerical methods can be used to find the solution to the
maximization of the likelihood and posterior probability, the grid method [28] is applied
to identify the optimal solution to the criteria in this paper because the search area of the
scaling parameter is narrow. In the grid method, the criterion used to find the solution is
evaluated at the grid of the points in a feasible interval. The point with the maximal value
is then selected and considered to be the recommended value of the scaling parameter.
Although the simple structure of the grid method allows for its application to any algorithm,
it increases the computational load on the filter. To reduce the computational costs, the
adaptive selection of the scaling parameter based on the grid method is only performed
when the measurement dramatically changes. The optimal scaling parameter selection of
the UKF does not affect reducing the UT approximated error when the measurement model
is close to the linear model.

Thus, simple logic is implemented to control the activation of adaptive adjustment
logic for the scaling parameter. The logic is based on detecting whether the measurement
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model is close to the linear model within and around the predictive mean [28]. If such
a characteristic is detected, the adaptation is skipped, and the recommended scaling
parameter is used. While several methods can be used to measure the nonlinearity of the
function, the simple technique based on the residual value of the weighted least squares
method [28] is used in this paper to detect the nonlinearity of the measurement. The
whole process of the proposed algorithm is summarized in Table 2, and its computational
complexity is O

(
N3)(N is the dimension of the state variables).

Table 2. Pseudocode of the proposed algorithm.

Input:
[
x+k−1, P+

k−1

]
(k−1 step estimates)

Output:
[
x+k , P+

k
]

(k step estimates)

UKF prediction:
[
x−k , P−k , z−k , S−k

]
= UKF_prediction

(
x+k−1, P+

k−1

)
1 Sigma points calculation
2

{
χ+k−1

}
0
= x+k−1

3
{
χ+k−1

}
j
= x+k−1 +

(√
(n + κ)Px

+
k−1

)
j
, j = 1, 2, . . . , n

4
{
χ+k−1

}
j
= x+k−1 −

(√
(n + κ)Px

+
k−1

)
j−n

, j = n + 1, . . . , 2n

5 Weight calculation

6 ω0 = κ
n+κ , ωj =

κ
2(n+κ)

7 Prediction values calculation
8 χ−k = f

(
χ+k−1

)
9 x−k =

2n
∑

j=0
ωj
{
χ−k
}

j, P−k =
2n
∑

j=0
ωj

[{
χ−k
}

j − x−k
][{
χ−k
}

j − x−k
]T

Scaling parameter adjustment:

10
~
z
+
k = ROT

(
zNz

k ,
~
z
−
k , ωk, γ

)
written in Table 1

11 κROT
k = argmax

κ
p
(~

z
+
k : E

[~
z
+
k

]
, var

[~
z
+
k

])
in (23)

UKF update :
[
x+k , P+

k
]
= UKF_update

(
x−k ,

^
z
+

k

)
12 Sigma points recalculation with κROT

k (the process in 1~4)

13 Weight recalculation with κROT
k (the process in 6)

14 Prediction values recalculation with κROT
k (the process in 8~9)

15 Measurement prediction

16 z−k =
2n
∑

j=0
ωj

{~
z
−
k

}
j
, S−k =

2n
∑

j=0
ωj

[{~
z
−
k

}
j
− z−k

][{~
z
−
k

}
j
− z−k

]T

17 Px,y k =
2n
∑

i=0
ωi

[{
χ−k
}

i − x−k
][{~

z
−
k

}
i
− z−k

]T

18 Update values calculation

19 Kk = Px,y k
(
S−k
)−1

20 x+k = x−k + Kk
(
zk − z−k

)
, P+

k = P−k −KkS−k KT
k

3.3. Convergence of UKF with Adaptive Scaling Parameter

In this section, an analysis of the stability of the UKF with an adaptive scaling parame-
ter is performed based on the results of previous studies [17,41]. The error of state variables
and measurements are defined, respectively.

x−k = Fkx+k−1 + wk (26)

zk = Hkx−k + vk (27)
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where the estimation error is defined as x+k = xk −
^
x
+

k (after measurement update of

state variable estimation), and the prediction error is written by x−k = xk −
^
x
−
k . Fk =

∂ fk(x)
∂x

∣∣∣
x=

^
x
−
k

, Hk =
∂hk(x)

∂x

∣∣∣
x=

^
x
−
k

are Jacobian matrices.

In the case of the UKF with an adaptive scaling parameter, if the scaling parameter
changes during the process of the adjustment algorithm (that is, the location of the sigma
point in the UKF changes), the prediction error of state variable and measurement are also
changed simultaneously. To deal with the changes in the errors induced by the relocation
of the sigma points, an instrumental diagonal matrix αk = diag{α1, α2, · · · , αn} for the
error of state variables and βk = diag{β1, β2, · · · , βNz} for the error of measurements are
added to (26) and (27) as follows, which reflects the effect of the relocated sigma points on
the predicted errors in state variables and the residual of measurements [41].

x−k = αkFkx+k−1 + wk (28)

zk = βkHkx−k + vk (29)

where αk refers to the compensation values of the difference between true state variables and
approximated state variables using the UKF with adaptive scaling parameter, particularly
including state estimation error according to changes in the scaling parameter (κ). In
addition, above, (28) and (29) are valid only when there are additional errors in the filter
models, respectively.

In (26), the predicted error is defined, and it is written in detail as follows:

x−k = xk −
^
x
−
k

= xk −
2n
∑

i=0
ωi fk(χi)

∣∣∣∣
xk=

^
x
+

k−1

= xk −ω0 fk

(
^
x
+

k−1

)
−

n
∑

i=1
ωi fk

(
^
x
+

k +
(√

(n + κ)Px

)
i

)
−

2n
∑

i=1
ωi fk

(
^
x
+

k−1 −
(√

(n + κ)Px

)
i−n

)
(30)

Let
(√

(n + κ)Px

)
i
= ∆xi and take the Taylor series expansion of the nonlinear

transformation of f (x), then the above equation can be derived as:

x−k = xk − fk

(
^
x
+

k−1

)
+ n

n+κ fk

(
^
x
+

k−1

)
−

n
∑

i=1

n
2(n+κ)

fk

(
^
x
+

k−1 + ∆xi

)
−

n
∑

i=1

1
2(n+κ)

fk

(
^
x
+

k−1 − ∆xi

) (31)

= xk − fk

(
^
x
+

k−1

)
−

n

∑
i=1

1
n + κ

{
D2

∆xi

2!
fk +

D4
∆xi

4!
fk + · · ·

}
(32)

In (31), the Taylor series expansion of fk

(
^
x
+

k−1 + ∆xi

)
= fk

(
^
x
+

k−1

)
+ D∆xi

fk +
D2

∆xi
2! fk +

D4
∆xi
4! fk + · · · and Dm

∆xi
fk = (∆xi•∇x)

m fk(x)
∣∣
xk=

^
x
+

k−1

=

{
Nx
∑

j=1
∆xi• ∂

∂xj

}m

fk(x)|
xk=

^
x
+

k−1

.
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Finally, in (32), xk − fk

(
^
x
+

k−1

)
≈ Fk

¯
x
+

k−1 and the rest of the terms are modeled by a

function of the scaling parameter.

f k(κ) =
n

∑
i=1

1
n + κ

{
D2

∆xi

2!
fk +

D4
∆xi

4!
fk + · · ·

}
(33)

Then, the predicted error has the relationship between αk and scaling parameter κ,
as follows:

x−k ≈ Fkx+k−1 − f k(κ) = αkFkx+k−1 + wk (34)

αk = I−
(

f k(κ) + wk

)(
Fkx+k−1

)T(
Fkx+k−1x+k−1

TFT
k

)−1
(35)

where I is the Nx × Nx identity matrix. Likewise, the relationship between βk and κ can be
obtained like the above process (from (27) to (35)). For convenient analysis of the stability
of the UKF with the adaptive scaling parameter, approaches used in previous works [17,41]
are employed to simplify the error expression. In addition, some assumptions are held for
verifying the boundedness of the estimation errors in the UKF.

There exist real constants which are related to the system model and measurement
model written in (1) and (2):

fmin, fmax, hmin, hmax, qmin, qmax, pmin, pmax, Rmax > 0 (36)

αmin, αmax, βmin, βmax, Tκ > 0 (37)

such that the following bounds on matrices of filter models are satisfied for every time
index, k as follows:

f 2
minI ≤ FkFT

k , h2
minI ≤ HkHT

k , ‖Fk‖ ≤ fmax (38)

‖Hk‖ ≤ h, qminI ≤ Q∗k , Rk ≤ rmaxI (39)

where ‖‖ is matrix norm.
According to (33), the value f k(κ) is related to the power series of n + κ and error

covariance, Px as well as the partial differential of the system model, Dm
∆xi

, using the
predicted state variable, x̂+k−1, at each time step. Among these values, the influence of the
scale parameter, κ on the amount of f k(κ) increases with the order of the power series (m).
Thus, the boundary of the f k(κ)

′s value is approximately set to ‖ f k(κ)‖ ≤ Tκ , and finally,
the boundary of αk and βk is:

‖αk‖ ≤
√

n

∣∣∣∣∣1−
(
Tκ +

√
qmax

)√
Pmax

fmaxPmax

∣∣∣∣∣ = αmax, ‖βk‖ ≤ βmax (40)

The relationship between Tκ and κ, while it will depend on the system model and the
estimated value, is generally proportional.

The predicted error covariance matrix of state variables, P−k , is defined as follows:

^
P
−

k = [αkFk(I−KkβkHk)]
^
P
−

k−1[αkFk(I−KkβkHk)]
T + Q∗k (41)

where Q∗k = Qk +αkFkKkRk(αkFkKk)
T + δPk and δPk refer to the error between the ideal

error covariance matrix and the unscented transformed error covariance matrix [41].
The weighted error square of state variables is defined as:

ek
(
x−k
)
=
(
x−k
)T
(

^
P
−

k

)−1

x−k (42)
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Using the above two equations, the expectation of the weighted error square is ob-
tained by:

E
{

ek
(
x−k
)∣∣∣x−k−1

}
=
(
x−k
)T

[αkFk(I−KkβkHk)]
T

(
^
P
−

k

)−1

×[αkFk(I−KkβkHk)]x
−
k

+E

vT
k [αkFkKk]

T

(
^
P
−

k

)−1

[αkFkKk]vk

∣∣∣x−k−1


+E

wT
k

(
^
P
−

k

)−1

wk

∣∣∣x−k−1



(43)

According to the results of previous works [17,41], the expectation of the weighted
error square is bounded as:

E
{

ek
(
x−k
)∣∣∣x−k−1

}
≤[

1 + qminI
(amax fmax+amax fmaxKmaxβmaxhmax)

2−pmax

]−1
ek
(
x−k
)

+K2
maxa2

max f 2
maxqmax Nx

pmin
+ rmax Nz

pmin

(44)

If the coefficient of ek
(
x−k
)

is replaced with 1− λ and the last term is substituted with
an arbitrary positive value µ, (42) can be rewritten as:

E
{

ek
(
x−k
)∣∣∣x−k−1

}
≤ (1− λ)ek

(
x−k
)
+ µ

E
{

ek
(
x−k
)∣∣∣x−k−1

}
− ek

(
x−k
)
≤ −λek

(
x−k
)
+ µ

(45)

Finally, applying Lemma 2.1 of the previous work [42] to (49), the stochastic process
of x−k is bounded. Therefore, it is shown that the estimation error of the UKF with the
adaptive scaling parameter remains bounded if the filter system satisfies some assumptions
listed in (36) to (40).

4. Simulation

The problem of bearings-only tracking arises in a variety of important practical ap-
plications, and it is often used for evaluating the performance of nonlinear filters [43].
The simple 2-D example describing the bearings-only tracking [27] is used to compare
the performance of the proposed UKF algorithm with that of the CKF [8], the iterated
Kalman filter (IKF) based on the UT [13,15], which has a method similar to that of the
proposed algorithm with linearization considered in the update step. In addition, the
UKF-AA algorithm [28–31], using the conventional scaling adjustment method mentioned
in Section 3.1, is also used to compare the performance of the proposed algorithm. The
system and measurement model are defined as:

xk+1 =

[
0.9 0
0 1

]
xk + wk (46)

zi
k =

{
z1

k , z2
k , . . . , zi

k

}
(47)



Sensors 2022, 22, 1257 12 of 17

p
(

zi
k

)
= N

(
tan−1

(
x2,k − sin(k)
x1,k − cos(k)

)
, Rk

)
(48)

where the filter state variables are the 2-D position xk = [x1,k, x2,k]
T , k = 1, . . . , Ns,

Ns = 500, Qk = E
[
wkwT

k
]
, Qk =

[
0.1 0.05
0.05 0.1

]
, Rk = 0.025, ∀k, and i is the number of

measurements of which the distribution p
(
zi

k
)

is assumed to be Gaussian with a mean

of tan−1
(

x2,k−sin(k)
x1,k−cos(k)

)
and variance of Rk. The initial values of the filter are set as follows:

x0 = [20, 5]T , P0 =

[
0.1 0
0 0.1

]
, i = 300. The candidate scaling parameter set is assumed

to be {0, 1, 2, 3, 4}. The performance of the filter is analyzed in terms of mean squared error
(MSE) using Monte Carlo simulations with 500 independent runs. Further, the averaged
normalized estimation error squared (ANEES) is also used to analyze the performance of
the proposed algorithm and is defined as:

ANEESk =
1

Ns

Ns

∑
j=1

((
xj

k −
^
x

j

k

)T((
P+

k
)j
)−1

(
xj

k −
^
x

j

k

))
(49)

ANEES provides an evaluation of a relative estimation error at the j-th Monte Carlo sim-
ulations (Ns is the number of total runs and is set to 500), and it evaluates a self-assessment
provided by each filter in the form of the covariance matrix of the estimation error.

Figure 1 show one target and observer trajectory of the Monte Carlo simulation. The
target moves from the right side to the left side during the first time and holds a static
position with a randomly varying vertical position during the remaining simulation time.
The trajectory of the target is plotted with asterisks, while the path of the observer is plotted
with dots. The dynamic model of the target, which is sensitive to changes in the scaling
parameter of the UKF, is based on the original paper of UKF-AA [28]. Besides, the circular
trajectory of the observer is designed to give a significant change in the measurement
values. The information set of direction between target and observer is obtained according
to the change of the observer′s position. Figure 2 refer to the estimation results of the
two-state variables and the expected value of measurement. These results are obtained in
the simulation case, as shown in Figure 1. The proposed algorithm accurately tracks the
target, although the measurement changes in the 0~50 (related to x1) and the 50–450 time
indexes (especially 100~150, 250~450 time related to x2). During these periods, the scaling
parameter adjustment logic is activated to reduce the UT approximated error, as shown in
Figure 3. In other periods, the detection algorithm of measurement nonlinearity suggests
that the behavior of the measurement is linear. Consequently, the scaling parameter is set
to the recommended scaling parameter, which is 1 in the case of two-dimensional states.

Figures 4 and 5 show the result of the MSE and the matrix norm of the error covariance
matrix, respectively. These figures are to facilitate the assessment of estimation consistency.
For verifying the performance, the proposed method is compared with various existing
methods. In the CKF [8], the scaling parameter is always set to zero. In the UKF-AA [28],
the conventional scaling parameter adjustment method is used in three types, which are the
maximization of likelihood (ML) [30,31], posterior probability (MAP) [29], and predicted
error square (MPES). Besides, the IKF is based on the UT [13,15], with linearization consid-
ered in the update step. Although the primary concept of this algorithm was implemented
for performance analysis, the detailed settings for an application to this system differed
from the original setting in the previous work [15]. The results of these figures show that
the proposed method has the smallest estimation error and that all the filters maintained
the estimate consistency.
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Figure 4. The MSE of each filter.

Table 3 show the MSE and ANEES of the Monte Carlo simulation for efficient per-
formance comparison. In Table 3, ROT refers to the ROT based proposed method, and
SP refers to the scaling parameter of the UKF. It is confirmed that the proposed algorithm
shows better performance compared with CKF, UKF-AA, and IKF because the proposed
scaling parameter selection algorithm based on ROT uses the predicted values of filter
states with the current measurement values so that the UT approximated error is reduced
when the measurement values change rapidly.
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Table 3. Comparison results of the filter performance.

Types CKF UKF-AA IKF Proposed

SP 0 ML MAP MPES ROT

MISE 5.973 5.400 5.370 5.901 4.079 3.876

ANEES 7.188 6.795 5.571 7.102 4.213 4.193

Considering that the proposed algorithm can be applied to other systems, relative
operating time and related parameters were summarized in Table 4 using a function
provided by the simulation program (MATLAB function, tic/toc used). In Table 4, total
operating-time refers to the time taken to process a sequence of a simulation, and scaling
parameter adjustment-time means the time it takes to adjust parameters during a sequence
of a simulation. The rate indicates the ratio of the scaling parameter adjustment-time to
total operating-time.

Table 4. Operating-time of the filter performance.

Types UKF-AA Proposed

SP ML MAP MPES ROT

Total operating-time (s) 0.0364 0.0381 0.0358 0.0406

Scaling parameter adjustment-time (s) 0.0208 0.0257 0.0193. 0.0280

Rate (%) 57.1114 67.5307 53.9106 68.9655

As a result of comparing the algorithm processing time, the parameter adjustment step
of the proposed method has an extended processing time. Thus, it is necessary to improve
the processing speed of the algorithm to apply it to a real system even if the proposed
method has the best estimation performance.

5. Conclusions

The UKF with a novel scaling parameter adaptation method using ROT is proposed to
improve the estimation performance of the UKF when the measurement changes rapidly. In
addition, the Sinkhorn–Knopp algorithm is used to minimize the cost function of ROT due
to its fast convergence rate and the relaxation matching between predicted measurement
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sets and received measurement sets. Monte Carlo simulations are performed to evaluate
the estimation performance of the proposed algorithm, and the results confirm that the
proposed algorithm performs better than the UKF with conventional scaling parameter
adaption methods. However, in order to apply the proposed algorithm to the actual
tracking system, it is necessary to study additional algorithms that can reduce the operation
time of the scaling parameter adaptation method, which occupies 69% of the operation time.
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