
Citation: Kim, Y.; Lee, H.

Deep-Learning-Based

Stream-Sensing Method for Detecting

Asynchronous Multiple Signals. Appl.

Sci. 2022, 12, 4534. https://doi.org/

10.3390/app12094534

Academic Editor: Douglas

O’Shaughnessy

Received: 30 March 2022

Accepted: 27 April 2022

Published: 29 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Deep-Learning-Based Stream-Sensing Method for Detecting
Asynchronous Multiple Signals
Yeongjun Kim 1 and Harim Lee 2,*

1 Department of Electrical Engineering, Ulsan National Institute of Science and Technology (UNIST),
Ulsan 44919, Korea; kimyj783@unist.ac.kr

2 School of Electronic Engineering, Kumoh National Institute of Technology, Gumi-si 39177, Korea
* Correspondence: hrlee@kumoh.ac.kr

Abstract: In a disaster site, terrestrial communication infrastructures are often destroyed or mal-
functioning, and hence it is very difficult to detect the existence of survivors in the site. At such
sites, UAVs are rapidly emerging as an alternative to mobile base stations to establish temporary
infrastructure. In this paper, a novel deep-learning-based multi-source detection scheme is proposed
for the scenario in which an UAV wants to estimate the number of survivors sending rescue signals
within its coverage in a disaster site. For practicality, survivors are assumed to use off-the-shelf smart-
phones to send rescue signals, and hence the transmitted signals are orthogonal frequency division
multiplexing (OFDM)-modulated. Since the line of sight between the UAV and survivors cannot be
generally secured, the sensing performance of existing radar techniques significantly deteriorates.
Furthermore, we discover that transmitted signals of survivors are unavoidably aysnchronized to
each other, and thus existing frequency-domain multi-source classification approaches cannot work.
To overcome the limitations of these existing technologies, we propose a lightweight deep-learning-
based multi-source detection scheme by carefully designing neural network architecture, input and
output signals, and a training method. Extensive numerical simulations show that the proposed
scheme outperforms existing methods for various SNRs under the scenario where synchronous and
asynchronous transmission is mixed in a received signal. For almost all cases, the precision and recall
of the proposed scheme is nearly one, even when users’ signal-to-noise ratios (SNRs) are randomly
changing within a certain range. The precision and recall are improved up to 100% compared to
existing methods, confirming that the proposal overcomes the limitation of the existing works due
to the asynchronicity. Moreover, for Intel(R) Core(TM) i7-6900K CPU, the processing time of our
proposal for a case is 31.8 milliseconds. As a result, the proposed scheme provides a robust and
reliable detection performance with fast processing time. This proposal can also be applied to any
field that needs to detect the number of wireless signals in a scenario where synchronization between
wireless signals is not guaranteed.

Keywords: UAV-based rescue system; deep-learning-based system; asynchronous stream sensing

1. Introduction

According to [1], the statistical graph titled “Number of accident reports by type, 1970
to 2019” shows that natural disasters are on the rise. In the 20th century, large-scale natural
disasters steadily occurred, including the Great Earthquake in Haiti in 2010, the tsunami
caused by the Great East Japan Earthquake in Japan in 2011, and the Maria Hurricane in the
United States in 2017. These large-scale natural disasters inevitably result in a huge number
of casualties. To rescue more survivors and minimize the use of human and monetary
resources, it is very important to accurately detect the existence of survivors in a certain
coverage. Existing wireless infrastructures could be of great help in confirming the existence
of survivors. However, conventional wireless infrastructures are likely to be destroyed

Appl. Sci. 2022, 12, 4534. https://doi.org/10.3390/app12094534 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12094534
https://doi.org/10.3390/app12094534
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8758-3250
https://doi.org/10.3390/app12094534
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12094534?type=check_update&version=2

Appl. Sci. 2022, 12, 4534 2 of 24

or out of order at a disaster site, and thus it is necessary to develop a cost-effective but
powerful system that can detect the existence of survivors at such a site.

Due to its flexible operation capability and cost-effectiveness, UAVs can be a perfect
candidate for an autonomous survivor search system. Specifically, rescue UAVs can be
used for two purposes: (1) recovery, and (2) search and rescue. Recently, for the recovery
of the telecommunications infrastructure, several major telecommunications companies
such as AT&T and Verizon started to evaluate the possible benefits of using UAV base
stations [2,3]. These attempts have confirmed that UAV base stations can recover damaged
infrastructure costeffectively. In contrast, despite its high potential, there have been few
efforts using UAVs for survivor search and rescue purposes.

A problem that always arises in operating an UAV is the UAV’s power consumption.
If power is supplied by wire, there is no problem with the operating time, but the operating
radius is limited due to the power wire. It is exactly the opposite when UAVs are operated
through batteries.

Despite limited operating time, battery use is essential in a disaster site as a rescue
UAV has to investigate a large disaster area. To reduce the power consumption of battery-
powered UAVs, the payload should also be minimized. Therefore, a computationally
lightweight survivor-detection algorithm should be developed to avoid the use of high-end
companion computers, which are usually heavy and also consume a lot of power. Further-
more, since the global market size for small UAVs is expected to reach USD 22.55 billion by
2026 and to grow at a CAGR of 15.92% [4], it is more likely that survivor detection UAVs
will be small, with minimal payload.

To find survivors, an UAV can utilize a high-resolution camera to perform object-
detection algorithms. However, this method has the limitation that if survivors are obscured
by obstacles, an UAV cannot find them. Alternatively, it is possible to estimate the number
of survivors by obtaining communication history from the telecommunications companies.
However, as rescue time increases, this information becomes outdated, since survivors can
move around the disaster area, which can confuse rescuers. Therefore, there is a need for
a technology that can continuously update the number of survivors in real time without
being disturbed by obstacles.

Therefore, it is necessary to develop a lightweight and effective search scheme for
survivors. In this paper, we develop a survivor search system that consists of a machine
learning-based multi-source detection scheme that detects the number of simultaneously
transmitted signals from survivors’ mobile devices and a simple survivor discovery proto-
col. For the survivor discovery protocol, there is a challenge that an UAV should detect
the number of signals that are transmitted asynchronously. For the solution, a machine
learning-based asynchronous stream-sensing technique is proposed. The contribution of
this work is summarized as follows:

• Since the proposed scheme uses wireless signals from mobile devices of survivors,
our proposal is relatively unaffected by obstacles. Using an UAV that can freely fly
around the disaster area, rescuers can actively identify survivors, and the number of
survivors can be managed in real time.

• To confirm the necessity of developing an asynchronous stream-sensing scheme for
the case where an UAV uses Wi-Fi technology for a simple survivor discovery protocol,
it is shown that asynchronous transmission naturally occurs depending on the path
loss environment, the transmit power of the UAV, and the altitude of the UAV.

• We propose a deep-learning-based asynchronous stream-sensing scheme, which is
developed by combining different types of neural networks such as a stacked autoen-
coder network, an inception layer-based network, and a linear network.

• To train our network, a framework is proposed, which connects a MATLAB-based
simulator with a PyTorch-based network training code through the MATLAB-python
API. Through this framework, our proposed network is trained via MATLAB by
generating asynchronously transmitted signals generated in various situations in
real time. Moreover, the number of possible cases of wireless channel environments

Appl. Sci. 2022, 12, 4534 3 of 24

is almost infinite, and hence there is a limit to collecting training data in advance.
Without the limitation, our framework allows the neural network to be continuously
trained with various training data.

• Finally, extensive evaluation has proven that the proposed technique performs well
enough to be used in a disaster situation. It also shows that the performance is superior
to the existing mathematical techniques.

2. Related Works

Since its advent, deep learning has made remarkable progress in the theory and
practice of many fields of science and technology. In [5,6], deep learning was especially
powerful at extracting meaningful features from complex and diverse data that are difficult
to analyze. This strength has been demonstrated by achieving astonishing results in
computer vision [7], natural language processing [8], and audio-signal processing [9].

In recent years, several researchers have applied deep-learning technology to wireless
communication fields such as physical layer [10], modulation classification [11,12], channel
estimation [13], and decoding [14]. In addition, due to their powerful performance in
classification, some researchers have applied machine-learning neural networks to spec-
trum sensing [15–20]. To decide whether a channel is occupied by a primary user, the
work [15] adopted a basic neural network that stacks several linear layers. This method
used the energy values and likelihood ratio statistics as input. In [16], a convolution neural
network (CNN) was used using cyclostationary features and energy features as input.
In [17], the authors also exploited a CNN for spectrum sensing in cognitive radio. Unlike
[16], they considered covariance matrices of received signals as input. For the technique
based on orthogonal frequency division multiplexing (OFDM), the researchers in [18]
adopted a stacked autoencoder with basic linear layers. The proposed network used raw
time-domain signals as input, and then the extracted features were passed to the classifier
using logistic regression. To develop a context-aware cognitive radio, the authors in [19]
utilized the power of each fast Fourier transform bin as input of their neural network.
They verified the performance of machine-learning-based approaches using the software-
defined radio platform. The authors in [20] proposed an unsupervised deep-learning-based
spectrum sensing algorithm, while all the previous works in [15–19] proposed supervised
learning-based spectrum sensing algorithms. The aforementioned studies confirmed that
the powerful classification ability of neural networks can improve spectrum sensing perfor-
mance, and this improvement proved that neural networks can extract essential features
from signal samples.

The task of detecting the number of transmitted signals is more complicated than
spectrum sensing that detects the presence or absence of signals. There have been several
works that detected the number of signals [21,22]. The work [21] proposed two most com-
mon methods developed based on two famous information theoretic criteria: the Akaike
information criterion (AIC) and the minimum description length (MDL) criterion [23–26].
The performance of the MDL estimator was analyzed asymptotically in [22]. If there are
several observed received signal vectors, the optimal estimation on the number of sources
based on the maximum likelihood probability can be achieved by comparing the sample
covariance matrix obtained from the observed signal vectors and the ideal covariance
matrix. These methods may be utilized in commercial OFDM-based wireless technologies
such as Wi-Fi and LTE. However, when such detection schemes are adopted in OFDM-
based communications, there is an inherent limitation that all transmitted signals should be
synchronized from a cyclic prefix point of view. Therefore, these schemes will not work in
the asynchronous transmission situation where the cyclic prefixes of the transmitted signals
are not properly aligned. In other words, since synchronization between all transmitted
signals should be required in existing OFDM-based communications, there is no work to
develop a method for detecting asynchronously transmitted signals.

For a public safety network, 3GPP has standardized public safety-LTE (PS-LTE) [27].
PS-LTE is a technology that accommodates functions required for public safety communi-

Appl. Sci. 2022, 12, 4534 4 of 24

cation based on existing LTE technology. This supports functions such as group commu-
nication, device-to-device direct communication (D2D), proximity service, and network
survivability. However, these functions are primarily developed for situations where there
is surviving network infrastructure in a disaster area. Considering the variety of disaster
situations, it is necessary to develop a technology for scenarios where the communication
infrastructure has been completely destroyed.

In addition, deep-learning technology is applied to the field of UAV/drone detection
algorithms [28,29]. The work [28] developed a method to classify the types of drones,
called drone classification. For the scheme, the authors utilized millimeter wave (mmWave)
and a deep-learning network, which presents high drone-classification accuracy. The
authors of [29] proposed a deep-learning-based framework to detect malicious drones,
which outperforms existing state-of-the-art drone detection methods. However, our work
is different from drone-detection research. Using wireless signals, our proposed scheme
recognizes the number of devices around an UAV. Particularly, our novel deep-learning-
based scheme can detect the number of asynchronous wireless signals.

3. Preliminary

This section describes the definitions of synchronously transmitted signals and asyn-
chronously transmitted signals. Then, based on the limitations of UAVs, we explain why
asynchronous transmission is better than synchronous transmission in the disaster situation
that we considered in this work.

3.1. Synchronous and Asynchronous Transmissions

Figure 1a,b illustrate the examples of synchronous and asynchronous scenarios, re-
spectively. For these examples, a transmitted signal is generated using OFDM, which
is the most common modulation adopted in LTE and Wi-Fi [30,31]. Transmitted signals
consist of several OFDM symbols, each of which is composed of a cyclic prefix (CP) part
and a data part. In Figure 1a, all OFDM symbols are well aligned at the start of the cyclic
prefix parts, representing the scenario of synchronous transmission. In contrast, Figure 1b
illustrates the asynchronous transmission situation where all mobile devices start their
transmissions randomly.

In general, if the CPs of two transmitted signals overlap with each other, it can be said
that the two transmissions are synchronized. Figure 1c shows an example of overlapping
CPs. In Figure 1c, when a receiver starts to extract time-domain samples from a received
signal in the red region indicated by ‘(i)’ where two CPs overlap, two signals in the extracted
samples are synchronized due to the property of the CP. Therefore, the extracted samples in
the blue region marked with ‘(ii)’ have synchronized signals. On the other hand, as shown
in Figure 1d, if there is no overlap of the CPs, this is called asynchronous transmission and
synchronized signals cannot be extracted.

Figure 1e presents the case where synchronous and asynchronous transmission is
mixed in a received signal. The extracted samples of Device 1 and Device 2 are synchronized,
but those of Device 1 and Device 3 (or Device 4) are not synchronized. This means that
the transmitted signals in a received signal can or cannot be synchronized with other
transmitted signals. Therefore, the extracted samples from a received signal can be classified
into three cases: (1) samples of synchronous transmission, (2) samples of asynchronous
transmission, and (3) samples of a mixture of synchronous and asynchronous transmission.

In summary, perfectly synchronized signals cannot be obtained at a receiver if not all
of the CPs of transmitted signals overlap. Furthermore, even if there is a region where all
CPs overlap, synchronized signals cannot be obtained if a receiver does not start sampling
within the overlapping region. Therefore, the input of our proposed network can be a mix
of synchronous and asynchronous transmission and asynchronous transmission, as well as
synchronous transmission.

Appl. Sci. 2022, 12, 4534 5 of 24Appl. Sci. 2022, 1, 0 4 of 23

Device 1

Device 2

Device 3

Data part

Data part

Data part

Cyclic prefix

Cyclic prefix

Cyclic prefix

Data part

Data part

Data part

Cyclic prefix

Cyclic prefix

Cyclic prefix

Data part

Data part

Data part

Cyclic prefix

Cyclic prefix

Cyclic prefix

(a) synchronous transmission

Device 1

Device 2

Device 3

Data partCyclic prefix Data partCyclic prefix

Data partCyclic prefix Data partCyclic prefix

Cyclic prefix

Data partCyclic prefix Data partCyclic prefix Data partCyclic prefix

(b) asynchronous transmission

(c) The case where cyclic prefixes overlap

(d) The case where cyclic prefixes do not overlap

(e) The case where synchronous and asynchronous transmission is mixed

Figure 1. Example of CPs overlapping and not overlapping.

cation based on existing LTE technology. This supports functions such as group commu-
nication, device-to-device direct communication (D2D), proximity service, and network
survivability. However, these functions are primarily developed for situations where there
is surviving network infrastructure in a disaster area. Considering the variety of disaster
situations, it is necessary to develop a technology for scenarios where the communication
infrastructure has been completely destroyed.

In addition, deep learning technology is applied to the field of UAV/drone detection
algorithms [28, 29]. The work [28] developed a method to classify the types of drones,
called drone classification. For the scheme, the authors utilized millimeter wave (mmWave)
and a deep-learning network, which presents high drone classification accuracy. The
authors of [29] proposed a deep learning-based framework to detect malicious drones,
which outperforms existing state-of-the-art drone detection methods. However, our work
is different from drone detection research. Using wireless signals, our proposed scheme
recognizes the number of devices around a UAV. Especially, our novel deep-learning based
scheme can detect the number of asynchronous wireless signals.

3. Preliminary

This section describes the definitions of synchronously transmitted signals and asyn-
chronously transmitted signals. Then, based on the limitations of UAVs, we explain why
asynchronous transmission is better than synchronous transmission in the disaster situation
that we considered in this work.

3.1. Synchronous and asynchronous transmissions

Figs. 1(a) and 1(b) illustrate the examples of synchronous and asynchronous scenarios,
respectively. For these examples, a transmitted signal is generated by using OFDM, which

Figure 1. Example of CPs overlapping and not overlapping.

3.2. The Need for an Asynchronous Stream-Sensing Technique

In this subsection, we describe the need for an asynchronous stream-sensing technique
by introducing the UAVs’ limitations in synchronous transmission and by analyzing the
asynchronicity in transmission over Wi-Fi depending on the placement of users and various
pathloss models.

Limitations on the use of synchronous transmission for UAVs utilized for a sur-
vivor discovery purpose: To ensure synchronization between devices, a rescue UAV should
serve as a base station in LTE that is a representative synchronous communication and
utilizes a centralized synchronization process with several uplink channels [32,33]. That is,
a rescue UAV should carry all the equipment required for the synchronization procedure.
The equipment increases the overall load, which leads to an increase in the amount of
power the UAV consumes for hovering and moving. UAVs, unfortunately, have battery
limitations, and thus increasing power consumption will inevitably shorten the UAV’s
operating time. Moreover, the size of UAVs has been decreasing recently, which makes it
infeasible to mount a lot of equipment on small UAVs.

Despite the importance of uptime in a disaster situation, due to the heavy equipment
requirement, synchronous transmission can shorten the uptime of rescue UAVs that should
search the entire disaster area. Moreover, with the variety of UAV sizes, it is necessary to
develop a light survivor discovery technology that can be used regardless of the size of
rescue UAVs.

Asynchronicity in Wi-Fi transmission: This work considers a scenario in which a
rescue UAV and mobile devices transmit their signals using Wi-Fi, a lightweight wireless
technology compared to LTE (Note that commercial UAVs such as the DJI Phantom series
already use Wi-Fi).

Appl. Sci. 2022, 12, 4534 6 of 24

To determine the number of survivors, a rescue UAV sends a trigger message to collect
rescue signals from mobile devices. As soon as mobile devices receive the message, they
immediately begin sending rescue signals. The devices appear to be synchronized, but in
reality they cannot be synchronized.

Depending on the distance between an UAV and each mobile device, the arrival time
of the trigger message on each mobile device is different, and vice versa. If the difference
between the arrival times of the trigger message in two mobile devices is Tdiff, at the
UAV, the difference between the arrival times of rescue signals is 2 × Tdiff. That is, if
2× Tdiff < TCP is satisfied, where TCP is the time duration of a CP, the CPs of two rescue
signals can overlap. In Wi-Fi [34], TCP can be set to 0.2 µs, 0.4 µs or 0.8 µs, and thus Tdiff
should be less than 0.1 µs, 0.2 µs, or 0.4 µs for the synchronization. In other words, the
difference between the distances from two mobile devices to a rescue UAV must be less than
c× Tdiff where c is the speed of light. Hence, for each case, the maximum synchronization
distance is 30 m, 60 m, or 120 m, respectively.

To investigate whether asynchronous transmission can occur, we calculated the max-
imum distance that a trigger message can be delivered to a mobile device considering
various pathloss models: (1) Urban Micro (UMi), (2) Urban Macro (UMa), and (3) Rural
Macro (RMa) [35]. The maximum distance is considered for both line of sight (LOS) and
non-line-of-sight (NLOS). In this analysis, a trigger message is transmitted with the lowest
modulation and coding scheme, the minimum receiver sensitivity of which is −82 dBm on
Wi-Fi [31]. This analysis considers the transmission of a trigger message to be successful if
the signal strength at the time of receiving the trigger message is greater than −82 dBm.

Figure 2a presents the maximum distance for various hovering heights of UAVs with
a transmit power of 23 dBm. Under the LOS environment, the trigger message can be
delivered to mobile devices over more than 400 m for all pathloss models. In almost all
cases, the maximum distance is 600 m. That is, for all the path loss models, the maximum
distance is larger than 30 m. For UMa and RMa even in NLOS, the maximum distance
becomes greater than 120 m as the altitude of the UAV increases. Therefore, these results
confirm that asynchronous transmission can frequently occur.

Figure 2b shows the results only under the NLOS environment for various transmis-
sion powers and an UAV altitude of 25 m. The transmission power ranges from 22 to 36 dBm
for the outdoor scenario [36]. The maximum communication distance is larger than 30 m
for all the pathloss models. Moreover, for UMa and RMa, the maximum communication
distance is greater than 120 m in almost all cases.

Appl. Sci. 2022, 1, 0 6 of 23

10 15 20 25 30 35 40
Height of a rescue drone [m]

0

200

400

600

M
a

x
im

u
m

 d
is

ta
n

c
e

 [
m

]

UMi [LoS]

UMi [NLoS]

UMa [LoS]

UMa [NLoS]

RMa [LoS]

RMa [NLoS]

(a) With various heights of a UAV for a transmit power of 23 dBm

22 24 26 28 30 32 34 36

Transmit power of a drone [dBm]

0

100

200

300

400

M
a

x
im

u
m

 d
is

ta
n

c
e

 [
m

]

UMi [NLoS] UMa [NLoS] RMa [NLoS]

(b) With various transmission power at a UAV height of 25m

Figure 2. The maximum communication distance for various pathloss models.

To determine the number of survivors, a rescue UAV sends a trigger message for col-
lecting rescue signals from mobile devices. As soon as mobile devices receive the message,
they immediately begin sending rescue signals. The devices appear to be synchronized,
but in reality they cannot be synchronized.

Depending on the distance between a UAV and each mobile device, the arrival time
of the trigger message on each mobile device is different, and vice versa. If the difference
between the arrival times of the trigger message in two mobile devices is Tdiff, at the
UAV, the difference between the arrival times of rescue signals is 2 × Tdiff. That is, if
2× Tdiff < TCP is satisfied, where TCP is the time duration of a CP, the CPs of two rescue
signals can overlap. In Wi-Fi [34], TCP can be set to 0.2µs, 0.4µs or 0.8µs, and thus Tdiff
should be less than 0.1µs, 0.2µs or 0.4µs for the synchronization. In other words, the
difference between the distances from two mobile devices to a rescue UAV must be less than
c× Tdiff where c is the speed of light. Hence, for each case, the maximum synchronization
distance is 30 meters, 60 meters, or 120 meters, respectively.

To investigate whether asynchronous transmission can occur, we calculated the max-
imum distance that a trigger message can be delivered to a mobile device considering
various path loss models: (1) Urban Micro (UMi), (2) Urban Macro (UMa), and (3) Rural
Macro (RMa) [35]. The maximum distance is considered for both line-of-sight (LOS) and
non-line-of-sight (NLOS). In this analysis, a trigger message is transmitted with the lowest
modulation and coding scheme, the minimum receiver sensitivity of which is −82 dBm on
Wi-Fi [31]. This analysis considers the transmission of a trigger message to be successful if
the signal strength at the time of receiving the trigger message is greater than −82 dBm.

Fig. 2(a) presents the maximum distance for various hovering heights of UAVs with
a transmit power of 23 dBm. Under the LOS environment, the trigger message can be
delivered to mobile devices over more than 400 meters for all pathloss models. In almost
all cases, the maximum distance is 600 meters. That is, for all the path loss models,
the maximum distance is larger than 30 meters. For UMa and RMa even in NLOS, the
maximum distance becomes greater than 120 meters as the altitude of the UAV increases.
Therefore, these results confirm that asynchronous transmission can frequently occur.

Fig. 2(b) shows the results only under the NLOS environment for various transmit
powers and a UAV altitude of 25 meters. The transmit power ranges from 22 to 36 dBm for
the outdoor scenario [36]. The maximum communication distance is larger than 30 meters

Figure 2. The maximum communication distance for various pathloss models.

Appl. Sci. 2022, 12, 4534 7 of 24

In summary, we can conclude that it is necessary to develop a generally available asyn-
chronous stream-sensing technique. Through our analysis, even in the NLOS environment,
asynchronous transmission can occur frequently depending on the characteristics of the
disaster area, the altitude of the UAV, and the transmission power.

4. System Model

In Figure 3, our system model considers a disaster situation where all cell sites are
destroyed by a large-scale natural disaster, and thus all survivors are unable to use the
communication infrastructure. To quickly search for survivors, a rescue UAV equipped with
NR antennas is deployed in the disaster area. We assume that a mobile device with a single
antenna broadcasts a short rescue signal. The short signal consumes little power, and thus
allows survivors to use their device batteries as long as possible. Devices asynchronously
transmit their rescue signals. Both the rescue UAV and the survivors’ mobile devices utilize
OFDM to receive and transmit signals. Each device transmits Nsym OFDM symbols as a
rescue signal. In an OFDM symbol, the data part has NFFT time-domain samples, which
means that NFFT subcarriers are used for transmission. As a result, since our survivor
discovery system is based on OFDM and does not require any modification of the physical
layer on Wi-Fi, we can maintain backward compatibility with Wi-Fi. (That is, our proposal
just requires adding our survivor discovery protocol to the medium access control layer of
Wi-Fi, which could be achieved with a simple update).

Appl. Sci. 2022, 1, 0 7 of 23

Disaster Area

Communication is out of service

: Rescue signal: Rescue Drone

1

2
3

4

5

6

6 victims!

Simple victim
discovery protocol

ASensNet
�R ,

�eig

�I

Figure 3. Disaster scenario in which all cell sites are destroyed by a natural disaster.

Figure 4. Survivor discovery protocol.

for all the pathloss models. Moreover, for UMa and RMa, the maximum communication
distance is greater than 120 meters in almost all cases.

In summary, we can conclude that it is necessary to develop a generally available asyn-
chronous stream-sensing technique. Through our analysis, even in the NLOS environment,
asynchronous transmission can occur frequently depending on the characteristics of the
disaster area, the altitude of the UAV, and the transmission power.

4. System Model

In Fig. 3, our system model considers a disaster situation where all cell sites are
destroyed by a large-scale natural disaster, and thus all survivors are unable to use the
communication infrastructure. To quickly search for survivors, a rescue UAV equipped with
NR antennas is deployed in the disaster area. We assume that a mobile device with a single
antenna broadcasts a short rescue signal. The short signal consumes little power and thus
allows survivors to use their device batteries as long as possible. Devices asynchronously
transmit their rescue signals. Both the rescue UAV and the survivors’ mobile devices
utilize OFDM for receiving and transmitting signals. Each device transmits Nsym OFDM
symbols as a rescue signal. In an OFDM symbol, the data part has NFFT time-domain
samples, which means that NFFT subcarriers are used for transmission. As a result, since
our survivor discovery system is based on OFDM and does not require any modification of
the physical layer on Wi-Fi, we can maintain backward compatibility with Wi-Fi.2

Fig. 4 presents our simple survivor discovery protocol. To identify the number of
mobile devices around itself, the rescue UAV broadcasts a trigger message. When mobile
devices receive the message, they immediately begin to transmit rescue symbols. The
UAV then collects rescue signals for Nsym · Tsym, where Tsym is the duration of time of an
OFDM symbol. The transmitted rescue signals sent simultaneously by mobile devices
are superposed at the receiver. The rescue UAV executes our proposed asynchronous

2 That is, our proposal just requires adding our survivor discovery protocol to the medium access control layer
of Wi-Fi, which could be done with a simple update.

Figure 3. Disaster scenario in which all cell sites are destroyed by a natural disaster.

Figure 4 presents our simple survivor discovery protocol. To identify the number of
mobile devices around itself, the rescue UAV broadcasts a trigger message. When mobile
devices receive the message, they immediately begin to transmit rescue symbols. The
UAV then collects rescue signals for Nsym · Tsym, where Tsym is the duration of time of an
OFDM symbol. The transmitted rescue signals sent simultaneously by mobile devices
are superposed at the receiver. The rescue UAV executes our proposed asynchronous
stream-sensing scheme on the received signal to determine how many mobile devices
transmitted their rescue signals.

Appl. Sci. 2022, 12, 4534 8 of 24

Appl. Sci. 2022, 1, 0 7 of 23

Disaster Area

Communication is out of service

: Rescue signal: Rescue Drone

1

2
3

4

5

6

6 victims!

Simple victim
discovery protocol

ASensNet
�R ,

�eig

�I

Figure 3. Disaster scenario in which all cell sites are destroyed by a natural disaster.

Figure 4. Survivor discovery protocol.

for all the pathloss models. Moreover, for UMa and RMa, the maximum communication
distance is greater than 120 meters in almost all cases.

In summary, we can conclude that it is necessary to develop a generally available asyn-
chronous stream-sensing technique. Through our analysis, even in the NLOS environment,
asynchronous transmission can occur frequently depending on the characteristics of the
disaster area, the altitude of the UAV, and the transmission power.

4. System Model

In Fig. 3, our system model considers a disaster situation where all cell sites are
destroyed by a large-scale natural disaster, and thus all survivors are unable to use the
communication infrastructure. To quickly search for survivors, a rescue UAV equipped with
NR antennas is deployed in the disaster area. We assume that a mobile device with a single
antenna broadcasts a short rescue signal. The short signal consumes little power and thus
allows survivors to use their device batteries as long as possible. Devices asynchronously
transmit their rescue signals. Both the rescue UAV and the survivors’ mobile devices
utilize OFDM for receiving and transmitting signals. Each device transmits Nsym OFDM
symbols as a rescue signal. In an OFDM symbol, the data part has NFFT time-domain
samples, which means that NFFT subcarriers are used for transmission. As a result, since
our survivor discovery system is based on OFDM and does not require any modification of
the physical layer on Wi-Fi, we can maintain backward compatibility with Wi-Fi.2

Fig. 4 presents our simple survivor discovery protocol. To identify the number of
mobile devices around itself, the rescue UAV broadcasts a trigger message. When mobile
devices receive the message, they immediately begin to transmit rescue symbols. The
UAV then collects rescue signals for Nsym · Tsym, where Tsym is the duration of time of an
OFDM symbol. The transmitted rescue signals sent simultaneously by mobile devices
are superposed at the receiver. The rescue UAV executes our proposed asynchronous

2 That is, our proposal just requires adding our survivor discovery protocol to the medium access control layer
of Wi-Fi, which could be done with a simple update.

Figure 4. Survivor discovery protocol.

5. Learning-Based Asynchronous Stream Sensing
5.1. Input Data Generation

For our stream-sensing network, as in [17,20], we consider covariance matrices and
eigenvalues of an expected covariance matrix. Then, the following describes in detail how
the input data are generated.

For covariance matrices, we constructed four-dimensional (4D) matrices as input
data. As mentioned in Section 4, a received signal for Nsym · Tsym includes multiple rescue
signals that asynchronously overlap with each other. Since a rescue UAV is equipped
with NR antennas, it actually obtains NR received signals. Under a general fading environ-
ment, NR wireless channels from a mobile device’s antenna to NR rescue UAV’s antennas
are independent and all different, and thus, NR received signals are also different from
each other.

From NR received signals in the time domain, we extract input data as follows. In time
domain, for the r-th rescue UAV’s antenna, an UAV receiver extracts (NCP + NFFT)× Nsym
samples from a received signal. Note that the UAV receiver starts extracting time-domain
samples from the moment it detects a signal, the energy of which exceeds a certain
energy threshold. The extracted samples are divided into Nsym groups, each of which
has (NCP + NFFT) samples. From each sample group, NFFT samples are extracted from
the (NCP + 1)-th sample to the (NCP + NFFT)-th sample. By using the inverse Fourier
transform, the extracted time-domain samples are transformed to a frequency-domain
samples. For the r-th rescue UAV’s antenna, the extracted frequency-domain samples from
the i-th sample group are denoted as yr,i ∈ CNFFT×1. Based on yr,i, r ∈ [1, NR], i ∈ [1, Nsym],
we make di,s ∈ CNR×1 as

di,s = [y1,i(s), y2,i(s), . . . , yNR,i(s)]T, s ∈ [1, NFFT], (1)

where (·)T is the transpose operation, and yr,i(s) is the s-th element of yr,i, which corre-
sponds to a frequency-domain sample transmitted via the s-th subcarrier among NFFT
subcarriers. Hence, di,s is a vector that includes frequency domain samples transmitted via
the s-th subcarrier in the i-th sample group for all rescue UAV’s antennas. By using di,s,
we calculate a covariance matrix Di,s ∈ CNR×NR = di,s · (di,s)

H where (·)H is Hermitian
transpose. Finally, an input I ∈ CNR×NR×NFFT×Nsym is constructed as in Figure 5.

Note that by utilizing covariance matrices, the input data are similar to image data,
and we can exploit existing neural networks for image classification.

Since neural networks cannot handle complex values, we split the input data into
real input data and imaginary input data. Note that imaginary input data are obtained by
calculating absolute values of imaginary values. In practice, the magnitude of received
signals actually is very small (∼10−7), and thus we additionally conduct normalization.

Appl. Sci. 2022, 12, 4534 9 of 24Appl. Sci. 2022, 1, 0 8 of 23

Figure 5. Example of input data.

stream-sensing scheme on the received signal to determine how many mobile devices
transmitted their rescue signals.

5. Learning-based Asynchronous Stream Sensing
5.1. Input Data Generation

For our stream-sensing network, as in [17,20], we consider covariance matrices and
eigenvalues of an expected covariance matrix. Then, the following describes in detail how
the input data is generated.

For covariance matrices, we constructed four-dimensional (4D) matrices as input data.
As mentioned in Section 4, a received signal for Nsym · Tsym includes multiple rescue signals
that asynchronously overlap with each other. Since a rescue UAV is equipped with NR
antennas, it actually obtains NR received signals. Under a general fading environment,
NR wireless channels from a mobile device’s antenna to NR rescue UAV’s antennas are
independent and all different, and thus NR received signals are also different from each
other.

From NR received signals in time domain, we extract input data as follows. In time
domain, for the r-th rescue UAV’s antenna, a UAV receiver extracts (NCP + NFFT)× Nsym
samples from a received signal. Note that the UAV receiver starts extracting time-domain
samples from the moment it detects a signal, the energy of which exceeds a certain energy
threshold. The extracted samples are divided into Nsym groups each of which has (NCP +
NFFT) samples. From each sample group, NFFT samples are extracted from the (NCP + 1)-
th sample to the (NCP + NFFT)-th sample. By using the inverse Fourier transform, the
extracted time-domain samples are transformed to a frequency-domain samples. For the
r-th rescue UAV’s antenna, the extracted frequency-domain samples from the i-th sample
group are denoted as yr,i ∈ CNFFT×1. Based on yr,i, r ∈ [1, NR], i ∈ [1, Nsym], we make
di,s ∈ CNR×1 as

di,s = [y1,i(s), y2,i(s), . . . , yNR,i(s)]T, s ∈ [1, NFFT], (1)

where (·)T is the transpose operation, and yr,i(s) is the s-th element of yr,i, which corre-
sponds to a frequency-domain sample transmitted via the s-th subcarrier among NFFT
subcarriers. Hence, di,s is a vector that includes frequency domain samples transmitted via
the s-th subcarrier in the i-th sample group for all rescue UAV’s antennas. By using di,s,
we calculate a covariance matrix Di,s ∈ CNR×NR = di,s · (di,s)

H where (·)H is Hermitian
transpose. Finally, an input I ∈ CNR×NR×NFFT×Nsym is constructed as in Fig. 5. Note that by
utilizing covariance matrices the input data is similar to image data and we can exploit
existing neural networks for image classification.

Since neural networks cannot deal with complex values, we split the input data into
real input data and imaginary input data. Note that imaginary input data is obtained by
calculating absolute values of imaginary values. In practice, the magnitude of received

Figure 5. Example of input data.

Hence, real and imaginary input data are represented as follows:

IR =
R(I)

max(R(I))
, II =

J(I)
max(J(I))

, (2)

where the operators R(·) and J(·) extract real and imaginary values from I, respectively.
The operator max(·) produces the maximum value in a matrix. Additionally, for IR and
II, the covariance matrices are redefined as DR,(i,s) and DI,(i,s), i ∈ [1, Nsym], s ∈ [1, NFFT],
respectively.

The input datum I has Nsym sample groups, each of which has NFFT covariance
matrices. In a sample group, covariance matrices have the frequency domain information.
Sample groups include information from the time-domain perspective. Therefore, the 4D
input allows our network to simultaneously observe the correlation in terms of both time
and frequency.

Eigenvalues of the input data are represented by Ieig ∈ RNFFT·NR×1 and generated

by normalizing the eigenvalues of expected covariance matrices, Dexp,s = ∑
Nsym
i=1 Di,s, ∀s.

Specifically, if Ieig,s ∈ RNR×1 is a vector that includes normalized eigenvalues of Dexp,s,
then Ieig = [(Ieig,1)

T, (Ieig,2)
T, . . . , (Ieig,NFFT)

T]T.

5.2. Asynchronous Stream-Sensing Network

Figure 6 presents the overall structure of our asynchronous stream-sensing network
(ASensNet). The ASensNet comprises five extractors: (1) an AutoEncoder Extractor, (2) an
Inception-layer-based extractor, (3) linear extractor 1, (4) linear extractor 2, and (5) a
Classifier. The AutoEncoder Extractor and the Inception-layer-based extractor have a real
subnetwork and an imaginary subnetwork. Real subnetworks process IR, while imaginary
subnetworks handle II. For each extractor, the real and imaginary subnetworks have the
same structure. With Linear Extractor 1, the extracted features from subnetworks merge
into a feature. Finally, to detect the number of rescue signals in a received signal, the
classifier deals with a combined feature of two features extracted from both linear extractor
1 and 2. Linear extractor 2 extracts features from Ieig.

Appl. Sci. 2022, 12, 4534 10 of 24
Appl. Sci. 2022, 1, 0 9 of 23

Figure 6. Asynchronous stream-sensing network (ASensNet)

signals actually is very small (∼ 10−7), and thus we additionally conduct normalization.
Hence, real and imaginary input data are represented as follows:

IR =
R(I)

max(R(I))
, II =

J(I)
max(J(I))

, (2)

where the operators R(·) and J(·) extract real and imaginary values from I, respectively.
The operator max(·) produces the maximum value in a matrix. Additionally, for IR and
II, the covariance matrices are redefined as DR,(i,s) and DI,(i,s), i ∈ [1, Nsym], s ∈ [1, NFFT],
respectively.

The input data I has Nsym sample groups, each of which has NFFT covariance matrices.
In a sample group, covariance matrices have information of the frequency domain. Sample
groups include information from the time domain perspective. Therefore, the 4D input
allows our network to simultaneously observe the correlation in terms of both time and
frequency.

Eigenvalues of the input data are represented by Ieig ∈ RNFFT·NR×1 and generated

by normalizing the eigenvalues of expected covariance matrices, Dexp,s = ∑
Nsym
i=1 Di,s, ∀s.

Specifically, if Ieig,s ∈ RNR×1 is a vector that includes normalized eigenvalues of Dexp,s,
then Ieig = [(Ieig,1)

T, (Ieig,2)
T, . . . , (Ieig,NFFT)

T]T.

5.2. Asynchronous Stream-sensing Network

Fig. 6 presents the overall structure of our asynchronous stream-sensing network
(ASensNet). The ASensNet comprises five extractors: (1) Autoencoder extractor, (2) Incep-
tion layer-based extractor, (3) Linear extractor 1, (4) Linear extractor 2, and (5) Classifier.
The autoencoder extractor and the inception layer-based extractor have a real subnetwork
and an imaginary subnetwork. Real subnetworks process IR while imaginary subnetworks

Figure 6. Asynchronous stream-sensing network (ASensNet).

5.2.1. Inception Layer-Based Extractor

This extractor consists of ‘Inception layer-based Block’ and ‘3Dto2D Block’.
Inception layer-based Block: The inception model is one of the most popular models

for image classification and object detection in computer vision [37,38]. It is well known
that the model is efficient due to its low computational load with a small number of model
parameters. Hence, this model is appropriate for our ASensNet, which requires limited
energy consumption due to the limited battery of UAVs.

For this block, we exploit an inception module and a grid reduction module in [38],
and then stack both modules. Then, some dropout layers are inserted into the stacked
network to prevent overfitting.

Finally, from ‘Inception layer-based Extractor’, subnetworks provide features δR and
δI for IR and II, respectively.

3Dto2D Block: This block is to shrink the dimension of IR and II from 4D to three
dimensions (3D) since two-dimensional (2D) convolution layers in the inception module
can deal with 3D matrices. This block consists of some 3D convolution layers that handle
4D matrices. After IR (or II) passes through 3D convolution layers, the result matrix is
reshaped into a 3D matrix.

Through 3D convolution layers, this block is expected to capture temporal information
from the input data. According to [39], 3D convolution layers model temporal information
better than 2D convolution layers. The resulting matrix of this block can preserve temporal

Appl. Sci. 2022, 12, 4534 11 of 24

information. Therefore, ‘3Dto2D Block’ not only reduces the dimension of input data, but
also allows the inception layer-based extractor to take into account the temporal information
of a received signal.

5.2.2. Autoencoder Extractor

In ASensNet, the AutoEncoder Extractor is based on the deep autoencoder that is
widely used for efficient encoding and reduction of dimensionality [40]. Such a deep
autoencoder structure is specialized to extract low-dimensional core features from high-
dimensional data. Therefore, using the autoencoder structure, this extractor is responsible
for extracting features from covariance matrices Di,s, ∀i, s in I. Specifically, for the autoen-
coder network, each subnetwork regenerates the input IR (or II) in the output. For real
and imaginary subnetworks, ‘Encoding Block’ extracts real and imaginary latent vectors
denoted as zR and zI, respectively. ‘Decoding Block’ generates IR,regen and II,regen based on
zR and zI, respectively.

Feature Extraction: Since ‘Decoding Block’ aims to make IR, regen and II, regen the same
as IR and II, ‘Encoding Block’ should generate zR and zI that include low-dimensional
necessary information for ‘Decoding Block’ to regenerate the input. In other words, for
subnetworks, the latent vectors zR and zI are bound to contain the most essential features
that represent DR,(i,s) and DI,(i,s) in the input IR and II, respectively.

As a result, from DR,(i,s) and DI,(i,s) in IR and II, ‘Encoding Block’ extracts distinct
low-dimensional features depending on the number of rescue signals in a received signal.

2D Dilated Encoder: In our AutoEncoder Extractor, there are two types of two-dimensional
encoder: a ‘2D Encoder’ and a ‘2D Dilated Encoder’. The 2D dilated encoder is constructed by
stacking 2D dilated convolution layers, while the 2D encoder consists of 2D convolution layers,
similar to a typical convolutional neural network. By inserting zero between the values in a
kernel, a 2D dilated convolution performs convolution with non-adjacent values in an input
matrix, which provides a wider field of view at the same computational cost [41].

For this block, we attach a 2D dilated encoder. Due to the structural feature of the
kernel of the 2D dilated convolution, the 2D dilated encoder considers the relationship
among non-adjacent values of DR,(i,s) (or DI,(i,s)). Since Di,s = di,s · (di,s)

H, considering
between non-adjacent values in DR,(i,s) (or DI,(i,s)) has the same effect as taking non-adjacent
values of di,s into account (Note that the r-th element of di,s is the signal value obtained
from the r-th receive antenna).

The matrix DR,(i,s) is a covariance matrix of a vector di,s that is obtained from a received
signal. The received signal consists of multiple signals transmitted from multiple devices
and propagating over wireless channels. In the case, the independence of wireless channels
can theoretically be preserved only when all transmitted signals are well synchronized.
Otherwise, if signals are transmitted asynchronously from devices, the independence is
no longer maintained (This is also why the existing mathematical schemes AIC and MDL
cannot work with asynchronous transmission, because they were developed based on the
assumption of synchronous transmission). The asynchronicity in a received signal could
cause in di,s channel correlation among non-adjacent antennas. As a result, through ‘2D
Dilated Encoder’ using 2D dilated convolution layers, our AutoEncoder Extractor produces
zR and zI considering spatial correlation among non-adjacent antennas.

5.2.3. Linear Extractor 1

This extractor fetches four features, zR, zI, δR, and δI, from the AutoEncoder Extractor
and the Inception-layer-based extractor. Then, zR and δR are concatenated, while zI and
δI are attached. Each concatenated feature is passed through a 2D convolution layer.
Both resultant feature vectors are concatenated into a single vector, and then several fully
connected layers are followed. Then, the fully connected layers produce a vector wc.

Appl. Sci. 2022, 12, 4534 12 of 24

5.2.4. Linear Extractor 2

Through some fully connected layers, this extractor obtains a feature vector from Ieig,
which is represented by we.

5.2.5. Classifier

Using a vector obtained by the Hadamard product of we and wc, it predicts a score
vector s. This score vector will be used to calculate the loss of this Classifier.

Prediction: the probability vector p is calculated by passing the predicted score vector
s through a softmax layer.

5.3. Losses and Objectives for Learning ASensNet

For training samples, IR and II denote input domains for IR and II, respectively.
Samples of IR and II are followed by a data distribution, denoted as IR ∼ pdata(IR) and
II ∼ pdata(II), respectively. The input domain of Ieig is represented by Ieig, and samples are
followed by Ieig ∼ pdata(Ieig). The label domain is represented by L. Feature domains of
zR, zI, δR, and δI are represented as ZR, ZI, ∆R, and ∆I, respectively. In addition, F denotes
a domain constructed by all feature vectors zR, zI, δR, and δI. The domains for we, wc, and
s are represented by We, Wc, and S, respectively. The domain for (we ◦wc) is denoted as
We◦c. Finally, O(·) represents a loss function, and then this work uses the support vector
machine (SVM) for multi-class classification [42]. This SVM loss function takes as input a
score vector and a ground truth.

For our ASensNet framework, we have four subnetworks for extracting features from
input data and a fully connected-based classifier. For two subnetworks of the AutoEncoder
Extractor, two Encoding Blocks can be represented as mapping functions: ER: IR → ZR and
EI: II → ZI, respectively, while two Decoding Blocks are also two mapping functions: DR:
ZR → IR and DI: ZI → II, respectively. For the inception layer-based extractor, the real and
imaginary subnetworks are also mapping functions: FR: IR → ∆R and FI: II → ∆I. The
Linear extractor 1 and 2 are represented as: Kc : F→Wc and Ke : Ieig →We, respectively.
Finally, the Classifier is a mapping function: K : We◦c → S.

5.3.1. Losses for AutoEncoder Extractor

The losses of the AutoEncoder Extractor are defined for each ‘Encoding Block’ and
‘Decoding Block’.

Losses for Encoding Block: The Encoding Blocks should make the Decoding Blocks
generate the same IR,regen and II,regen as IR and II as much as possible. Therefore, for real
and imaginary subnetworks, the regeneration losses are defined as

Lregen, R(ER, DR, IR) = EIR [DR(ER(IR))− IR], (3)

Lregen, I(EI, DI, II) = EII [DI(EI(II))− II]. (4)

In addition, the Encoding Blocks should also generate zR and zI that allow the Classifier
to predict p as well as possible. The classification loss is defined as (5).

Lclass(ER, EI, FR, FI, Kc, Ke, K, IR, II, Ieig,L) = EIR,II,Ieig

[
O
(
K(we ◦wc), Gtruth

)]
, (5)

where wc = Kc
(
ER(IR), EI(II), FR(IR), FI(II)

)
and we = Ke(Ieig). In addition, Gtruth is given

as soon as IR, II, and Ieig are generated. Note that the loss is the same for the real and
imaginary subnetworks.

Objective of AutoEncoder Extractor: Therefore, the complete objective of the AutoEn-
coder Extractor is defined as

Appl. Sci. 2022, 12, 4534 13 of 24

LAE(ER, EI, FR, FI, Kc, Ke, K, IR, II, IeigL)

= Lregen,R(ER, DR, IR) + Lregen,I(EI, DI, II) + Lclass(ER, EI, FR, FI, Kc, Ke, K, IR, II, Ieig,L). (6)

Note that the losses of the Decoding Blocks are the same as the losses of the Encoding
Blocks. In other words, by Lregen,R and Lregen,I, the Encoding Blocks and the Decoding
Blocks are updated simultaneously. In the same vein, Lclass updates both Encoding Blocks
in the real and imaginary subnetworks.

For the AutoEncoder Extractor, the following problem will be solved.

E∗R, E∗I = argmin
ER,EI

LAE(ER, EI, FR, FI, Kc, Ke, K, IR, II, Ieig,L). (7)

5.3.2. Losses for the Inception Layer-Based Extractor, Linear Extractors, and Classifier

The inception layer-based extractor, and linear extractor 1 and 2 should make the Clas-
sifier predict the probability vector p as accurately as possible. Therefore, these extractors
use the same classification loss as Lclass to update their networks. In addition, the loss of
the classifier is naturally defined as Lclass.

Objective of the Inception layer-based Extractor, Linear Extractors, and Classifier:
The objective of these extractors is defined as Lclass. As a result, we can find FR, FI, Kc, Ke,
and K by solving the following problem.

F∗R, F∗I , K∗c , K∗e , K∗ = argmin
FR,FI,Kc,Ke,K

Lclass(ER, EI, FR, FI, Kc, Ke, K, IR, II, Ieig,L). (8)

5.3.3. Loss for Updating ‘3Dto2D Block’ of FR and FI

The ‘3Dto2D Block’ of FR and FI is represented by BR and BI, respectively. The feature
domain formed by concatenating the output from BR and BI is defined asM. An auxiliary
classifier is defined as KM, a mapping function: KM :M→ S.

The loss function for KM is defined as

LKM(BR, BI, KM, IR, II,L) = EIR,II

[
O
(

KM
(

Mconcat(BR(IR), BI(II))
)
, Gtruth

)]
, (9)

where Mconcat concatenates the output from BR and BI.
To update BR and BI, the following problem should be solved.

B∗R, B∗I = argmin
BR,BI

LKM(BR, BI, KM, IR, II,L). (10)

The auxiliary classifier mitigates the vanishing gradient problem [37]. Through LKM ,
from the initial stage, it is expected that the features of the input data will be better
categorized according to the number of transmitted signals. Note that the auxiliary classifier
is used only for training, not for prediction.

5.4. Training Methodology
5.4.1. Training Procedure

The overall procedure is summarized in Algorithm 1, where Ndata is the number
of data. In this work, Ndata is batch size. The feature extractors and the classifier are
updated sequentially.

Appl. Sci. 2022, 12, 4534 14 of 24

Algorithm 1 Training Procedure for One Epoch

Output: E∗R, E∗I ,F∗R,F∗I , K∗c , K∗e and K∗

for i = 1 : Ndata
(1) Obtain IR, II, and Ieig
(2) Update ER, EI with FR, FI, Kc, Ke, K

Equation (6): argmin
ER,EI

LAE(ER, EI, FR, FI, Kc, Ke, K, IR, II, Ieig,L)

(3) Update BR, BI with KM
Equation (9): argmin

BR,BI

LKM(BR, BI, KM, IR, II,L)

(4) Update FR, FI, Kc, Ke, K with ER, EI
Equation (8):argmin

FR,FI,Kc,Ke,K
Lclass(ER, EI, FR, FI, Kc, Ke, K, IR, II, Ieig,L)

end for

5.4.2. Training Framework

To train our ASensNet, we developed a training framework that combines MATLAB
and PyTorch. The input data IR and II vary according to the wireless channel between
a rescue UAV and mobile devices. In practice, the wireless channel is changed quickly
and is infinitely diverse. Hence, it is impossible to collect adequately correlated dataset
for all channel cases in advance. In other words, it is not easy to create an unbiased
channel dataset. For this work, it is inappropriate to use the typical way of learning with a
precollected dataset.

Algorithm 2 shows our training architecture. Our training framework generates
input data in real time, and then updates our ASensNet. The MATLAB-based generator
generates Ndata received signals by asynchronously transmitting rescue signals. Using
the MATLAB Engine API for Python [43], the generated data are sent to a PyTorch-based
learning function. Then, the PyTorch-based learning function updates the ASensNet with
the generated data. As a result, with our framework, the ASensNet is continuously updated
with various input data. Note that generated channels are realistic by considering large-
scale fading, small-scale fading with multiple channel taps, and various mobile device
distributions. The realistic elements create an infinite number of channel cases. Therefore,
this training approach does not incur an overfitting problem. The problem occurs when a
deep-learning network is trained with a limited amount of data. That is, the deep learning
network is biased towards the given data. However, our training approach is to train the
ASensNet with infinitely changing channel data. In other words, the proposed network
can be trained with an unbiased channel dataset.

The MATLAB-based generator randomly deploys Ndevice mobile devices around a
rescue UAV. The UAV is equipped with ten antennas (NR = 10), while mobile devices have
a single antenna. Mobile devices start their transmission asynchronously. For the outdoor
wireless channel between the UAV and mobile devices, the ITU RMa pathloss model [35]
is implemented as large-scale fading, and five multipath taps are used for small-scale
fading. The transmit power of an UAV and a device is set to 36 dBm, complying with
the regulation [36]. Finally, the altitude of the UAV is assumed to be 25 m. For a channel
impulse response, each channel tap from the first to last one exponentially decreases in
magnitude. For time-varying channels, all channel impulse responses change every time
Ndevice is determined. For time-varying channels, all channel impulse responses change
whenever Ndevice is changed. With various Ndevice ∈ [0, 9], the deployment of mobile
devices changes with the change in impulse responses. Mobile devices are randomly
deployed around a rescue UAV, and the SNRs of the signals transmitted from the mobile
devices are different. Note that at the UAV, the difference in arrival time between the earliest
signal and each of the other signals is actually determined randomly within [0, Tsym). In
reality, the SNR value is not necessarily proportional to the distance between the receiver
and transmitter. Even if the distance is short, the SNR value may be small depending on
the surrounding environment of both the transmitter and receiver. Hence, the difference in
arrival time of the signals is randomly selected regardless of SNR values, from which we

Appl. Sci. 2022, 12, 4534 15 of 24

can believe that our evaluation can cover all possible situations in the real world. Finally,
NFFT = 64, Nsym = 20, and TCP = 0.2 µsec.

Algorithm 2 Training Architecture

Initialization
(1) Start running MATLAB and Python.
(2) Determine Ndata.
(3) Go to ‘MATLAB-based Generator’.

procedure MATLAB-BASED GENERATOR
(1) Start collecting Ndata input data.

for k← 1 to Ndata do
- Select Ndevice within [0, NR − 1].
- Drop Ndevice mobile devices randomly around
a rescue drone.

- Generate a received signal by the mobile devices.
If Ndevice = 0, generate a noise signal.

- Make the k-th data, IR,k and II,k.
end for

(2) Return all IR,k and II,k, ∀k to ‘PyTorch-based Learning
Function’.

end procedure
procedure PYTORCH-BASED LEARNING FUNCTION

(1) By Algorithm 1, update ASensNet with IR,k and II,k, ∀k.
(2) To obtain input data, call ‘MATLAB-based Generator’ through

MATLAB-Python API.
end procedure

Note that the majority of the literature on the development of machine-learning-
based wireless communication and signal processing schemes also verified their proposed
schemes through simulations using realistic channel generation [44–51]. Finally, the training
details are summarized in Table 1.

Table 1. Model complexity and hyperparameters.

Parameters Values

Mini batch size 10
Initial learning rate 1× 10−3

Scheduler CosineAnnealingLR
Optimizer RMSprop

Trainable parameters 260 M
Model Parameter size 1032 M

6. Evaluation

This section evaluates the ASensNet, which is compared to the existing mathematical
schemes in [21]. The compared schemes are the Akaike information criterion (AIC) and
minimum description length (MDL). Note that both schemes are meant for a scenario in
which a received signal is constructed by synchronously transmitted signals. Since there is
no work on asynchronous stream sensing, those two schemes are sufficient as comparison
schemes. In the synchronous scenario, the precision and recall of AIC and MDL are greater
than 0.9.

We have evaluated our ASensNet, AIC, and MDL for two scenarios. The first scenario
is that transmitted signals of all mobile devices have almost the same SNR value at the
receiver of a rescue UAV. Through evaluation, we investigate the performance of those
schemes for each SNR value. The second scenario is that the transmitted signals of all
mobile devices have different SNR values. This is more like a real-world scenario, from
which we can assess how well the ASensNet will work in reality.

Appl. Sci. 2022, 12, 4534 16 of 24

For the two comparison schemes, the maximum detectable number of signals depends
on NR. Specifically, both can detect up to (NR− 1) transmitted signals. Therefore, ASensNet,
AIC, and MDL are compared for 0 to (NR − 1) transmitted signals. (In theory, for the
synchronous scenario, a receiver equipped with NR antennas can detect up to (NR − 1)
transmitted signals from a received signal. Since this is due to a theoretical limitation
of mathematical frameworks MDL and AIC, the maximum number of devices is set to
(NR − 1) in this work.)

6.1. Performance Metrics

For performance evaluation in the rescue scenario, the following relaxed performance
metrics are introduced:

• Precision with d for k transmitted signals (Pk±d): the relaxed precision is defined
as follows.

Pk,d =
TPk±d

TPk±d + FPk±d
, (11)

where TPk±d and FPk±d are true positive and false positive, respectively. The parame-
ter TPk±d denotes the case when a scheme predicts k transmitted signals; the actual
number of transmitted signals is within [k− d, k + d]. The parameters FPk±d represent
the case that when the detected number of transmitted signals is k, the actual number
of transmitted signals is not within [k− d, k + d].

• Recall with d for k transmitted signals (Rk±d): the relaxed precision is defined as follows.

Rk,d =
TPk±d

TPk±d + FNk±d
, (12)

where FNk±d is false negative and includes the case that when the actual number
of transmitted signals is k, the detected number of transmitted signals is not within
[k− d, k + d].

Table 2 shows how to set TPk±d, FPk±d, and FNk±d for k = 2, d = 1.
The recall Rk,d is within [0, 1]. As Rk,d becomes closer to 1, the detection performance

of a scheme becomes better. In general, Rk,d is an index indicating how well the detected
value is within [k− d, k + d] when the actual number of transmitted signals is k. Hence, the
higher the recall value, the better the detection performance of a detection scheme.

The precision Pk,d is also within [0, 1]. As Pk,d becomes closer to 1, the reliability of
a scheme becomes better. For example, if P2,1 = 1, it means that for the predicted k = 2
transmitted signals, and then the actual number of transmitted signals is within [1, 3] with
probability of 1. On the other hand, for P2,1 = 0, although the detected number is k = 2,
the actual number of transmitted signals is not within [1, 3] with a probability of 0. As a
result, the precision is an indicator of how reliable the predicted results are.

For this work, the reason why we have introduced relaxed performance metrics for
the performance evaluation can be explained as follows. In a rescue situation, it might be
more important to provide a rough overview of the situation without critical errors. In
other words, even if the predicted value is slightly inaccurate, it can still be considered
meaningful enough as the predicted value is reasonably close to the actual value from a
contextual point of view. Note that for k ∈ [0, 2], we show the precision and recall with
only d = 0 since the error of 1 is relatively large compared to the actual values 0, 1, and
2. Furthermore, in computer vision, relaxed performance metrics are also used as the
standard recall-at-k metric to evaluate how well a proposed system predicts values as close
as possible to the true values [52–54].

In this paper, by comparing those results with d ∈ {0, 1}, we verify that our scheme
with only the minimal relaxation value (d = 1) provides a reliable performance in various
SNR scenarios while outperforming the existing solutions, AIC and MDL. Based on the
results, our ML-based stream-sensing scheme shows high precision and recall performance

Appl. Sci. 2022, 12, 4534 17 of 24

with d = 1. Hence, we confirm that our proposed scheme can detect the number of
transmitted signals with very little error.

Table 2. Example for TPk±d, FPk±d, and FNk±d with k = 2 and d = 1.

Actual Number of Signals

0 1 2 3 4

D
et

ec
te

d
nu

m
be

r
of

si
gn

al
s

0 TN2±1 TN2±1 FN2±1 TN2±1 TN2±1

1 TN2±1 TN2±1 TP2±1 TN2±1 TN2±1

2 FP2±1 TP2±1 TP2±1 TP2±1 FP2±1

3 TN2±1 TN2±1 TP2±1 TN2±1 TN2±1

4 TN2±1 TN2±1 FN2±1 TN2±1 TN2±1

6.2. Case with the Same SNR for All Mobile Devices

This section presents the precision and recall with d = 0 and d = 1 for our ASensNet,
AIC, and MDL. The results are obtained with various SNRs, which are 6 dB, 8 dB, 10 dB,
12 dB, and 14 dB. Note that in Wi-Fi, the SNR value of 8 dB corresponds to the minimum
receiver sensitivity for the lowest modulation and coding scheme. Hence, this work
considers 8 dB as the minimum criterion for stream-sensing schemes to reliably provide
good detection performance. In addition, we evaluate those stream-sensing schemes with
the SNR of 6 dB to further ensure the performance stability of 8 dB.

Table 3–5 present the precision and recall for our ASensNet, AIC, and MDL, respectively.

Table 3. Precision and recall of our ASensNet.

Precision The Number of Transmitted Signals

SNR d 0 1 2 3 4 5 6 7 8 9

6 dB 0 1.00 1.00 1.00 0.99 0.97 0.97 0.89 0.76 0.65 0.87
1 - - - 1.00 1.00 1.00 1.00 0.99 1.00 1.00

8 dB 0 1.00 1.00 1.00 1.00 0.96 0.97 0.90 0.77 0.64 0.88
1 - - - 1.00 1.00 1.00 1.00 0.99 1.00 1.00

10 dB 0 1.00 1.00 1.00 1.00 0.97 0.96 0.88 0.76 0.62 0.87
1 - - - 1.00 1.00 1.00 1.00 0.99 1.00 1.00

12 dB 0 1.00 1.00 1.00 0.99 0.97 0.97 0.90 0.77 0.63 0.87
1 - - - 1.00 1.00 1.00 1.00 0.99 1.00 1.00

14 dB 0 1.00 1.00 1.00 0.99 0.98 0.96 0.89 0.76 0.64 0.88
1 - - - 1.00 1.00 1.00 1.00 0.99 1.00 1.00

Recall The Number of Transmitted Signals

SNR d 0 1 2 3 4 5 6 7 8 9

6 dB 0 1.00 1.00 1.00 1.00 0.99 0.97 0.97 0.86 0.65 0.65
1 - - - 1.00 1.00 1.00 1.00 1.00 1.00 0.99

8 dB 0 1.00 1.00 1.00 1.00 1.00 0.96 0.97 0.86 0.66 0.65
1 - - - 1.00 1.00 1.00 1.00 1.00 1.00 0.99

10 dB 0 1.00 1.00 1.00 1.00 1.00 0.97 0.96 0.84 0.65 0.63
1 - - - 1.00 1.00 1.00 1.00 1.00 1.00 0.99

12 dB 0 1.00 1.00 1.00 1.00 0.99 0.96 0.97 0.87 0.66 0.64
1 - - - 1.00 1.00 1.00 1.00 1.00 1.00 0.99

14 dB 0 1.00 1.00 1.00 1.00 1.00 0.97 0.96 0.86 0.65 0.66
1 - - - 1.00 1.00 1.00 1.00 1.00 1.00 0.99

Appl. Sci. 2022, 12, 4534 18 of 24

Table 4. Precision and recall of AIC.

Precision The Number of Transmitted Signals

SNR d 0 1 2 3 4 5 6 7 8 9

6 dB 0 1.00 1.00 0.27 0.00 0.00 0.04 0.47 0.58 0.26 0.20
1 - - - 0.11 0.00 0.09 0.72 0.89 0.49 0.29

8 dB 0 1.00 1.00 0.13 0.00 0.00 0.03 0.52 0.57 0.26 0.21
1 - - - 0.13 0.00 0.08 0.73 0.88 0.48 0.29

10 dB 0 1.00 1.00 0.20 0.06 0.00 0.03 0.54 0.57 0.26 0.20
1 - - - 0.11 0.00 0.07 0.74 0.89 0.50 0.29

12 dB 0 1.00 1.00 0.04 0.00 0.00 0.04 0.50 0.53 0.26 0.20
1 - - - 0.09 0.00 0.08 0.73 0.89 0.49 0.29

14 dB 0 1.00 1.00 0.10 0.00 0.00 0.03 0.50 0.57 0.26 0.20
1 - - - 0.00 0.00 0.08 0.72 0.88 0.49 0.29

Recall The Number of Transmitted Signals

SNR d 0 1 2 3 4 5 6 7 8 9

6 dB 0 1.00 0.03 0.00 0.00 0.00 0.02 0.13 0.36 0.59 0.99
1 - - - 0.00 0.00 0.04 0.31 0.70 1.00 1.00

8 dB 0 1.00 0.03 0.00 0.00 0.00 0.01 0.15 0.36 0.61 1.00
1 - - - 0.00 0.00 0.03 0.31 0.73 1.00 1.00

10 dB 0 1.00 0.03 0.00 0.00 0.00 0.01 0.16 0.35 0.57 1.00
1 - - - 0.00 0.00 0.03 0.34 0.70 1.00 1.00

12 dB 0 1.00 0.04 0.00 0.00 0.00 0.02 0.15 0.33 0.59 0.99
1 - - - 0.00 0.00 0.03 0.35 0.69 1.00 1.00

14 dB 0 1.000 0.03 0.00 0.00 0.00 0.01 0.15 0.36 0.58 0.99
1 - - - 0.00 0.00 0.03 0.32 0.71 1.00 1.00

Table 5. Precision and recall of MDL.

Precision The Number of Transmitted Signals

SNR d 0 1 2 3 4 5 6 7 8 9

6 dB 0 1.00 0.91 0.33 0.00 0.00 0.00 0.05 0.30 0.22 0.14
1 - - - 0.10 0.00 0.01 0.27 0.67 0.51 0.35

8 dB 0 1.00 1.00 0.00 0.00 0.00 0.00 0.11 0.30 0.20 0.14
1 - - - 0.20 0.00 0.01 0.30 0.68 0.52 0.36

10 dB 0 1.00 1.00 0.06 0.00 0.00 0.00 0.10 0.31 0.21 0.15
1 - - - 0.30 0.00 0.00 0.32 0.73 0.51 0.36

12 dB 0 1.00 0.92 0.09 0.00 0.00 0.00 0.08 0.31 0.20 0.15
1 - - - 0.07 0.00 0.02 0.30 0.69 0.51 0.36

14 dB 0 1.00 1.00 0.00 0.00 0.00 0.00 0.07 0.34 0.20 0.14
1 - - - 0.15 0.00 0.01 0.27 0.71 0.50 0.36

Appl. Sci. 2022, 12, 4534 19 of 24

Table 5. Cont.

Recall The Number of Transmitted Signals

SNR d 0 1 2 3 4 5 6 7 8 9

6 dB 0 1.00 0.01 0.00 0.00 0.00 0.00 0.01 0.13 0.41 1.00
1 - - - 0.00 0.00 0.00 0.08 0.43 1.00 1.00

8 dB 0 1.00 0.01 0.00 0.00 0.00 0.00 0.03 0.13 0.36 1.00
1 - - - 0.00 0.00 0.00 0.10 0.45 1.00 1.00

10 dB 0 1.00 0.01 0.00 0.00 0.00 0.00 0.02 0.12 0.41 1.00
1 - - - 0.00 0.00 0.00 0.09 0.49 1.00 1.00

12 dB 0 1.00 0.01 0.00 0.00 0.00 0.00 0.02 0.13 0.40 1.00
1 - - - 0.00 0.00 0.01 0.10 0.47 1.00 1.00

14 dB 0 1.00 0.01 0.00 0.00 0.00 0.00 0.02 0.14 0.40 1.00
1 - - - 0.00 0.00 0.00 0.08 0.47 1.00 1.00

In Table 3, when d = 0, for all SNR values, precision and recall values decrease as the
number of transmitted signals increases. This naturally means that it is difficult to detect a
large number of transmitted signals. From k = 6, precision values become smaller than 0.9,
while recall values become smaller than 0.9 from k = 7.

Moreover, our proposed scheme has high reliability with respect to the least relaxed
criterion of d = 1. The precision values for d = 1 are higher than 0.9 in all cases. In
other words, if a value detected by our ASensNet is k, the actual number of signals is
within [k− 1, k + 1], with probability greater than 0.9. As in precision, the recall values for
d = 1 are larger than 0.9 in all cases. As a result, while our scheme shows high detection
performance in most cases of the number of transmitted signals at d = 0, it also has high
detection performance in terms of the minimum relaxation criterion of d = 1.

In Tables 4 and 5, both AIC and MDL have small precision and recall in almost all
cases. Although existing solutions have large recall values for k = 8 and k = 9, the precision
is very low. Only for k = 0, both schemes show high precision and recall. Even with respect
to the relaxed criterion d = 1, the values detected by these techniques are not reliable. As a
result, they can only be used to determine whether there is a transmitted signal or not.

To understand in detail why precision and recall become larger as d increases from
0 to 1, we investigate the confusion maps of our ASensNet, AIC, and MDL. Figure 7 shows
the confusion maps of three schemes for the SNR of 6dB. For each scheme, the tendency of
confusion maps for other SNR values is the same as that of Figure 7.

Appl. Sci. 2022, 12, 4534 20 of 24
Appl. Sci. 2022, 1, 0 19 of 23

0 1 2 3 4 5 6 7 8 9

The actual number of signals

0

1

2

3

4

5

6

7

8

9

T
h
e
 d

e
te

c
te

d
 n

u
m

b
e
r

o
f
s
ig

n
a
ls

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.05

0

0.1

0

0

0

0

0

0

0

0

0

0.1

0

0

0

0

0

0

0

0

0

0.55

0

0

0

0

0

0

0

0

0

2.7

0

0

0

0

0

0

0

0

0.05

2.9

0.2

0

0

0

0

0

0

0

0

11.7

2.35

0

0

0

0

0

0

0

0.05

25.45

65.4

9.1

0

0

0

0

0

0

0

1.237

34.02

64.74

100

99.95

99.9

99.9

99.45

97.3

96.85

85.95

0

10

20

30

40

50

60

70

80

90

100

(a) ASensNet

0 1 2 3 4 5 6 7 8 9

The actual number of signals

0

1

2

3

4

5

6

7

8

9

T
h
e
 d

e
te

c
te

d
 n

u
m

b
e
r

o
f

s
ig

n
a
ls

0

0

0

0

0

0

0

0

0

0

1

0.7

0.9

13.5

22.8

17.4

15

11.4

17.3

0

0

0.4

0.1

0

4.6

4.1

3.1

52.3

35.4

0

0

0

0

0

0

0.2

0.4

1

0

0

0

0

0

0

0

0.4

21.1

0

0

0

0

0

0

0.4

1.9

6.9

0

0

0

0

0

0

1.1

6.8

20.4

71.7

0

0

0

0

0

0

0

13

26

61

0

0

0

0

0

0

0

0

41.2

58.8

0

0

0

0

0

0

0

0

0

100

98.4 78.5 90.8 100

0

10

20

30

40

50

60

70

80

90

100

(b) AIC

0 1 2 3 4 5 6 7 8 9

The actual number of signals

0

1

2

3

4

5

6

7

8

9

T
h
e

d
e
te

c
te

d
n
u
m

b
e
r

o
f
s
ig

n
a
ls

0

0

0

0

0

0

0

0

0

0

2.5

1.1

1.6

47.8

29

9.6

4.2

2.2

2

0

0

0.4

0.2

0.2

9.6

2.1

1.3

69.4

16.8

0

0

0

0

0

0

0.7

0.5

0.5

0

0

0

0

0

0

0

0.5

30.4

69.1

0

0

0

0

0

1.6

2.1

3.8

11.7

0

0

0

0

0

0

12.8

16.2

22.9

48.1

0

0

0

0

0

0

0

36.4

28.9

34.7

0

0

0

0

0

0

0

0

58.5

41.5

0

0

0

0

0

0

0

0

0.1

100

98.3 80.8 99.9

0

10

20

30

40

50

60

70

80

90

100

(c) MDL

Figure 7. Confusion maps of ASensNet, AIC, and MDL for the SNR of 6dB.

Therefore, this realistic evaluation confirms that our proposed scheme can accurately
detect the number of asynchronously transmitted signals even if the SNRs of the signals vary.

Figure 7. Confusion maps of ASensNet, AIC, and MDL for the SNR of 6dB.

Figure 7a shows that our ASensNet usually misjudges k transmitted signals as (k + 1)
or (k− 1) transmitted signals. Therefore, for our proposed scheme, the precision and recall
with d = 1 are greater than 0.9 in all cases.

Figure 7b,c, however, show that regardless of the number of signals actually transmit-
ted, both AIC and MDL determine that there are 9 transmitted signals. Therefore, although
the recall for k = 9 is 1, the precision is very small. Furthermore, in almost all cases except
for k = 0, both precision and recall are very small. Therefore, the results confirm that
these mathematical schemes cannot be used for the asynchronous scenario, since they were
proposed under the assumption that all transmitted signals are well synchronized.

In summary, we confirm that, for asynchronously transmitted signals, our ASen-
sNet has remarkable detection performance with high reliability. By using deep-learning
networks, our proposal outperforms the existing mathematical schemes.

6.3. Case with Different SNR for All Mobile Devices

In this section, our proposed scheme is evaluated under the scenario where the SNR
values of transmitted signals are different The results are obtained with various SNR ranges.

Appl. Sci. 2022, 12, 4534 21 of 24

In Table 6, each element of the ‘SNRs [dB]’ column consists of the minimum SNR and the
maximum SNR. Therefore, the element [6, 8] means that the SNR of a transmitted signal is
within [6 dB, 8 dB].

Table 6. Precision and recall of our ASensNet with d = 1.

Precision The Number of Transmitted Signals

SNRs [dB] 0 1 2 3 4 5 6 7 8 9

[6, 8] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.92

[6, 10] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.91

[6, 12] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.92

[6, 14] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.91

[8, 10] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.92

[8, 12] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.91

[8, 14] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.91

[8, 16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.91

[8, 18] 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.99 1.00 0.90

[8, 20] 1.00 1.00 0.98 1.00 0.99 0.99 0.99 0.98 1.00 0.91

Recall The Number of Transmitted Signals

SNRs [dB] 0 1 2 3 4 5 6 7 8 9

[6, 8] 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

[6, 10] 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

[6, 12] 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

[6, 14] 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99

[8, 10] 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

[8, 12] 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

[8, 14] 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

[8, 16] 1.00 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99

[8, 18] 1.00 0.89 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.98

[8, 20] 1.00 0.90 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.97

Table 6 shows the precision and recall with d = 1. (The precision and recall of AIC
and MDL has a similar tendency to Tables 4 and 5, and thus these results are omitted in
this paper.)The precision and recall present a similar tendency to Table 3. Hence, in almost
all cases, our ASensNet guarantees that the precision and recall are larger than 0.9.

Therefore, this realistic evaluation confirms that our proposed scheme can accu-
rately detect the number of asynchronously transmitted signals even if the SNRs of the
signals vary.

Finally, Figure 8 shows case diagrams demonstrating how well each stream-sensing
scheme follows the ground truth. Via the results, we also confirm that compared to other
methods, our proposal can accurately estimate the number of survivors. Note that for
Intel(R) Core(TM) i7-6900K CPU, the processing time for a case is 31.8 milliseconds, and the
weight size of our ASensNet is 1.0 gigabyte. Therefore, our proposed scheme can operate
in real time with an appropriate memory load.

Appl. Sci. 2022, 12, 4534 22 of 24

Appl. Sci. 2022, 1, 0 20 of 23

Table 6. Precision and recall of our ASensNet with d = 1

Precision The number of transmitted signals
SNRs [dB] 0 1 2 3 4 5 6 7 8 9

[6, 8] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.92
[6, 10] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.91
[6, 12] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.92
[6, 14] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.91
[8, 10] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.92
[8, 12] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.91
[8, 14] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.91
[8, 16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.91
[8, 18] 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.99 1.00 0.90
[8, 20] 1.00 1.00 0.98 1.00 0.99 0.99 0.99 0.98 1.00 0.91

Recall The number of transmitted signals
SNRs [dB] 0 1 2 3 4 5 6 7 8 9

[6, 8] 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
[6, 10] 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
[6, 12] 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
[6, 14] 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
[8, 10] 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
[8, 12] 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
[8, 14] 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
[8, 16] 1.00 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
[8, 18] 1.00 0.89 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.98
[8, 20] 1.00 0.90 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.97

0 20 40 60 80 100 120 140 160 180 200

Case index

0

5

10

G
ro

u
d

 t
ru

th

0

5

10

D
e

te
c
te

d
 v

a
lu

e

Ground truth ASensNet

(a) ASensNet

0 20 40 60 80 100 120 140 160 180 200

Case index

0

5

10

G
ro

u
d

 t
ru

th

0

5

10

D
e

te
c
te

d
 v

a
lu

e

Ground truth AIC

(b) AIC

0 20 40 60 80 100 120 140 160 180 200
Case index

0

5

10

G
ro

u
d
 t
ru

th

0

5

10

D
e
te

c
te

d
 v

a
lu

e

Ground truth MDL

(c) MDL

Figure 8. Case diagram like a real-time scenario.

Finally, Fig. 8 shows case diagrams demonstrating how well each stream-sensing
scheme follows the ground truth. Via the results, we also confirm that compared to other
methods, our proposal can accurately estimate the number of survivors. Note that for
Intel(R) Core(TM) i7-6900K CPU, the processing time for a case is 31.8 milliseconds, and the
weight size of our ASensNet is 1.0 gigabyte. Therefore, our proposed scheme can operate
in real time with an appropriate memory load.

Figure 8. Case diagram like a real-time scenario.

7. Conclusions and Future Work

This work has proposed a machine-learning-based asynchronous stream-sensing
scheme to estimate the number of asynchronously transmitted signals. For the scheme, we
propose an asynchronous stream-sensing network (ASensNet) consisting of the AutoEn-
coder Extractor, the inception layer-based extractor, two linear extractors, and the classifier.

Through extensive simulation results, the large precision and recall confirm that our
proposed ASensNet has notable detection performance with high reliability. Furthermore,
the processing time is also fast even on a CPU (31.8 milliseconds for an Intel(R) Core(TM)
i7-6900K CPU). Thanks to the fast processing speed and large precision and recall, while
moving a disaster area, rescue UAVs with our ASensNet will be able to estimate the number
of survivors per zone in real time.

This paper has demonstrated that it is possible to accurately detect the number of
asynchronously transmitted signals, but the current ASensNet actually has a limitation in
detecting a limited number of survivors: nine people. In addition, if the current system
can be improved to detect the locations of devices, it will be more helpful to rescuers.
Hence, in the future, we will provide various ASensNet variants for different numbers of
antennas. In addition, based on our ASensNet, we will develop a high-quality survivor
discovery protocol with which a rescue UAV not only detects the number of survivors
around itself, but also estimates where the survivors are.Moreover, we will develop a
high-quality survivor detection system with which a rescue UAV estimates the locations of
devices around it by taking into account how the UAV will move through a disaster area to
localize devices. Additionally, it can better respond to a situation where the SNR between a
device and an UAV changes dynamically. Then, since deep learning could show a better
performance that cannot be achieved using mathematical frameworks with assumptions,
we will also study a deep-learning-based method that overcomes the theoretical limit and
can detect more than (NR − 1) signals even with NR antennas.

Appl. Sci. 2022, 12, 4534 23 of 24

Author Contributions: Conceptualization, Y.K. and H.L.; methodology, Y.K.; software, Y.K. and H.L.;
writing—original draft preparation, Y.K.; writing—review and editing, H.L.; supervision, H.L.; fund-
ing acquisition, H.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. NRF-2022R1G1A1007058).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. EMDAT. OFDA/CRED International Disaster Database, Université Catholique de Louvain—Brussels—Belgium: Number of

Reported Disasters by Type. 2020. Available online: https://ourworldindata.org/grapher/natural-disasters-by-type (accessed
on 1 December 2021).

2. Pregler, A. When COWs Fly: AT&T Sending LTE Signals from Drones. 2017. Available online: https://about.att.com/
innovationblog/cows_fly (accessed on 1 December 2021).

3. Lavars, N. Verizon Trials Drones as Flying Cell Towers to Plug Holes in Internet Coverage. 2016. Available online: https:
//newatlas.com/verizon-drones-internet-trials/45818/ (accessed on 1 December 2021).

4. Fortune Business Insights. Small Drones Market Size, Share & Industry Analysis, By Type (Fixed-Wing, Rotary-Wing, and Hy-
brid/Transitional), By Power Source (Lithium-ion cells, Hybrid Fuel cells, and Solar cells), By Size (Micro, and Mini & Nano), By Application
(Civil & Commercial, Military, Homeland Security, and Consumer) and Regional Forecast, 2015–2026; Fortune Business Insights: Pune,
India, 2020.

5. LeCun, Y.; Bengio, Y.; Hinton, G.E. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
6. Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507.

[CrossRef] [PubMed]
7. Goodfellow, I.J.; Bengio, Y.; Courville, A.C. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
8. Young, T.; Hazarika, D.; Poria, S.; Cambria, E. Recent Trends in Deep Learning Based Natural Language Processing. IEEE Comput.

Intell. Mag. 2018, 13, 55–75. [CrossRef]
9. Purwins, H.; Li, B.; Virtanen, T.; Schlüter, J.; Chang, S.; Sainath, T. Deep Learning for Audio Signal Processing. IEEE J. Sel. Top.

Signal Process. 2019, 13, 206–219. [CrossRef]
10. O’Shea, T.; Hoydis, J. An Introduction to Deep Learning for the Physical Layer. IEEE Trans. Cogn. Commun. Netw. 2017, 3, 563–575.

[CrossRef]
11. Mao, Q.; Hu, F.; Hao, Q. Deep Learning for Intelligent Wireless Networks: A Comprehensive Survey. IEEE Commun. Surv. Tutor.

2018, 20, 2595–2621. [CrossRef]
12. Liao, J.; Zhao, J.; Gao, F.; Li, G.Y. A Model-Driven Deep Learning Method for Massive MIMO Detection. IEEE Commun. Lett.

2020, 24, 1724–1728. [CrossRef]
13. Huang, H.; Yang, J.; Huang, H.; Song, Y.; Gui, G. Deep Learning for Super-Resolution Channel Estimation and DOA Estimation

Based Massive MIMO System. IEEE Trans. Veh. Technol. 2018, 67, 8549–8560. [CrossRef]
14. Nachmani, E.; Marciano, E.; Lugosch, L.; Gross, W.J.; Burshtein, D.; Be’ery, Y. Deep Learning Methods for Improved Decoding of

Linear Codes. IEEE J. Sel. Top. Signal Process. 2018, 12, 119–131. [CrossRef]
15. Vyas, M.R.; Patel, D.K.; Lopez-Benitez, M. Artificial neural network based hybrid spectrum sensing scheme for cognitive radio.

In Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications
(PIMRC), Montreal, QC, Canada, 8–13 October 2017; pp. 1–7. [CrossRef]

16. Han, D.; Sobabe, G.C.; Zhang, C.; Bai, X.; Wang, Z.; Liu, S.; Guo, B. Spectrum sensing for cognitive radio based on convolution
neural network. In Proceedings of the 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering
and Informatics (CISP-BMEI), Shanghai, China, 14–16 October 2017; pp. 1–6. [CrossRef]

17. Liu, C.; Wang, J.; Liu, X.; Liang, Y. Deep CM-CNN for Spectrum Sensing in Cognitive Radio. IEEE J. Sel. Areas Commun. 2019,
37, 2306–2321. [CrossRef]

18. Cheng, Q.; Shi, Z.; Nguyen, D.N.; Dutkiewicz, E. Sensing OFDM Signal: A Deep Learning Approach. IEEE Trans. Commun. 2019,
67, 7785–7798. [CrossRef]

19. Paisana, F.; Selim, A.; Kist, M.; Alvarez, P.; Tallon, J.; Bluemm, C.; Puschmann, A.; DaSilva, L. Context-aware cognitive radio using
deep learning. In Proceedings of the 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN),
Baltimore, MD, USA, 6–9 March 2017; pp. 1–2. [CrossRef]

20. Xie, J.; Fang, J.; Liu, C.; Yang, L. Unsupervised Deep Spectrum Sensing: A Variational Auto-Encoder Based Approach. IEEE Trans.
Veh. Technol. 2020, 69, 5307–5319. [CrossRef]

21. Wax, M.; Kailath, T. Detection of signals by information theoretic criteria. IEEE Trans. Acoust. Speech Signal Process. 1985,
33, 387–392. [CrossRef]

22. Fishler, E.; Grosmann, M.; Messer, H. Detection of signals by information theoretic criteria: general asymptotic performance
analysis. IEEE Trans. Signal Process. 2002, 50, 1027–1036. [CrossRef]

23. Akaike, H. Information theory and an extension of the maximum likelihood principle. In Proceedings of the 2nd International
Symposium on Information Theory, Tsahkadsor, Armenia, 2–8 September 1971.

https://ourworldindata.org/grapher/natural-disasters-by-type
https://about.att.com/innovationblog/cows_fly
https://about.att.com/innovationblog/cows_fly
https://newatlas.com/verizon-drones-internet-trials/45818/
https://newatlas.com/verizon-drones-internet-trials/45818/
http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1126/science.1127647
http://www.ncbi.nlm.nih.gov/pubmed/16873662
http://dx.doi.org/10.1109/MCI.2018.2840738
http://dx.doi.org/10.1109/JSTSP.2019.2908700
http://dx.doi.org/10.1109/TCCN.2017.2758370
http://dx.doi.org/10.1109/COMST.2018.2846401
http://dx.doi.org/10.1109/LCOMM.2020.2989672
http://dx.doi.org/10.1109/TVT.2018.2851783
http://dx.doi.org/10.1109/JSTSP.2017.2788405
http://dx.doi.org/10.1109/PIMRC.2017.8292449
http://dx.doi.org/10.1109/CISP-BMEI.2017.8302117
http://dx.doi.org/10.1109/JSAC.2019.2933892
http://dx.doi.org/10.1109/TCOMM.2019.2940013
http://dx.doi.org/10.1109/DySPAN.2017.7920784
http://dx.doi.org/10.1109/TVT.2020.2982203
http://dx.doi.org/10.1109/TASSP.1985.1164557
http://dx.doi.org/10.1109/78.995060

Appl. Sci. 2022, 12, 4534 24 of 24

24. Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [CrossRef]
25. Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [CrossRef]
26. Rissanen, J. Modeling by shortest data description. Automatica 1978, 14, 465–471. [CrossRef]
27. 3GPP. Overview of 3GPP Release 13. 2014. Available online: https://www.3gpp.org/ftp/Information/WORK_PLAN/

Description_Releases/ (accessed on 1 December 2021).
28. Fu, R.; Al-Absi, M.A.; Kim, K.; Lee, Y.S.; Al-Absi, A.A.; Lee, H. Deep Learning-Based Drone Classification Using Radar Cross

Section Signatures at mmWave Frequencies. IEEE Access 2021, 9, 161431–161444. [CrossRef]
29. Jamil, S.; Abbas, M.S.; Roy, A.M. Distinguishing Malicious Drones Using Vision Transformer. AI 2022, 3, 260–273. [CrossRef]
30. 3GPP. Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Layer Procedures (Release 14); 3GPP Organizational Partners,

Sophia Antipolis CEDEX: Valbonne, France, 2018.
31. IEEE. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications; IEEE: New York, NY, USA, 2012.
32. Telesystem Innovations Inc. LTE in a Nutshell: The Physical Layer; Telesystem Innovations Inc.: Markham, ON, Canada, 2010.
33. NTT DOCOMO. Uplink multiple access schemes for NR. In Proceedings of the R1- 165174, 3GPP TSG-RAN WG1 Meeting 85,

Nanjing, China, 23–27 May 2016.
34. IEEE 802.11ac-2013. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications; Amendment 4:

Enhancements for Very High Throughput for Operation in Bands below 6 GHz; IEEE: New York, USA, 2013.
35. ITU. Guidelines for Evaluation of Radio Interface Technologies for IMT-Advanced. 2009. Available online: https://www.itu.int/

dms_pub/itu-r/opb/rep/R-REP-M.2135-1-2009-PDF-E.pdf (accessed on 1 December 2021).
36. ETSI. Broadband Radio Access Networks (BRAN); 5 GHz High Performance RLAN; Harmonized EN covering the essential requirements

of article 3.2 of the R&TTE Directive; European Telecommunications Standards Institute, Sophia Antipolis CEDEX: Valbonne,
France, 2015.

37. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.E.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with
Convolutions. arXiv 2014, arXiv:1409.4842.

38. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. arXiv 2015,
arXiv:1512.00567.

39. Tran, D.; Bourdev, L.D.; Fergus, R.; Torresani, L.; Paluri, M. Learning Spatiotemporal Features with 3D Convolutional Networks.
In Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; IEEE
Computer Society: Piscataway, NJ, USA, 2015; pp. 4489–4497. [CrossRef]

40. Deng, L. A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPA Trans. Signal Inf. Process.
2014, 3, E2. [CrossRef]

41. Yu, F.; Koltun, V. Multi-Scale Context Aggregation by Dilated Convolutions. In Proceedings of the 4th International Conference
on Learning Representations, San Juan, Puerto Rico, 2–4 May 2016.

42. CS231n. Multiclass Support Vector Machine Loss. Available online: https://cs231n.github.io/linear-classify/ (accessed on 1
December 2021).

43. MathWorks. Calling MATLAB from Python. Available online: https://www.mathworks.com/help/matlab/matlab-engine-for-
python.html (accessed on 1 December 2021).

44. Jiang, P.; Wang, T.; Han, B.; Gao, X.; Zhang, J.; Wen, C.K.; Jin, S.; Li, G.Y. AI-aided Online Adaptive OFDM Receiver: Design and
Experimental Results. IEEE Trans. Wireless Commun. 2021, 20, 7655–7668. [CrossRef]

45. Jiang, P.; Wen, C.; Jin, S.; Li, G.Y. Dual CNN-Based Channel Estimation for MIMO-OFDM Systems. IEEE Trans. Commun. 2021,
69, 5859–5872. [CrossRef]

46. Jankowski, M.; Gündüz, D.; Mikolajczyk, K. Wireless Image Retrieval at the Edge. IEEE J. Sel. Areas Commun. 2021, 39, 89–100.
[CrossRef]

47. Kurka, D.B.; Gündüz, D. DeepJSCC-f: Deep Joint Source-Channel Coding of Images with Feedback. IEEE J. Sel. Areas Inf. Theory
2020, 1, 178–193. [CrossRef]

48. Bourtsoulatze, E.; Kurka, D.B.; Gündüz, D. Deep Joint Source-Channel Coding for Wireless Image Transmission. IEEE Trans.
Cogn. Commun. Netw. 2019, 5, 567–579. [CrossRef]

49. Jang, J.; Yang, H.J. Deep Reinforcement Learning-Based Resource Allocation and Power Control in Small Cells With Limited
Information Exchange. IEEE Trans. Veh. Technol. 2020, 69, 13,768–13,783. [CrossRef]

50. Xie, H.; Qin, Z.; Li, G.Y.; Juang, B. Deep Learning Enabled Semantic Communication Systems. IEEE Trans. Signal Process. 2021,
69, 2663–2675. [CrossRef]

51. Weng, Z.; Qin, Z. Semantic Communication Systems for Speech Transmission. IEEE J. Sel. Areas Commun. 2021, 39, 2434–2444.
[CrossRef]

52. Maximov, M.; Elezi, I.; Leal-Taixé, L. CIAGAN: Conditional Identity Anonymization Generative Adversarial Networks. In
Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020;
pp. 5446–5455.

53. Movshovitz-Attias, Y.; Toshev, A.; Leung, T.K.; Ioffe, S.; Singh, S. No Fuss Distance Metric Learning Using Proxies. In Proceedings
of the IEEE International Conference on Computer Vision ICCV, Venice, Italy, 22–29 October 2017; pp. 360–368.

54. Lee, H.; Kim, M.U.; Kim, Y.; Lyu, H.; Yang, H.J. Development of a Privacy-Preserving UAV System With Deep Learning-Based
Face Anonymization. IEEE Access 2021, 9, 132652–132662. [CrossRef]

http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1016/0005-1098(78)90005-5
https://www.3gpp.org/ftp/Information/WORK_PLAN/Description_Releases/
https://www.3gpp.org/ftp/Information/WORK_PLAN/Description_Releases/
http://dx.doi.org/10.1109/ACCESS.2021.3115805
http://dx.doi.org/10.3390/ai3020016
https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2135-1-2009-PDF-E.pdf
https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2135-1-2009-PDF-E.pdf
http://dx.doi.org/10.1109/ICCV.2015.510
http://dx.doi.org/10.1017/atsip.2013.9
https://cs231n.github.io/linear-classify/
https://www.mathworks.com/help/matlab/matlab-engine-for-python.html
https://www.mathworks.com/help/matlab/matlab-engine-for-python.html
http://dx.doi.org/10.1109/TWC.2021.3087191
http://dx.doi.org/10.1109/TCOMM.2021.3085895
http://dx.doi.org/10.1109/JSAC.2020.3036955
http://dx.doi.org/10.1109/JSAIT.2020.2987203
http://dx.doi.org/10.1109/TCCN.2019.2919300
http://dx.doi.org/10.1109/TVT.2020.3027013
http://dx.doi.org/10.1109/TSP.2021.3071210
http://dx.doi.org/10.1109/JSAC.2021.3087240
http://dx.doi.org/10.1109/ACCESS.2021.3113186

	Introduction
	Related Works
	Preliminary
	Synchronous and Asynchronous Transmissions
	The Need for an Asynchronous Stream-Sensing Technique

	System Model
	Learning-Based Asynchronous Stream Sensing
	Input Data Generation
	Asynchronous Stream-Sensing Network
	Inception Layer-Based Extractor
	Autoencoder Extractor
	Linear Extractor 1
	Linear Extractor 2
	Classifier

	Losses and Objectives for Learning ASensNet
	Losses for AutoEncoder Extractor
	Losses for the Inception Layer-Based Extractor, Linear Extractors, and Classifier
	Loss for Updating `3Dto2D Block' of FR and FI

	Training Methodology
	Training Procedure
	Training Framework

	Evaluation
	Performance Metrics
	Case with the Same SNR for All Mobile Devices
	Case with Different SNR for All Mobile Devices

	Conclusions and Future Work
	References

