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Abstract: This paper presents a novel variable matrix-type step-size affine projection sign algorithm
(VMSS-APSA) characterized by robustness against impulsive noise. To mathematically derive a
matrix-type step size, VMSS-APSA utilizes mean-square deviation (MSD) for the modified version of
the original APSA. Accurately establishing the MSD of APSA is impossible. Therefore, the proposed
VMSS-APSA derives the upper bound of the MSD using the upper bound of the L1-norm of the
measurement noise. The optimal matrix-type step size is calculated at each iteration by minimizing
the upper bound of the MSD, thereby improving the filter performance in terms of convergence
rate and steady-state estimation error. Because a novel cost function of the proposed VMSS-APSA
was designed to maintain a form similar to the original APSA, they have symmetric characteristics.
Simulation results demonstrate that the proposed VMSS-APSA improves filter performance in a
system-identification scenario in the presence of impulsive noise.

Keywords: adaptive filter; affine projection sign algorithm; variable step size; matrix type; impulsive
noise; system identification; steady-state estimation error; convergence rate

1. Introduction

Adaptive-filtering theory has been researched for several decades because it can serve
as a useful tool in various applications, including system identification, channel estimation,
noise cancellation, acoustic echo cancellation, and network echo cancellation [1–11]. The
least-mean-squares (LMS) and normalized LMS algorithms are representative adaptive-
filtering algorithms due to their easy implementation and low computational complexity.
Moreover, the affine projection algorithm (APA) [12–14] was suggested to improve the
convergence performance of the above-mentioned algorithms for correlated input signals
called colored input signals. However, the LMS-type and APA-type algorithms use L2-
norm optimization; therefore, they have performance degradation when system output
noise includes impulsive noise.

There are many kinds of adaptive-filtering algorithms that were recently proposed to
achieve robustness against impulsive noise as can be shown in Figure 1 [15–26]. Unfortu-
nately, since these adaptive-filtering algorithms use the L1-norm optimization, they have a
slow convergence rate. To overcome this convergence-rate drawback, the affine projection
sign algorithm (APSA) [16] was suggested for accomplishing a rapid convergence rate.
APSA also uses the L1-norm optimization approach, but has a fast convergence rate owing
to multiple input vectors and its specific constraint.

On the other hand, there are many studies on step-size adjustment for adaptive-
filtering algorithms [20–27]. It is clear that a large step results in fast convergence, but has a
large steady-state estimation error, and a small step leads to slow convergence and a small
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steady-state estimation error. This trade-off between the convergence rate and steady-state
estimation error is obvious with APSA; therefore, a variable-step-size method is efficient in
guaranteeing a fast convergence rate with a small steady-state estimation error. Moreover,
because step-size adjustment is effective in improving the filter performance of APSA-type
algorithms, various strategies are available for variable-step-size APSA (VSS-APSA) [20,21].

This paper presents a new variable matrix-type step-size APSA (VMSS-APSA) to
enhance filter performance in terms of convergence rate and steady-state estimation error.
VMSS-APSA utilizes the mean-square deviation (MSD) of APSA to judiciously calculate
a step size for APSA. The proposed VMSS-APSA derives the upper bound of the MSD
using the upper bound of the L1-norm of the measurement noise because the MSD of
APSA cannot be computed accurately. The optimal matrix-type step size is derived at every
iteration by minimizing the upper bound of the MSD. The performance of the proposed
VMSS-APSA is demonstrated via system-identification scenarios when impulsive noise
occurs. The proposed VMSS-APSA is compared with the original APSA [16], the two
existing types of VSS-APSA [20,21], and robust variable-step-size APA (RVSS-APA) [22].

The remainder of this paper is arranged as follows. Section 2 summarizes the original
APSA. Section 3 presents a novel variable matrix-type step-size APSA. Section 4 presents the
simulation results to validate the performance of the proposed algorithm. Lastly, Section 5
concludes this paper.

Figure 1. Structure of an adaptive filter in the presence of measurement noise vo(n) and impulsive
noise vimp(n), with v(n) = vo(n) + vimp(n).

2. Original APSA

Let data d(n) be generated from an unknown target system:

d(n) = uT(n)wo + v(n), (1)

where wo is an m-dimensional column vector of the target system that needs to be estimated,
v(n) denotes the measurement noise that has variance σ2

v , and the input data vector is
u(n) = [u(n) u(n− 1) · · · u(n−m + 1)]T . The input data matrix, desired output vector, a
priori output error vector, and a posteriori output error vector are defined as follows:

U(n) = [u(n) u(n− 1) · · · u(n−M + 1)], (2)

d(n) = UT(n)wo + v(n), (3)

e(n) = d(n)−UT(n)ŵ(n),

= [e(n) e(n− 1) · · · e(n−M + 1)]T , (4)

ep(n) = d(n)−UT(n)ŵ(n + 1), (5)
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where v(n) = [v1(n) v2(n) · · · vM(n)] is a measurement-noise vector whose each compo-
nent vi(n) for 0 < i ≤ M has zero mean and variance σ2

v , and ŵ(n) is the estimate of wo at
nth iteration.

The original APSA is derived from the minimization of the L1-norm of the a posteriori
output error vector with a condition on the filter coefficient vectors as follows:

min
ŵ(n+1)

||d(n)−UT(n)ŵ(n + 1)||1 (6)

subject to ||ŵ(n + 1)− ŵ(n)||22 ≤ µ2, (7)

where µ is the step size that guarantees that the filter coefficient vectors do not change
suddenly. This minimization problem with a constraint (7) can be solved on the basis
of Lagrangian multipliers. Therefore, the filter coefficient vector of the original APSA is
represented by recursively using the following update equation [16]:

ŵ(n + 1) = ŵ(n) + µ
U(n)sgn(e(n))√

sgn(eT(n))UT(n)U(n)sgn(e(n))
. (8)

where sgn(·) denotes the sign function, and sgn(e(n)) , [sgn(e(n)), . . . , sgn(e(n−M + 1))]T.

3. Variable Matrix-Type Step-Size APSA
3.1. Optimal Matrix-Type Step Size

The filter update equation of the original APSA (8) can be modified to adjust the
matrix-type step size as follows:

ŵ(n + 1) = ŵ(n) +
U(n)Λ(n)sgn(e(n))√

sgn(eT(n))UT(n)U(n)sgn(e(n))
, (9)

where diagonal matrix Λ(n) denotes the matrix-type step size as follows:

Λ(n) =


µ1(n) 0 . . . 0

0 µ2(n) . . . 0
...

...
. . .

...
0 0 . . . µM(n)

. (10)

Although the regularization parameter is commonly adopted in the denominator of
Equation (9), it was omitted to simplify the proposed analysis [13]. The proposed filter
update equation of APSA (9) can be described with respect to w̃, where the filter-coefficient
error vector is defined as w̃(n) , w− ŵ(n), and the matrix-type step size is expressed in
variable parameter Λ(n) as follows:

w̃(n + 1) = w̃(n)− U(n)Λ(n)sgn(e(n))√
sgn(eT(n))UT(n)U(n)sgn(e(n))

. (11)

Equation (11) is squared, and the expectation of both sides is taken to derive the
updated recursion of MSD. Accordingly, the updated recursion of MSD can be expressed
as follows:

E
(
‖w̃(n + 1)‖2

)
= E

(
‖w̃(n)‖2

)
− 2E

(
sgn
(
eT(n)

)
ΛT(n)UT(n)w̃(n)√

sgn(eT(n))UT(n)U(n)sgn(e(n))

)
+ ΛT(n)Λ(n)

, E(‖w̃(n)‖2) + Φ(µ1(n), . . . , µM(n)), (12)
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where notation ‖ · ‖ denotes the L2 norm, and Φ(µ1(n), . . . , µM(n)) is a function of the
matrix-type step size.

To minimize the MSD of VMSS-APSA from iteration n to n + 1, function
Φ(µ1(n), . . . , µM(n)) has to be minimized by choosing the optimal step size. Φ(µ1(n),
. . . , µM(n)) can be described as follows:

Φ(µ1(n), . . . , µM(n))= −2µ1(n)E

(
sgn(e1(n))(e1(n)−v1(n))√

sgn(eT(n))UT(n)U(n)sgn(e(n))

)
+ · · ·

−2µM(n)E

(
sgn(eM(n))(eM(n)−vM(n))√

sgn(eT(n))UT(n)U(n)sgn(e(n))

)
+ µ2

1(n) + · · ·+ µ2
M(n)

=−2µ1(n)E

(
|e1(n)|−sgn(e1(n))v1(n)√

sgn(eT(n))UT(n)U(n)sgn(e(n))

)
+ · · ·

− 2µM(n)E

(
|eM(n)|−sgn(eM(n))vM(n)√

sgn(eT(n))UT(n)U(n)sgn(e(n))

)
+ µ2

1(n) + · · ·+ µ2
M(n), (13)

where the UT(n)w̃(n) term can be represented through Equations (3) and (4) as

UT(n)w̃(n) = UT(n)wo −UT(n)ŵ(n)

= e(n)− v(n). (14)

The sgn(ei(n))vi(n) term cannot be calculated exactly; thus, Φ(µ1(n), . . . , µM(n))
cannot be obtained directly for 0 < i ≤ M. Thus, the upper bound of sgn(ei(n))vi(n) can
be found using the stochastic approach as follows [24–26]:

sgn(ei(n))vi(n) ≤ |vi(n)|, ∀0 < i ≤ M, (15)

Because the absolute value of |vi(n)| is not an exactly measurable value, |vi(n)| is
approximated as its expectation value. Moreover, because |vi(n)| has the characteristic of a
half-normal distribution, |vi(n)| can be represented as follows:

|vi(n)| ≈ E(|vi(n)|)

=

√
2
π

σv. (16)

where σv is the standard deviation of measurement noise vi(n).
On the basis of the stochastic approximation, the upper bound of function Φ(µ1(n), . . . , µM(n))

can be expressed as follows:
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Φ(µ1(n), . . . , µM(n)) ≤ −2µ1(n)E

(
|e1(n)|−|v1(n)|√

sgn(eT(n))UT(n)U(n)sgn(e(n))

)
+ . . .

− 2µM(n)E

(
|eM(n)|−|vM(n)|√

sgn(eT(n))UT(n)U(n)sgn(e(n))

)
+ µ2

1(n) + · · ·+ µ2
M(n)

≈ −2µ1(n)E

 |e1(n)|−
√

2
π σv√

sgn(eT(n))UT(n)U(n)sgn(e(n))

+ . . .

− 2µM(n)E

 |eM(n)|−
√

2
π σv√

sgn(eT(n))UT(n)U(n)sgn(e(n))


+ µ2

1(n) + · · ·+ µ2
M(n)

, Φu(µ1(n), . . . , µM(n)). (17)

Step size µi(n) that minimizes Φ(µ1(n), . . . , µM(n)) sharply decreases the MSD value
from iteration n to n+ 1. Therefore, the partial differential of (17) with respect to µ(n) yields

∂Φ(µ1(n), . . . , µM(n))
∂µi(n)

= −2µi(n)E

 |ei(n)|−
√

2
π σv√

sgn(eT(n))UT(n)U(n)sgn(e(n))


+ 2µi(n), ∀0 < i ≤ M. (18)

In (18), because ∂Φ(µ1(n), . . . , µM(n))/(∂µi(n)) = 0, the derived step size µi(n) can
be obtained as follows:

µi(n) = E

 |ei(n)|−
√

2
π σv√

sgn(eT(n))UT(n)U(n)sgn(e(n))

, ∀0 < i ≤ M. (19)

3.2. Practical Considerations

The derived step size can minimize the upper bound of Φ(µ1(n), . . . , µM(n)). Unfortu-
nately, directly determining the accurate step size is difficult owing to the expectation term
in (19). Thus, to deal with the expectation term, the moving-average method is adopted
as follows:

µi(n)=
{

αµi(n−1)+(1−α)min(βi(n), µi(n−1)), if βi(n)>0
µi(n−1), else

(20)

where α (0 ≤ α < 1) is a smoothing factor, and

βi(n) =
|ei(n)|−

√
2
π σv√

sgn(eT(n))UT(n)U(n)sgn(e(n))
, ∀0 < i ≤ M. (21)

Practically, the step size can be a negative value due to the stochastic approximation

in (15). Therefore, the proposed VMSS-APSA is updated when |ei(n)| is larger than
√

2
π σv.

Moreover, smoothing factor α is selected as 1−M/(κm), where κ is a constant value. The

initial value of the step size, µi(0), is set to
√

σ2
d /(σ2

um), where σ2
d and σ2

u are the powers of
the observed output signals and input signals. Further, the measurement-noise variance can
be estimated through the existing variance-estimation algorithms even though impulsive
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noise occurs [24,28]. Equation (8) and Table 1 indicate that the original APSA and proposed
VMSS-APSA had a symmetric relationship to maintain robustness against impulsive noise.

Table 1. Summary of the proposed VMSS-APSA’s pseudocode.

Initialization values: ŵ(0) = 0, µi(0) =
√

σ2
d

σ2
um

∀0 < i ≤ M

Parameter setting: α = 1− M
κm

BEGIN

FOR i = 1 to M DO

βi(n) =
|ei(n)|−

√
2
π σv√

sgn(eT(n))UT(n)U(n)sgn(e(n))

IF βi(n) > 0
µi(n) = αµi(n−1)+(1−α)min(βi(n), µi(n−1))

ELSE
µi(n) = µi(n− 1)

END
ENDFOR
ŵ(n + 1) = ŵ(n) + U(n)Λ(n)sgn(e(n))√

sgn(eT(n))UT(n)U(n)sgn(e(n))

END

3.3. Reset Algorithm for a Sudden Change in the System

Although the practical method described in Section 3.2 allows for the proposed VMSS-
APSA to guarantee robustness against impulsive noise, such a method leads to a weakness
when the unknown system is suddenly changed. To overcome this weakness, the modified
version of the step-size reset algorithm [23] was employed to maintain filter performance in
the case of a sudden change in the system. The modified parts of the existing reset algorithm
are related to the matrix-type conversion and the use of µavg instead of µ as follows:

if mod(n, VT) = 0 (22)

ctrlnew =
QTMQ
VT −VD

end

if (ctrlnew − ctrlold)/µavg(n− 1) > ξ (23)

µi(n) = µ(0)

elseif ctrlnew > ctrlold (24)

µi(n) = µi(n− 1) + (ctrlnew − ctrlold)

else

Proposed Step-Size Update of VMSS-APSA

ctrlold = ctrlnew (25)

where mod(p,q) denotes the remainder of the division between integers p and q, VT and VD

are positive integers (VD < VT), Q = sort( |e(n)|
||u(n)||2+ε

, ..., |e(n−VT+1)|
||u(n−VT+1)]||2+ε

)T (where sort(·) is
the ascending-order operator), M = diag(1, ..., 1, 0, ..., 0) is a diagonal matrix with its first
VT −VD elements set to one, and ξ is a threshold value. Table 1 summarizes the pseudocode
of the proposed VMSS-APSA.
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4. Simulation Results

The performance of the proposed algorithm was tested through computer simulations
of system identification scenarios. An unknown impulse response was randomly generated
with 128 taps (m = 128). Further, the adaptive filter and the unknown system were assumed
to have the same number of taps. Each adaptive filter was tested with projection order
M = 2, 4, 6. In the simulations, measurement noise v(n) that is white, zero-mean Gaussian
noise was added to uT(n)wo with signal-to-noise ratio (SNR) = 30 dB, where SNR is defined
as follows:

SNR , 10 log10

(
E[(uT(n)wo)2]

E[v(n)2]

)
. (26)

The normalized mean-square deviation (NMSD) is defined as follows:

NMSD , 10 log10

(
E[w̃T(n)w̃(n)]

wT
o wo

)
. (27)

In the proposed VMSS-APSA, smoothing factor α was consistently set to 1−M/(κm)
with κ = 2. The simulation results were obtained via ensemble averaging over 30 trials.

4.1. System Identification Scenarios Under Impulsive Noise

A white input signal was generated using a white, zero-mean Gaussian random
sequence. Further, colored input signals were generated by filtering white Gaussian noise
through the following systems:

G1(z) =
1

1− 0.9z−1 ,

G2(z) =
1 + 0.6z−1

1 + 1.0z−1 + 0.21z−2 .

Impulsive noise vimp(n) was added to the system output signal. Impulsive noise
vimp(n) was generated as vimp(n) = k(n)A(n), where k(n) is a Bernoulli process with a
probability of success P[k(n) = 1] = Pr, and A(n) is zero-mean white Gaussian noise with
power σ2

A = 1000σ2
y . Pr denotes the probability of impulsive-noise occurrence, and Pr

was set to be 0.3 for realizing harsh impulsive-noise scenarios as shown in Figure 2. The
parameters for the step-size reset in the proposed algorithm were set as recommended
by [23] as follows: VT = 3m, VD = 0.75VT , ξ = 25, ε = 10−6.

Figure 2. Characteristic of impulsive noise during 3× 105 iterations (Pr = 0.3).
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Figures 3–5 show the NMSD learning curves for the original APSA, VSS-APSA, and
the proposed VMSS-APSA using the white input signal with impulsive noise for various
projection order levels: M = 2, 4, 6. Because impulsive noise occurred with an occurrence
probability of 0.3 in the simulations, the original APA based on L2-norm optimization
diverged, as revealed in Figure 3. Figures 6 and 7 also show the NMSD learning curves for
the original APSA, VSS-APSA, and the proposed VMSS-APSA using the colored input sig-
nals G1(z) and G2(z) with impulsive noise. Moreover, Figure 8 shows the NMSD learning
curves for the original APSA, VSS-APSA, and the proposed VMSS-APSA using the colored
input signals G1(z) with α-stable noise (α = 1.5). To ensure a fair comparison between
the existing VSS-APSAs and the proposed VMSS-APSA, we set the value of µ(0) and

µi(0), ∀0 < i ≤ M as
√

σ2
d /σ2

um in all algorithms. As shown in Figures 3–8, the proposed
VMSS-APSA exhibited the fastest convergence rate and lowest steady-state estimation
error compared with existing algorithms. In addition, the computational complexity of the
proposed VMSS-APSA was moderate and similar to the existing algorithms because the
additional complexity was only based on the repetitive statement in Table 1.

Figure 3. NMSD learning curves for the white input with impulsive noise (Pr = 0.3, M = 2),
(d) VSS-APSA [20] and (f) VSS-APSA [21].

Figure 4. NMSD learning curves for the white input with impulsive noise (Pr = 0.3, M = 4),
(d) VSS-APSA [20] and (f) VSS-APSA [21].
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Figure 5. NMSD learning curves for the white input with impulsive noise (Pr = 0.3, M = 6),
(d) VSS-APSA [20] and (f) VSS-APSA [21].

Figure 6. NMSD learning curves for the colored input generated by G1(z) with impulsive noise
(Pr = 0.3, M = 2), (c) VSS-APSA [20] and (f) VSS-APSA [21].

Figure 7. NMSD learning curves for the colored input generated by G2(z) with impulsive noise
(Pr = 0.3, M = 2), (c) VSS-APSA [20] and (f) VSS-APSA [21].
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Figure 8. NMSD learning curves for the colored input generated by G2(z) with α-stable noise (α = 1.5,
M = 2), (c) VSS-APSA [20] and (f) VSS-APSA [21].

4.2. System Sudden-Change Scenarios

Figures 9–11 show that, although the system suddenly changed, the proposed algo-
rithm performed well because of the reset algorithm described in Section 3.3.

Figure 9. NMSD learning curves for the white input with impulsive noise (Pr = 0.3, M = 2). The
system abruptly changed wo → −wo at iteration 1.5× 105, (c) VSS-APSA [20] and (f) VSS-APSA [21].

The parameters for the step-size reset in RVSS-APA [22] and VMSS-APSA were set con-
sistently as recommended by [23] as follows: VT = 3M, VD = 0.75×VT , ξ = 25, ε = 10−6.
VSMM-APSA maintained filter performance when the unknown system was suddenly
changed owing to the reset algorithm after 1.5× 105 iterations. Thus, from simulation
results obtained under various scenarios, the performance of the proposed algorithm
was verified.
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Figure 10. NMSD learning curves for the colored input generated by G1(z) with impulsive noise
(Pr = 0.3, M = 2). The system abruptly changed wo → −wo at iteration 1.5× 105, (c) VSS-APSA [20]
and (f) VSS-APSA [21].

Figure 11. NMSD learning curves for the colored input generated by G2(z) with impulsive noise
(Pr = 0.3, M = 2). The system abruptly changed wo → −wo at iteration 1.5× 105, (c) VSS-APSA [20]
and (f) VSS-APSA [21].

5. Conclusions

This paper presented a novel variable matrix-type step-size algorithm for APSA based
on the minimization of MSD. The proposed VMSS-APSA uses the upper bound of the
MSD, which can be calculated using the upper bound of the L1-norm of the measurement
noise because the MSD of APSA cannot be computed accurately. The optimal matrix-type
step size can be given by minimizing the upper bound of the MSD at every iteration,
and it improves the filter performance in terms of the convergence rate and steady-state
estimation error. The experimental results demonstrate that the proposed VMSS-APSA
has a faster convergence rate and a smaller steady-state estimation error compared with
those of existing adaptive-filtering algorithms in a system-identification scenario with
impulsive noise.
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