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Abstract: This study aims to develop mathematical models to improve multi-performance metrics,
such as relative density and operating costs, in laser powder bed fusion (LPBF), also known as
selective laser melting, a metallic additive manufacturing technique, by optimizing the printing
process parameters. The work develops a data-driven model for relative density based on measure-
ments and an analytical model for operating costs related to the process parameters. Optimization
models are formulated to maximize relative density or minimize operating costs by determining the
optimal set of process parameters, while meeting a target level of the other performance metrics (i.e.,
relative density or operating costs). Furthermore, new metrics are devised to test the sensitivity of the
optimization solutions, which are used in a novel robust optimization model to acquire less sensitive
process parameters. The sensitivity analysis examines the effect of varying some parameters on the
relative density of the fabricated specimens. Samples with a relative density greater than 99% and a
machine operating cost of USD 1.00 per sample can be produced, utilizing a combination of low laser
power (100 W), high scan speed (444 mm/s), moderate layer thickness (0.11 mm), and large hatch
distance (0.4 mm). This is the first work to investigate the relationship between the quality of the
fabricated samples and operating cost in the LPBF process. The formulated robust optimization model
achieved less sensitive parameter values that may be more suitable for real operations. The equations
used in the models are verified via 10-fold cross-validation, and the predicted results are further
verified by comparing them with the experimental data in the literature. The multi-performance
optimization models and framework presented in this study can pave the way for other additive
manufacturing techniques and material grades for successful industrial-level implementation.

Keywords: laser powder bed fusion; optimization; relative density; regression; cost modeling; robustness

1. Introduction

In the last decade, additive manufacturing (AM) has seen tremendous growth in
various sectors, including healthcare, automotive, electronics, and aerospace. AM has
shown greater flexibility than conventional techniques for the manufacture of small-volume,
complicated, and customized components [1]. The laser powder bed fusion (LPBF) process,
also commonly referred to as selective laser melting (SLM), is the most common metal AM
technique, in which layers of metallic powder are selectively melted using a high-power
laser beam and nearly fully dense sections are fabricated for each layer [2]. However,
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despite the popularity of LPBF, its application in industry is currently limited, due to
inherent process characteristics associated with high cost in correlation to the process
parameters [3–5].

For most of the functional applications of LPBF-produced parts, dimensional accuracy,
surface roughness, relative density (RD), and strength of the parts are considered important
properties [6]. In addition to this, the associated operational cost plays a key role from
an economic point of view. While a higher RD of parts fabricated by the LPBF process is
preferred or required in some industries (e.g., the aerospace industry), it may incur a higher
manufacturing cost due to higher operating costs, associated with longer processing times
or increased energy consumption. Therefore, optimizing process parameters is critical
for process planning, maintaining acceptable finished part quality, as well as reducing
operational costs in order to increase the commercial adoption of the technology. Extensive
research is available on AM process optimization to produce metal parts with the desired
quality and properties.

Researchers have made several attempts to improve the performance of the AM parts
through the formulation of statistical models followed by optimization techniques [7].
Some of the statistical models used in the literature were the Taguchi method [8], response
surface methodology [9], regression analysis, and design of experiment [10]. Because
AM systems are non-linear and complex, powerful optimization techniques were used
to identify optimal parameter values for better-manufactured part quality. Some of the
optimization algorithms used in the literature were the Genetic Algorithm (GA) [11] and
swarm intelligence algorithm [12]. Major research work has been conducted in the area
of optimization of process parameters for different metal AM processes. The most impor-
tant optimization approaches can be grouped into two main categories: single-objective
optimization and multi-objective optimization.

Many researchers utilized a single-objective optimization approach by investigating
the effects of certain important process parameters on a single property of the fabricated
parts (i.e., RD). Read et al. [13] studied the influence of LPBF parameters on the porosity
fraction of fabricated AlSi10Mg by utilizing a statistical experimental design. Their results
suggested using high laser power, low scan speed, and small hatch spacing to minimize the
porosity content within the material. Laakso et al. [14] followed an optimization approach
based on finite element analysis to study the influence of process parameters, such as laser
power, scan speed, and hatch width on the RD of tool steel H13 parts. An optimal parameter
window was suggested, and steel parts with high RD were fabricated by LPBF. Similarly,
Aboutaleb et al. [15] proposed an accelerated process optimization methodology and inves-
tigated the effect of laser power, laser velocity, hatch distance, and layer thickness on the RD
of 17-4 PH stainless-steel parts fabricated by LPBF. Their proposed methodology obtained
a combination of optimal process parameters with fewer experimental trials, resulting in
an average part density of 99.2%. Moreover, a similar investigation about the effect of
laser power, scan speed, and hatch distance on the RD of AlSiMg0.75 aluminum alloy and
Cu-15Sn copper alloy was conducted by Bai et al. [16] and Mao et al. [17], respectively, using
the design of experiment-based optimization. Nearly fully dense specimens (>99%) were
fabricated utilizing the optimal processing parameter set in both studies. AlFaify et al. [9]
used the response surface method to obtain optimal parameter combinations for high-
density stainless-steel 316L (SS316L) parts. Sample RD of approximately 99% was attained
at a point distance = 0.07 mm, exposure time = 0.12 ms, hatching distance = 0.12 mm, and
layer thickness = 0.05 mm. Another study, by Yakout et al. [18], obtained an optimum
process window for laser process parameters and dense components from Invar 36 and
SS316L with RD greater than 97% were fabricated. More recently, Vallejo et al. [19] pro-
vided a comprehensive understanding of the effects of laser power, scan speed, and hatch
spacing on the densification behavior of SS316L. Samples with RD greater than 99.8% were
fabricated at a power = 200 W, scan speed = 800 mm/s, hatch spacing = 0.12 mm, and layer
thickness = 0.03 mm.
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In addition to the RD, other part characteristics were investigated using the single-
optimization approach by several researchers. The relationship between the surface
roughness and input processing parameters of AlSiMg0.75 aluminum alloy parts fab-
ricated by LPBF was studied by Majeed et al. [20]. Their study utilized a design of
experiment approach and obtained the lowest surface roughness of 3.35 µm at 400 W
laser power, 600 mm/s of scan speed, and 0.25 overlap rate. Using the same approach,
Samantaray et al. [21] found the optimal process parameters, including laser power, scan
speed, porosity percentage, laser spot size, and powder bed thickness, which resulted in a
maximum sintering depth of 3 mm for AlSiMg0.75 aluminum alloy parts produced by the
direct metal laser sintering process.

Multi-objective optimization has also been used to improve multiple characteristics
in different metallic alloys fabricated by LPBF. Arısoy et al. [22] investigated the optimiza-
tion of microstructural properties, including grain size and growth directions, for IN625
nickel alloy parts based on laser power, scan velocity, hatch distance, and scan strategy.
Process parameters that resulted in the optimum responses with trade-offs were identi-
fied. Shi et al. [23] experimentally analyzed the effect of laser power and scan speed on
the building rate and RD of Ti-6Al-4V titanium alloy parts. Using the optimized process
parameters, a high RD of 99.99% was observed and a maximum building rate of 9 mm3

was reached.
Maamoun et al. [24] utilized a design of experiment to obtain the optimal settings

of laser power, scanning speed, and hatch spacing. Their study achieved high-quality
AlSi10Mg and Al6061 parts, in terms of RD, porosity, surface roughness, and dimensional
accuracy. Mutua et al. [25] identified the optimal combination of laser power, scan speed,
and spot diameter that affected the RD and surface quality of maraging steel. The optimum
process conditions resulted in a maximum RD of 99.8% and good surface quality, with a
roughness value of 35 µm. A study by Aboutaleb et al. [26] proposed a multi-objective ac-
celerated process optimization approach utilizing data from previous studies and obtained
the highest RD of 98.39% and elongation to failure of 2.22% for Ti-6Al-4V parts.

Other studies applied a multi-objective optimization approach for the LPBF process to
fabricate SS316L parts. Wang et al. [27] determined the optimal process settings of speed
function and focus offset that resulted in high RD (99%) and well-melted top-build surface
SS316L parts, fabricated by electron beam melting. Deng et al. [28] and Sun et al. [29] used
different experimental techniques to optimize process parameters and obtain the desired
mechanical properties for SS316L parts. They produced high-quality parts in terms of tensile
strength, density, and surface roughness that can further improve the fatigue properties
of the material. Similarly, Pant et al. [30] followed a design of experiment approach and
developed an optimization model for SS316L parts produced by direct metal laser sintering.
The model resulted in the optimal settings of laser power, scan speed, and powder flow
rate that achieved a catchment efficiency of 40.72% and clad height of 0.667 mm. Recently,
a US patent by Bonakdar et al. [31] presented a statistical and experimental methodology
for optimizing target output material properties in an AM process.

The aforementioned studies confirm that the optimization of AM process parameters
is an essential task for obtaining high-quality parts with superior properties [32]. However,
the biased nature of the single-objective optimization approach and the complexity of
multi-objective optimization may pose a challenge in efficiently utilizing these approaches.
Therefore, there is a need to develop an efficient optimization approach that reduces these
limitations. To the best of our knowledge, no prior research has addressed both the RD and
operating cost of samples fabricated by LPBF. Here, we raise a few important questions
that prior studies could not address adequately. What is the most effective way to optimize
LPBF process parameters? How can we model the important metrics mathematically for
engineering methods?

To address these questions, this study aims at developing mathematical models to
optimize the LPBF process parameters concerning the RD of SS316L stainless-steel samples
and the operating cost of the LPBF process. To achieve this goal, this study sets the first re-
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search objective as the development of a data-driven model for RD and an analytical model
for operating costs, using several components related to the LPBF process parameters. The
second objective is to develop optimization models to obtain the optimal set of process
parameters, namely, laser power, scan speed, hatch distance, and layer thickness, consider-
ing different performance metrics, such as RD and operating costs, and, thereby, achieve a
rational trade-off between the RD and operating cost. The central hypothesis in this study
is that the formulation and solution for such a multi-performance metric optimization
problem can provide optimal process parameters, which can render samples with high
RD at an acceptable operating cost, without the need to perform extensive experimental
trials. In addition, the present study examines a method to acquire less sensitive process
parameters and conducts a sensitivity analysis to understand the effect of varying some
model input parameters on the RD of the samples.

The rest of the paper is organized as follows. Section 2 describes the methods and
Section 3 provides and discusses the basic results. Section 4 presents a robust optimiza-
tion model, extended from the model in Section 2. Then, Section 5 additionally con-
ducts sensitivity analysis by considering different fabrication scenarios. Lastly, Section 6
draws conclusions.

2. Methods

Figure 1 illustrates the overall process of the methods used in this study to evaluate
the model and optimize the process parameters of SS316L samples fabricated by LPBF.
The stainless-steel-grade SS316L is widely used in metal AM processes. The alloy is
considered a desirable industrial material because of its outstanding corrosion resistance,
good weldability, high strength, and relatively low cost [27]. In the first stage of this study,
an extensive dataset is created by systematically combining experimental results from prior
studies, including our recent work [33]. In the data modeling stage, the collected data
are split for training and testing processes and a regression model is developed based
on the training data. Then, cross-validation is applied to check the data model accuracy
according to the mean square error (MSE) and coefficient of determination (R2). Finally,
in the optimization stage, a multi-performance metric optimization model is formulated
using the obtained regression model and a developed cost model for the LPBF process.
Based on the optimization model, a novel robust optimization model is further formulated
to acquire less sensitive process parameters. The GA solves the optimization models to
determine the optimal process parameters. The following sensitivity analysis examines the
variation in the quality of the samples with respect to the model input parameter change.

2.1. Data Collection

The experimental data used in this study were extracted from different studies related
to the RD of SS316L samples fabricated by LPBF, as presented in Table 1. The studies
contain different numbers of observations representing the experimental parameters and
the measured RD of SS316L samples fabricated by different LPBF machines. The last
column provides the mean RD of each study.
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Table 1. Studies from the literature used for data collection.

No. Reference #Data Machine Mean RD

1 [34] 43 Concept Laser GmbH M2 97.67%

2 [35] 31 Concept Laser GmbH M1 98.08%

3 [36] 13 Concept Laser GmbH Mlab-Cusing 94.56%

4 [37] 44 Concept Laser GmbH Mlab-Cusing 86.06%

5 [38] 9 EOS GmbH M290 99.79%

6 [39] 6 SLM Solutions GmbH 95.77%

7 [40] 10 SLM Solutions GmbH 280HL 98.59%

8 [41] 3 Renishaw AM250 97.97%

9 [42] 9 Renishaw AM250 96.23%

10 [9] 24 Renishaw AM250 97.53%

11 [23] 4 Renishaw AM400 99.87%

12 [43] 32 Laseradd DiMetal-100 93.90%

13 [33] 20 EOS M400-4 98.60%

The compiled dataset contains 248 observations. Data cleansing started with the
detection of potential outliers by observing the standardized residuals of least-squares
regression. An observation with a standardized residual greater than 3 (in absolute value)
is considered to be an outlier [44]. The outlier-removal process reduced the size of the final
dataset to 197 observations.

2.2. Relative Density (RD) Data Modeling

A significant number of parameters can affect the quality of LPBF parts, where laser
power, scan speed, hatch distance, and layer thickness are most commonly investigated
in the literature. One of the major challenges in manufacturing metallic parts for final
applications is accurately predicting the characteristics of the fabricated parts due to the
non-linear and complex nature of the process [32]. Regression analysis is employed to
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build a mathematical relationship between the RD and process parameters. Polynomial
regression is a special case of multiple linear regression where a curvilinear relationship
is established between the dependent and independent variables. Interactions between
different combinations of variables can be taken into account by including interaction
terms in the polynomial model. Several studies in the literature utilized second-order
multivariable polynomial regression to establish a relationship model between the process
parameters and part quality of SS316L parts fabricated by LPBF [18,30,45].

Polynomial regression has been widely used in data modeling, especially for AM pro-
cesses. Moreover, a closed-form mathematical expression is highly preferred to formulate
an optimization model (see Section 3). Thus, the present study develops a second-order
multivariable polynomial regression model with interaction terms to predict the RD of
SS316L samples fabricated by LPBF. The RD of the fabricated samples is modeled as a
function of the selected process parameters (i.e., laser power, scan speed, hatch distance,
and layer thickness). Using MATLAB R2021a software, a second-order multivariable
polynomial model was obtained:

RD(p, v, h, t) = 82.688 + 0.13659 p− 0.0030294 v + 122.93 h− 169.9 t + 0.000075901 pv + 0.67386 ph +
1.4043 pt− 0.012368 vh− 0.16949 vt + 500.94 ht− 0.00038539 p2 − 0.0000039611 v2 − 9.2705 h2 −

1050 t2,
(1)

where RD (p, v, h, t) is RD, p is laser power in W, v is scan speed in mm/s, h is hatch distance
in mm, and t is layer thickness in mm. The polynomial model for the RD involves terms
with the independent variables (p, v, h, t), quadratic variables (p2, v2, h2, t2), and two-way
interactions (pv, ph, pt, vh, vt, ht).

In order to judge the adequacy of the fitted regression model, k-fold cross-validation
is used to compare the predicted and observed values of RD. The fold number k is often
chosen to be 5 or 10 and represents the number of parts into which the data are divided; k-1
folds for training and the remaining fold is used for testing the model [46,47]. The accuracy
of the model is evaluated using the average MSE and R2 from 10 folds, and the developed
model appears to fit the data well with R2 of 82.49% and MSE of 4.216. Considering
other machine learning algorithms tested for a similar system by Abdulla et al. [33] and
Barrionuevo et al. [46], the developed model showed a sufficiently high R2 value. Thus, the
model may be suitable for predicting the RD of SS316L samples fabricated by LPBF. It is
worth noting that excluding the small coefficient terms (i.e., p2 and v2) was not helpful in
improving R2 and MSE.

2.3. Cost Modeling

Due to the commercial impacts of the high production cost of AM, several researchers
have placed a strong emphasis on cost estimation and reduction for AM techniques [48–51].
The production cost of AM-built parts can be broken down into costs for machine operation,
labor, and material. Labor cost is determined by the interaction of labor forces, including
the costs of setting up the machine, operating software, maintenance, preprocessing, and
postprocessing [52]. Material cost depends on the mass and price of raw materials used
in production. Machine operating cost is one of the most significant costs involved in
AM. Most of the cost models established in the literature are based on assumed fixed
process parameters. However, the appropriate selection of process parameters can help
save production time, reduce costs, and improve overall productivity.

In LPBF, laser beams selectively melt powder layers while ensuring complete melting
along the scan track, allowing fusion to occur between tracks and successive layers, and
resulting in dense parts with good mechanical performance [53]. This study presents cost
models based on the specifications of the EOS M 400 machine. Figure 2 illustrates the
sample layout in the chamber of the LPBF system under consideration. Samples are divided
into a number of layers based on the layer thickness, and a rotating roller evenly distributes
the metal powder across the substrate plate. Then, selected areas in the layer are melted
and fused with a high-power laser. After completing the scan of one layer, the substrate
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moves down by a certain distance equal to the layer thickness and a new layer of powder
is deposited. The layer-by-layer process repeats until the samples are completed [54].
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The build length of the EOS M 400 machine is 400 mm [55]. It is assumed that cubic
SS316L samples with 10 mm per side are fabricated with a distance of 2.5 mm between
each sample in the build platform.

Machine operating cost is controllable by adjusting process parameters, while labor
and material costs are not directly related to the process parameters. Thus, the scope of
the cost analysis in this study focuses only on the machine operating cost. If needed, the
total production cost can be calculated by the sum of the resultant operating cost with the
material and labor costs that need further analysis for a selected manufacturing scenario.
In addition, even though the LPBF process is usually utilized for the batch production
of parts, analysis of the operating cost in this study is only based on a single-specimen
configuration. Hence, the machine operating cost (Co) is estimated based on two main
components, fabrication cost per sample (C f ) and energy cost per sample (Ce), via

Co = C f + Ce (2)

The fabrication cost C f is mainly related to the operation rate of the AM machine and
is calculated by multiplying the fabrication time (Tf ) in seconds by the machine’s hourly
operating cost (Cmc):

C f = Tf ×
Cmc

3600
(3)

In the LPBF process, the fabrication time is the sum of scanning time (Ts) and recoating
time (Tr):

Tf = Ts + Tr (4)

The laser is controlled by a scanning device that selectively melts the sample cross-
section for each iteration. The scanning time can be calculated by dividing the sample
volume (V) in mm3 by the build rate. The build rate is determined by the product of the
scan speed, hatch distance, and layer thickness. Thus, the scanning time is given by

Ts =
V

v× h× t
(5)

On the other hand, the recoating time is related to the recoating process, which lays or
deposits material on each layer for further processing [56]. The recoating time is calculated
by the product of the number of layers and recoating time per layer (TL) in seconds. The
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number of layers for a sample can be computed by dividing the sample height (H) in mm
by layer thickness. The recoating time is

Tr =
H
t
× TL (6)

From the above equations, the fabrication cost in Equation (3) can be re-written as

C f = (Ts + Tr)×
Cmc

3600
=

(
V

v× h× t
+

H
t
× TL

)
× Cmc

3600
(7)

In Equation (7), the machine’s hourly operating cost (Cmc) is divided by 3600 to make
all time units consistently in seconds.

Metal AM is an energy-intensive process as it utilizes a laser beam or electron beam
with high power density to melt materials fully. The energy consumption of metal AM
processes can be defined in several ways. Energy consumption at the machine level refers to
the energy consumed by the subsystems of the machine and in various operational modes.
On the other hand, energy consumption at the process level is related to the energy flow
distribution in an AM system. This requires understanding the system’s thermal history
and dynamic behavior [56].

The energy consumption in this study is estimated based on the machine level to
provide a generic model that can be utilized in different LPBF processes. The energy con-
sumption cost is calculated as the product of the fabrication time (as defined in Equation (4)),
machine power consumption (Emc) in kW, and electricity rate (Celectricity) in USD /kWh:

Ce =

(
V

v× h× t
+

H
t
× TL

)
× Emc ×

Celectricity

3600
(8)

It is worth noting here that an environmental impact related to energy consumption
can be easily considered by adding an environmental cost to the electricity rate [57]. Finally,
the machine operating cost (Co) in Equation (2) can be re-written as

Co(v, h, t) =
(

V
v× h× t

+
H
t
× TL ×

Cmc

3600

)
+

(
V

v× h× t
+

H
t
× TL

)
× Emc ×

Celectricity

3600
(9)

Equation (9) illustrates the generic model constructed for estimating the machine
operating cost of a sample based on the fabrication and energy costs. Several processing
parameters have an impact on both the operating cost and the RD of the sample. Therefore,
the process parameters should be adjusted carefully to obtain high-quality samples with
acceptable operating costs. The cost model contains several assumptions and constants,
and Table 2 presents the model parameters used in this study.

Table 2. Cost model parameters.

Model Parameters Value Unit

Sample Volume (V) 1000 mm3

Sample Height (H) 10 mm

Recoating time per layer (TL) 0.375 s

Machine’s hourly operating cost (Cmc) 40 USD /h

Machine power consumption (Emc) 16.2 kW

Electricity rate (Celectricity) 0.1376 USD /kWh

The cost model parameters are user defined and can be changed depending on the
required dimensions of the fabricated samples, type of machine used, and country of
fabrication. The cost model in this study is based on the fabrication of cube samples with
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10 mm sides, as illustrated in Figure 2. The geometry of the sample is assumed to be cubic
to avoid any additional costs, such as cleaning (in the case of hollow samples) or removal
of support structures. The recoating time per layer for a single sample was estimated to be
0.375 s based on the specifications of the EOS M 400 and the assumption that the recoating
procedure takes roughly 12 s [58].

The machine’s hourly operating cost is assumed to be USD 40/h, as the typical hourly
operation costs of metal AM machines can range from about USD 37/h to USD 90/h [59].
The machine power consumption is obtained from the specifications of the EOS M 400,
with the typical power consumption of the machine being 16.2 kW within a normal range
of the operating laser power [55]. The electricity rate depends on the region of fabrication
and differs from one country to another. The value of the electricity rate selected for the
cost model is related to the average commercial electricity rate in the U.S. obtained from
ChooseEnergy.com (accessed on 13 September 2021), which is USD 0.1376/kWh [60].

2.4. Optimization Modeling

This section formulates two optimization models utilizing the defined metrics (i.e.,
the RD in Equation (1) and the operating cost per sample in Equation (9)). Since each of
the presented models handles two important performance metrics, we name them multi-
performance metric optimization models. The decision variables in the optimization models
are the parameters of the LPBF process, including laser power (p), scan speed (v), hatch
distance (h), and layer thickness (t). The lower and upper bounds for the process parameters
are presented in Table 3. The process parameters affect the RD and the machine operating
cost of the sample simultaneously. Thus, it is important to determine the optimal set of
process parameters that achieves the highest RD of a sample with a lower operating cost.

Table 3. Process parameters and their levels in the optimization models.

Decision Variable Description Unit Lower Limit Upper Limit

p Laser power W 100 400

v Scan speed mm/s 200 2500

h Hatch distance mm 0.10 0.4

t Layer thickness mm 0.02 0.25

(1) Maximization of relative density

The first optimization model (Model 1) aims at maximizing the RD while maintaining
the machine operating cost (Co) within a limit. The objective, Equation (10), is to maximize
the RD, which is a function of process parameters. The constraint given by Equation (11)
restricts the total machine operating cost to be within the cost limit (C1). Constraints
(12–15) maintain the process parameters within their lower and upper limits, which were
determined based on the min and max values in the dataset used.

Model 1:
Max.RD(p, v, h, t) (10)

subject to
Co(v, h, t) ≤ C1, (11)

200 ≤ v ≤ 2500, (12)

100 ≤ p ≤ 400, (13)

0.10 ≤ h ≤ 0.4, (14)

0.02 ≤ t ≤ 0.25. (15)
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(2) Minimization of machine operating cost

The second optimization model (Model 2) aims to minimize the machine operating
cost of a sample fabricated by LPBF while meeting the minimum RD. Model 2 includes the
objective function (16) to minimize the machine operating cost (Co) of a sample. Constraint
(17) assures that the RD of the sample should be at least at the minimum bound (C2).

Model 2:
Min. Co(v, h, t) (16)

subject to
RD(p, v, h, t) ≥ C2, (17)

and Equations (12)–(15).

(3) Solution method using GA

Since the formulated optimization models are non-linear, they are solved using the
GA in MATLAB. GA is one of the most widely used meta-heuristics that solves non-linear
or large-scale linear optimization problems by reflecting the process of natural evolution.
The GA begins with a random population of a few individuals and progresses to better
populations or groups of individuals. Sometimes, it allows a worse movement at some
iterations randomly to handle the issue of entrapping in a local-optimum existing in a
non-linear problem [61]. GA uses several operators to produce the next generation of the
population, such as scaling, selection, crossover, and mutation [62]. By using different
operators, the incumbent solution value may improve or worsen. Choosing a good set of GA
parameters is usually obtained by trial and error in many heuristics approaches [63]. In this
work, the default options of the GA in MATLAB are utilized. These include a population
size of 50, crossover probability of 0.8, mutation probability of 0.1, and termination criteria
represented by the maximum number of generations, which is fixed at 100.

3. Results and Discussion

Table 4 provides the results of Model 1. Case 1* indicates the optimal process parameter
set obtained from setting the cost limit (C1) to USD 1.00 per sample as a basic cost. Samples
with a maximum RD of 99.26% can be fabricated at a laser power of 100 W, scan speed of
444 mm/s, hatch distance of 0.4 mm, and layer thickness of 0.11 mm. The optimal solutions
of the process parameters indicate that the highest RD can be achieved utilizing low laser
power, high scan speed, moderate layer thickness, and large hatch distance.

Table 4. Optimization results of Model 1 for different cost bounds (C1).

No.
Machine Operating

Cost Bound C1
(USD)

RD
(%)

p
(W)

v
(mm/s)

h
(mm)

t
(mm)

1 * 1.00 99.26 100 444 0.4 0.11

2 0.90 96.8 400 565 0.149 0.203

3 0.80 98.73 108 514 0.4 0.126

4 0.70 98.16 199 341 0.4 0.186

5 0.60 97.15 191 489 0.4 0.173

6 0.50 90.31 270 368 0.4 0.25

7 0.40 87.03 334 521 0.4 0.25

8 0.30 74.77 322 938 0.4 0.25

9 0.20 No solution - - - -
* Optimal process parameter set obtained from setting the cost limit (C1) to USD 1.00 per sample.

The rest of the cases in Table 4 show the variation in the optimal RD with respect
to different cost bounds (C1 values) in Model 1 between USD 1.00 and USD 0.20. As
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C1 decreases, the RD generally decreases until the algorithm cannot find any feasible
combination of process parameters at USD 0.20 per sample. The machine operating cost
per sample (Co), which is restricted by C1 in constraint (11) of Model 1, is a function of the
process parameters. Thus, high bounds for the cost provide more room for improvement in
the RD, as the algorithm has a wider range and more flexibility in finding solutions. Thus,
as C1 decreases, the RD prescribed by the optimization model becomes lower to satisfy a
correspondingly tighter solution space. The solution from Model 1 also shows that simply
lowering machine operating costs is not preferable as it produces low-RD samples, which
might not be acceptable in several industrial fields.

On the other hand, Model 2 minimizes the machine operating cost per sample while
maintaining the RD of the fabricated samples within an acceptable limit. Based on the result
of Model 1, the minimum RD bound (C2) was set to be 99.25% as a basic case for Model
2 and its optimization result is presented in case 6* in Table 5. Samples with a machine
operating cost of USD 1.0246 per sample can be obtained at a laser power of 100 W, scan
speed of 336 mm/s, hatch distance of 0.4 mm, and layer thickness of 0.128 mm. The
obtained machine operating cost per sample resulted from the summation of the fabrication
cost per sample of USD 0.971 and energy cost per sample of USD 0.054. It appears that the
energy cost has a very low contribution to the machine operating cost per sample under
the considered cost structure.

Table 5. Optimization results of Model 2 for different relative density bounds (C2.

No. RD Bound C2
(%)

Machine Operating
Cost C0 (USD)

p
(W)

v
(mm/s)

h
(mm)

t
(mm)

1 98.00 0.6578 169 410 0.398 0.176

2 98.25 0.7348 186 338 0.399 0.178

3 98.50 0.7384 138 461 0.4 0.146

4 98.75 0.8054 113 479 0.4 0.131

5 99.00 0.8895 100 438 0.4 0.125

6 * 99.25 1.0246 100 336 0.4 0.128

7 99.50 1.1619 100 321 0.4 0.116

8 99.75 1.3784 100 316 0.4 0.099

9 100.00 2.2626 100 313 0.4 0.061
* Optimal process parameter set obtained from setting the RD bound (C2) to 99.25%.

Furthermore, the optimal process parameter set obtained from Model 2 is similar to the
optimal set resulting from Model 1 in utilizing a low laser power, high scan speed, moderate
layer thickness, and large hatch distance to produce a sample with a high densification
level (≥99%) and low machine operating cost (below USD 1.00 per sample). Although
the two models examined the same multi-performance metrics within the same parameter
range, the GA has a genetic-evolution-based random search policy and may have examined
different portions of the solution space for each of the non-linear systems and, thus, the
optimal solutions generated are slightly different.

The minimum RD bound (C2) in Model 2 is further examined by varying the mini-
mum allowable RD from 98% to 100%, and the change in the machine operating cost per
sample Co is observed, as shown in Table 5. The higher the RD bound, the higher the
machine operating cost per sample. In general, higher quality in the samples fabricated
by LPBF usually requires an increased fabrication time with proper adjustment of process
parameters, thus, raising overall operating expenses.

The resulting trends obtained from the variation in the performance metric bounds for
both models are in good agreement. Both models showed an increase in the RD with the
increase in the operating cost per sample. Samples with RD between 98% and 99% can be
produced with operating costs between USD 0.70 and USD 0.80 per sample. For samples
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with RD greater than 99%, higher machine operating costs of no less than USD 1.00 per
sample are required.

The analysis of the results from the multi-performance metric optimization models
may be similar to the Pareto optimal concept in multi-objective optimization. By changing
the bound of one performance metric and observing the change in another, the results
examined different Pareto optimal solutions representing the permissible trade-off between
the RD and the machine operating cost per sample. This could assist designers in mak-
ing sensible decisions early in the design stage to optimize part quality and minimize
operating expenses.

4. Robust Optimization

The optimal solutions identified by Model 1 might be sensitive to small changes in the
process parameters. For real-world applications, more robust (i.e., less sensitive) process
parameters are preferred while achieving a similar good level of performance metrics. To
address this challenge, the present study proposes a new model, Model 1′, that incorporates
new stability factors for parameter robustness. The stability factors are represented by the
penalty terms in the objective function for the absolute change in the RD per 1% change in
each process parameter.

Model 1′:
Max.z = RD(p, v, h, t)

−α1 × |RD(p, v, h, t)− RD(0.99p, v, h, t)|
−α2 × |RD(p, v, h, t)− RD(p, 0.99v, h, t)|
−α3 × |RD(p, v, h, t)− RD(p, v, 0.99h, t)|
−α4 × |RD(p, v, h, t)− RD(p, v, h, 0.99t)|

(18)

subject to Equations (11) and (12)–(15).
RD(p, v, h, t) represents the original objective function of the RD (Equation (10)) in

Model 1, and the term |RD(p, v, h, t)− RD(0.99p, v, h, t)| denotes the absolute change in
the RD per 1% change in laser power. The rest of the terms denote the absolute change
in the RD per 1% change in scan speed, hatch distance, and layer thickness, respectively.
α1, α2, α3, α4 are the penalty coefficients for laser power, scan speed, hatch distance, and
layer thickness, respectively. All the constraints in Model 1′ are the same as Model 1.

Model 1′ aims to choose more robust process parameters for the change in the RD
by introducing several penalty terms. The addition of penalty terms would enhance the
robustness of the model by identifying a more stable solution that may be more suitable for
real operations.

In order to estimate the stability of the solution obtained from Model 1, the variation
in RD is calculated by applying an assumed acceptable tolerance (1% variation) to each
process parameter while maintaining all other parameters as fixed. The absolute change in
the RD (∆RDi) for a 1% change in one of the parameters can be expressed as follows:

∆RDi = | RD0 − RDi| (19)

where RD0 is the optimal RD obtained from Model 1 and RDi is the obtained RD from
a 1% change in parameter i (1: laser power, 2: scan speed, 3: hatch distance, and 4:
layer thickness).

Table 6 shows the optimal solutions obtained from Model 1 (I-0) and the stability tests
(I-1, 2, 3, 4). For example, the laser power obtained from case I-0 is reduced by 1% in the
first stability test (I-1) while keeping all other parameters fixed. The RD is then calculated
using the new parameter set and the resulting RD (RD1) is 99.262%. The first stability
test resulted in ∆RD1 = 0.002, which represents the change in the RD per 1% change in
the laser power (i.e., the difference between RD0 = 99.260% and RD1 = 99.262%). The
value obtained is very small, which indicates that there is a very small variation in the RD
when changing the laser power. Thus, the model may not be sensitive to the change in
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laser power. The same procedure is repeated for all other parameters following the same
approach, and the results of ∆RDi for Model 1 are presented in Table 6.

Table 6. Stability tests on the proposed solutions from Model 1 and Model 1′.

Model Stability
Test

p
(W)

v
(mm/s)

h
(mm)

t
(mm)

RDi
(%)

∆RDi
(%)

I.
Model 1

I-0 100 444 0.4 0.11 99.26 -

I-1 99 444 0.4 0.11 99.262 0.002

I-2 100 439.6 0.4 0.11 99.272 0.012

I-3 100 444 0.396 0.11 99.211 0.049

I-4 100 444 0.4 0.109 99.278 0.018

II.
Model 1′

II-0 162 468 0.4 0.107 98.87 -

II-1 161 468 0.4 0.107 98.886 0.015

II-2 162 464 0.4 0.107 98.882 0.011

II-3 162 468 0.396 0.107 98.844 0.027

II-4 162 468 0.4 0.105 98.877 0.006

The values of the penalty coefficients (αi) are user defined and should be chosen
carefully. The process of determining the appropriate values of αi started with testing
random values between 0.01 and 10, and different combinations of αi were tested at each
run. Several stability tests were performed on the proposed solutions from each of αi values.
We selected αi values that resulted in the lowest absolute difference in RD from a 1% change
in parameters without significantly reducing the RD from Model 1. After all the trials, the
values of the penalty coefficients for the laser power (α1), scan speed (α2), hatch distance
(α3), and layer thickness (α4) were 4.5, 0.02, 0.5, and 0.5, respectively.

By utilizing the specified set of αi values, Model 1′ is then solved, and the optimal
process parameters are shown in Table 6 (II-0). Samples with a maximum RD of 98.87%
can be fabricated at a laser power of 162 W, scan speed of 468 mm/s, hatch distance of
0.4 mm, and layer thickness of 0.107 mm. The optimal process parameter range obtained
by Model 1′ is close to the range obtained by Model 1.

Similar to Model 1, a parametric analysis with several stability tests is conducted on
Model 1′ by varying one parameter at a time by applying a 1% change while keeping all
other parameters fixed. The absolute change in the RD per 1% change in one of the process
parameters is calculated following the same concept in Equation (19). However, RD0 is
replaced by the optimal RD from Model 1′ (II-0) with a value of 98.87%. The results from
the parametric analysis on Model 1′ are also shown in Table 6 (II-1, 2, 3, 4).

The stability test results showed that the sensitivity of all process parameters, except
the laser power in Model 1′, is reduced compared to the results from Model 1. Even though
the sensitivity of the laser power increased from 0.002 to 0.015, the value might still be
considered small. Model 1′ showed the possibility to achieve more reliable parameter
values than Model 1. However, since the selection of the penalty coefficients affected the
performance of Model 1′ significantly, it would be interesting to investigate methods to
find the best penalty coefficients in a future study.

To further examine the results from Model 1′, the maximum cost bound (C1) is varied
between USD 1.00 and USD 0.20 and a change in RD is observed. The results from Model 1
in Table 4 are then compared to the results from Model 1′, as illustrated in Figure 3. Similar
to the analysis presented in Table 4, higher C1 resulted in higher RD values. The RD
values for both models are close for most C1 values, implying that the cost bound is not
significantly affected by the addition of stability factors.
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5. Sensitivity Analysis

The developed optimization models were built utilizing several assumptions and
certain pre-defined model parameters. Thus, it is worth investigating the variation in the
quality of the samples through different fabrication scenarios. In particular, the analysis
explores the influence of sample area, sample height, and electricity rate on the RD of the
built samples, using Model 1. The maximum cost bound remains at USD 1.00 per sample.

Figure 4 demonstrates the overall results of the sensitivity analysis. The centered
values marked * in Figure 4 represent the basic cases reported in Section 3. The results
indicate that the RD seems to be more sensitive to the sample area and height than the
electricity rate. Overall, smaller areas, lower heights, and lower electricity rates generate
higher RD. The detailed analyses are presented in the following sub-sections.
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5.1. Sample Area

Different areas of the fabricated samples were examined by adjusting only the width
of the sample. The length of all specimens remained fixed at 10 mm so that the recoating
time per layer (TL) is the same for all cases (i.e., 0.375 s). The solution obtained from Model
1 was based on the assumption that simple cubic samples, each with an area of 100 mm2

and a height of 10 mm, were produced. The area of the sample is altered from 100 mm2

while other parameters remain the same, resulting in the sample volume change. The
results from the variation in the sample area are shown in Table 7.

Table 7. Results of the variation in the sample area with Model 1.

Sample
Area

(mm2)

p
(W)

v
(mm/s)

h
(mm)

t
(mm)

Layer
Thickness

(mm)

Fabrication Time (s) Number of
Layers

Machine Operating
Cost C0
(USD)

RD
(%)Scanning Recoating Total

50 500 80 420 0.4 0.079 37.721 47.529 85.250 127 1.0000 99.861

70 700 80 420 0.4 0.093 44.899 40.409 85.309 108 1.0007 99.673

100 * 1000 100 444 0.4 0.110 51.140 34.060 85.200 91 0.9994 99.260

125 1250 108 420 0.4 0.131 56.668 28.561 85.228 76 0.9998 98.923

150 1500 120 456 0.4 0.140 58.632 26.709 85.341 71 1.0011 98.621

* The row of sample area 100 m2 represents the original optimal solution obtained from Model 1.

As the sample area (i.e., width) increases, the optimal solution of Model 1 prescribes
higher laser power and a thicker layer. Since the higher layer thickness decreases the
required amount of recoating, a reduction in the total recoating time is observed along
with the larger sample area (see column Recoating under column Fabrication Time). The
total fabrication times are similar, at around 85 s for all sample areas. This may be partly
because the machine operating cost per sample is restricted by USD 1.00 for all cases. The
RD of the fabricated samples slightly increases as the sample area decreases. It may be
related to the USD 1.00 cost limit, which is less tight for smaller samples. Thus, there may
be more room in the solution space to increase the RD without exceeding the cost limit for
smaller samples.

5.2. Sample Height

The second sensitivity analysis examines the impact of sample height on the optimiza-
tion solutions. Similar to the variation in the sample area sensitivity analysis, the sample
height is altered from the basic case (i.e., 10 mm) while maintaining a fixed area of 100 mm2.
Table 8 presents the results from the variation in the sample height.

Table 8. Results of the variation in sample height with Model 1.

Sample
Height
(mm)

Sample
Volume
(mm3)

p
(W)

v
(mm/s)

h
(mm)

t
(mm)

Fabrication Time (s) Number of
Layers

Machine Operating
Cost C0 (USD)

RD
(%)Scanning Recoating Total

5 500 80 420 0.4 0.0569 52.306 32.9533 85.258 88 1.0325 100.000

7 700 80 420 0.4 0.0796 52.345 32.978 85.322 88 1.0147 99.853

10 * 1000 100 444 0.4 0.1101 51.140 34.060 85.200 91 0.9994 99.260

12.5 1250 112 447 0.4 0.1369 51.087 34.240 85.327 91 0.9946 98.719

15 1500 120 445 0.4 0.1646 51.147 34.174 85.320 91 0.9903 98.059

* The row of sample height 10 mm represents the original optimal solution obtained from Model 1.

Since the sample area is fixed at 100 mm2, the scanning time in the XY direction
remains very close for all cases, regardless of the sample height change. The recoating time
increases with an increase in the sample height because of the increase in the number of
layers. Due to the restriction of the cost bound, the total fabrication time is close for all
heights to maintain the machine operating cost per sample within USD 1.00. Increasing the
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sample height results in utilizing a higher laser power, higher scan speed, and larger layer
thickness to fabricate bigger samples. As the sample height decreases, the RD increases.
Similar to the analysis in the prior section, it may be because, for smaller samples, the
USD 1.00 cost limit is less tight, and there may be more room in the solution space to
increase the RD without exceeding USD 1.00.

5.3. Electricity Rate

The last part of the sensitivity analysis examines the change in the electricity rate,
which is one of the key factors determining the energy consumption cost of an AM machine.
Different regions have different electricity rates. Thus, it is essential to understand how
the system performs with variations in the rates and the possible effect on the RD of the
fabricated samples. As a basic scenario, the commercial electricity rate in the United States,
Celectricity = USD 0.138/kWh, was utilized. The rate is then altered to account for different
regions using the database in GlobalPetrolPrices.com (accessed on 11 October 2021) [64]
and a change in the optimal RD is observed. Table 9 presents the results.

Table 9. Results of variation in the electricity rate with Model 1.

Region Electricity Rate
(USD /kWh)

p
(W)

v
(mm/s)

h
(mm)

t
(mm)

Fabrication Time (s) Machine Operating Cost C0
(USD) RD

(%)
Scanning Recoating Total Fabrication Energy Total

UAE 0.081 80 420 0.40 0.111 53.48 33.69 87.17 0.9686 0.0318 1.0004 99.34

Hungary 0.124 80 420 0.40 0.114 52.35 32.98 85.33 0.9481 0.0476 0.9958 99.29

USA * 0.138 100 444 0.40 0.110 51.14 34.06 85.20 0.9467 0.0528 0.9994 99.26

Slovakia 0.204 83 420 0.40 0.117 50.83 32.02 82.86 0.9206 0.0761 0.9967 99.22

Belgium 0.311 94 420 0.39 0.126 48.71 29.88 78.59 0.8732 0.1100 0.9832 98.89

* The row with the USA rate represents the original optimal solution obtained from Model 1.

As the electricity rate increases, the total fabrication time, which is the sum of the
scanning and recoating times, decreases to maintain the total cost under the total cost cap at
USD 1.00 per sample. Further, a higher electricity rate incurs a higher energy cost, resulting
in a lower fabrication cost. However, the energy cost remains a small portion of the total
machine operating cost per sample under the considered cost structure. At lower electricity
rates, sufficient fabrication time is utilized to scan and recoat the layers properly, achieving
high-density samples. In other words, lower electricity rates provide more freedom in
utilizing high fabrication time without exceeding the cost limit of USD 1.00 per sample,
hence, increasing the RD. As the electricity rate increases, the energy cost increases and a
smaller portion of the available cost can be allocated to fabrication. It may be worth noting
that the pattern in the prescribed solutions with respect to the electricity rate change is not
exactly consistent due to the non-linearity in the system and the random property of the
GA used.

5.4. Validation

In order to validate the developed models further, a set of new data from the litera-
ture is investigated and used, with process parameter settings outside those used in the
development of the model. This ensures that the validation dataset is independent of
the datasets used in the training and cross-validation processes. The new experimental
data from the literature include the process parameters and the measured RD of SS316L
specimens fabricated by different LPBF machines. Using the same process parameters in
the literature, the RD is predicted and compared with the experimental data, as presented
in Table 10.
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Table 10. Comparison of experimental (literature) and predicted (this work) RD.

Authors Machine Laser Power
(W)

Scan Speed
(mm/s)

Hatch
Distance (mm)

Layer
Thickness

(mm)

Experimental
RD from the

Literature (%)

Predicted RD by
This Work (%)

Ramirez-
Cedillo et al.

(2020)
[65]

Renishaw
AM 400

175 300 0.018 0.04 98.93 97.21

175 188 0.018 0.04 97.80 97.06

175 300 0.037 0.04 98.85 97.60

175 188 0.037 0.04 98.02 97.48

175 300 0.056 0.04 99.27 97.99

175 188 0.056 0.04 99.54 97.90

Salman et al.
(2019)
[66]

SLM Solutions
250 H L 175 668 0.12 0.03 99.05 99.08

Huang et al.
(2019)
[67]

EP-M100T
100 300 0.08 0.02 97.63 96.37

100 462 0.12 0.02 98.4 98.23

Lin et al. (2019)
[68]

Self-developed
SLM

equipment

150 400 0.08 0.04 99.00 97.35

150 500 0.08 0.04 99.30 97.05

150 600 0.08 0.04 98.20 96.67

150 700 0.08 0.04 95.90 96.22

Röttger et al.
(2016)
[69]

REALIZER
SLM 100 100 400 0.15 0.08 91.20 92.57

Sun et al.
(2014)
[70]

Renishaw plc

150 125 0.09 0.05 97.00 97.85

150 150 0.09 0.05 98.30 97.79

150 175 0.09 0.05 97.00 97.73

The results show that there is good agreement between the predicted values and the
actual experimental results. Thus, the established model may be reasonably robust and
strong enough to be used in future applications.

6. Conclusions

This study presents several multi-performance metric optimization models to effi-
ciently optimize process parameters concerning the RD of 316L stainless-steel specimens
fabricated by LPBF. The multivariable regression model with process parameters estimates
the RD of the fabricated samples. The machine operating cost is analytically modeled as a
function of the process parameters. The study also examines a method to acquire a more
stable parameter set and conducts a sensitivity analysis to understand the effect of varying
some parameters on the RD of the samples.

The results from 10-fold cross-validation for the developed multivariable regression
model demonstrated that the RD could be estimated effectively with an R2 of 82.49% and
MSE of 4.216. The optimization results showed that samples with RD greater than 99% and
a machine operating cost of USD 1.00 per sample can be produced, utilizing a combination
of low laser power, high scan speed, moderate layer thickness, and large hatch distance.
The addition of penalty terms to the optimization model resulted in more reliable process
parameter values. Finally, the sensitivity analysis showed that RD decreases with respect to
the increase in sample area, sample height, and electricity rate under the machine operating
cost restriction considered.

The approach and methodology followed in this work can be utilized for general pur-
poses and can be extended to other AM materials, and the proposed modeling framework
can be applied to other AM techniques. Furthermore, the presented models can be utilized
by industrial managers to realize an economically viable AM manufacturing system.
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