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Abstract: Novel 1.7-kV 4H-SiC trench-gate MOSFETs (TMOSFETs) with a grid pattern and a smaller
specific on-resistance are proposed and demonstrated via numerical simulations. The proposed
TMOSFETs provide a reduced cell pitch compared with TMOSFETs with square and stripe patterns.
Although TMOSFETs with a grid pattern reduce the channel area by approximately 10%, the cell
density is increased by approximately 35%. Consequently, the specific on-resistance of the grid
pattern is less than that of the square and stripe patterns. The forward blocking characteristics of the
grid pattern are increased by the reduced impact ionization rate at the P/N junction. As a result, the
figure-of-merit (FOM) of the grid pattern is increased by approximately 33%.

Keywords: silicon carbide; 4H-SiC; trench-gate MOSFETs; 3D-simulation; design consideration;
specific on-resistance; forward blocking; figure-of-merit

1. Introduction

Compared with silicon, the high critical electric field of silicon carbide (SiC) allows a
low on-resistance to fabricate a thin epitaxial layer with a high doping concentration for
a specified breakdown voltage. SiC MOSFETs with low on-resistance are useful in high-
power and high-switching-speed applications such as DC-to-DC converters, motor drives,
and electric vehicles. Researchers have attempted to minimize specific on-resistance (Ron,sp).
With regard to device structure, trench-gate MOSFETs (TMOSFETs) have great potential
for low on-resistance due to the absence of a JFET region and a small cell-pitch compared
with planar gate MOSFETs [1–4]. Advanced process technologies including post-oxidation
annealing in nitric oxide (NO) [5–8], self-aligned ohmic contact with two-step rapid thermal
annealing (RTA) [8–11], and ion implantation at high temperatures [12,13] provide high-
quality SiO2/4H-SiC interfaces with low contact resistance. A prevalent channel self-
alignment method increases current density [14–16]. However, in existing photolithography
areas, critical limitations of smaller cell pitches result from critical dimension control [17,18].
The pattern mask for the P+ source diode uses square and stripe patterns. The square
pattern formed by etching all edge directions must be enlarged more than the stripe pattern
to prevent a distorted pattern [19]. As the specific on-resistance is proportional to the cell
pitch, a P+ source with a square pattern produces a high on-resistance.

In this study, a novel device architecture with a grid pattern is proposed to minimize
the cell pitch. Unlike a conventional P+ source with stripe and square patterns, the proposed
P+ source pattern architecture was fabricated beside the trench gate. Although the reduced
channel area increases on-resistance, the proposed device provides a small cell pitch. Thus,
the P+ source grid TMOSFETs provide lower on-resistance than both prevalent devices.
In addition, this structure can increase the breakdown voltage about 11% more than the
conventional structures due to a reduced 3-D effect at the P+/N+ junction and enhance the
third-quadrant characteristics by increasing the P+ source areas.
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2. Device Modeling and Simulation Methodology

Figure 1a–c show the 3-D structures of 1.7-kV conventional SiC TMOSFETs with a
P+ source with square and stripe patterns and the proposed TMOSFETs with a P+ source
with a grid pattern, respectively. The top view of TMOSFETs with a square-pattern P+
source is shown in Figure 1d. The square-type P+ source is placed intermittently around
the N+ source. The square pattern size was set to 2 µm × 2 µm to consider alignment
tolerance; thus, the half-cell pitch width was set to 2.3 µm. Figure 1e shows the top view
of TMOSFETs with a stripe pattern P+ source and a half-cell pitch width of 2.0 µm. The
stripe pattern is easily formed for two-direction patterning, allowing a smaller cell pitch
than with a square pattern. The half-cell pitch width of TMOSFETs with a grid-pattern P+
source was set to 1.5 µm, with a trench width (WTRN) of 1.0 µm, N+ source width (WNP) of
1.0 µm, and P+ source width (WPP) of 1.0 µm, as shown in Figure 1f. A P+ source with a grid
pattern was placed next to the trench gate. Although the channel width was reduced, this
pattern enabled a reduced cell-pitch. To analyze the effect of the grid pattern on electrical
characteristics, a P+ source length (LPP) was divided into five cases from 0.5 µm to 2.5 µm
in the half-cell pitch in the y-direction.
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Figure 1. (a) Conventional trench-gate MOSFETs with P+ source with square pattern, (b) stripe
pattern, and (c) grid pattern. Top view of TMOSFETs with P+ source with (d) square pattern,
(e) stripe pattern, and (f) grid pattern.

For TMOSFETs with a 1.7-kV voltage rating, an N-type doping concentration of
6 × 1015 cm−3 with a drift thickness of 15 µm was designed using Sentaurus TCAD process
tools. The detailed structural parameters presented in Table 1. TMOSFETs structural pa-
rameters were considered by experimental reference data [20,21]. Grid-pattern TMOSFETs
of the P-well, N+ source, P+ source, and trench gate were designed using the fabrication
sequence shown in Figure 2. The fabrication processes of the proposed TMOSFETs with
P+ source grid pattern is the same as those of the conventional TMOSFETs with P+ source
square and stripe patterns except photo-patterning of P+ source. The electrical characteris-
tics of TMOSFETs with P+ source patterns were compared using the Sentaurus device. All
simulations of electrical characteristics used the Lombardi model for carrier–carrier scatter-
ing by acoustic surface phonons and surface roughness. Shockley–Read–Hall (SRH) and an
Auger were used in the generation-recombination process [22]. For the breakdown simula-
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tion, the van Overstraeten model was used for the avalanche generation model [22,23]. The
breakdown voltage was determined when the current reached 1 µA.

Table 1. Device structural parameters.

Parameter Value Unit

Thickness of drift layer 15 µm
Doping concentration of drift layer 6 × 1015 cm−3

Trench depth and width 2, 1 µm
Doping concentration of P base 2 × 1017 cm−3

Channel length 0.7 µm
Gate oxide thickness 50 nm

Width of inter layer dielectric (ILD) 0.5 µm
Half-width of cell pitch (y-axis) 5 µm

Half P+ source size (square pattern) 1 × 2 µm
Half P+ source size (stripe pattern) 0.5 × 5 µm

Half-width of cell pitch (square pattern) 2.3 µm
Half-width of cell pitch (stripe pattern) 2.0 µm
Half-width of cell pitch (grid pattern) 1.5 µm
Half-width of P+ source (grid pattern) 1.5 µm
Half-length of P+ source (grid pattern) 0.5–2.5 (+0.5) µm
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3. Results and Discussion

The output characteristics of conventional TMOSFETs with square and stripe patterns
are compared with those with a grid P+ source at Vgs = 9 and 20 V and Vds = 10 V in
Figure 3. A grid pattern with a half-cell pitch of 1.5 µm provides a larger current than a
square pattern with a half-cell pitch of 2.3 µm and a stripe pattern with a half-cell pitch of
2.0 µm. The difference in Ron,sp originates from the cell pitch. Thus, the Ron,sp of a grid
pattern with a P+ source length (LPP) of 0.5 µm is less than the Ron,sp with a square pattern
or stripe pattern, approximately 4.5% and 2.4% less, respectively.
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Figure 4a shows the output characteristics of grid P+ source TMOSFETs with different
LPP at Vgs = 9 and 20 V and Vds = 10 V. Maintaining a cell-pitch of 3.0 µm including the
trench width, the N+ source width, P+ source width, and Lpp values of 0.5 to 2.5 µm
with 0.5 µm steps, respectively, were used to examine the impact of Lpp on the specific
on-resistance (Ron,sp). As LPP increased, the reduction in channel area produced an increase
in Ron,sp. Figure 4b shows the measured Ron,sp with different half-cell pitches for the grid
pattern and different P+ source lengths. As expected, a smaller cell pitch resulted in a
lower Ron,sp. With a cell pitch of 3.0 µm, TMOSFETs with a grid pattern produce a lower
Ron,sp than a square pattern for all Lpp values. A grid pattern with Lpp = 2.5 µm reduced
the channel area approximately 50%; with a cell pitch of 3.0 µm, the channel area was
reduced approximately 35%. Although the percentage decrease in the channel area was
larger than the percentage decrease in cell pitch, Ron,sp for the grid pattern was less than
that for the square pattern because the effect of the cell pitch was dominant. Compared
with a stripe pattern, TMOSFETs with a grid pattern have a lower Ron,sp except with an
Lpp of 2.5 µm. Thus, cell pitch is critical for determining the specific on-resistance. The grid
pattern TMOSFEFs with the cell-pitch of 4.0 µm and 4.6 µm were fabricated to investigate
the influence of the reduced channel areas. Maintaining the cell-pitch of 4.0 µm or 4.6 µm,
the Ron,sp of grid pattern TMOSFETs compared to the Ron,sp of stripe pattern TMOSFETs or
the Ron,sp of square pattern TMOSFETs, respectively. As a results, the stripe pattern or the
square pattern have a lower Ron,sp than the grid pattern in the same cell-pitch because of
the effect of the reduced channel areas in Figure 4b.
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Figure 5a shows the forward blocking behaviors of all simulated TMOSFETs with
stripe, square, and grid patterns with different cell pitches and LPP = 0.5 µm. The grid and
stripe patterns produced a higher forward blocking voltage than the square pattern. In
the TMOSFETs with a square pattern, a high impact ionization rate was observed at the
P+/N+ junction at all edges of the square, and each point in the square pattern produced an
increase in the electric-field stress, leading to a reduced breakdown voltage. To examine the
impact of LPP on forward blocking characteristics, LPP of 0.5 µm, 1.0 µm, 1.5 µm, 2.0 µm,
and 2.5 µm were designed to maintain the cell pitch. The role of the P+ source is to restrain
a punch-through across the junction formed between the P-well and the N-drift region
in forward blocking conditions [4]. This is not critical in deciding the blocking voltage in
avalanche breakdown conditions; thus, high breakdown voltages remained regardless of
the LPP, as shown in Figure 5b.
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3.0 µm, 4.0 µm, and 4.6 µm; (b) breakdown voltage of grid pattern with cell pitches of 3.0 µm, 4.0 µm,
and 4.6 µm, and Lpp of 0.5~2.5 µm.

The equivalent circuit for the TMOSFETs with an integral p-body diode is shown in
Figure 6a. To examine the impact of P+ source areas on the third-quadrant characteristics,
the grid P+ source TMOSFETs with different LPP are compared in Figure 6b. As expected,
an increase in LPP produces an increase in current density through the body diode in the
third quadrant. Figure 6c shows the third-quadrant behaviors of TMOSFETs with square,
stripe, and grid patterns and Lpp of 0.5 µm, 1.5 µm, and 2.5 µm. A shorter LPP (0.5 µm) in
the grid TMOSFETs produces smaller quadrant behaviors than with conventional square
and stripe TMOSFETs due to the small P+ source areas. However, a longer LPP (1.5 µm) in
the grid TMOSFETs produces a larger current density than in the square p-body TMOSFETs
due to the larger p-body area. In addition, all Lpp values produce smaller quadrant current
than with the stripe p-body TMOSFETs.
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The static characteristics of TMOSFETs with square, stripe, and grid patterns and all
simulated results for Ron,sp, forward blocking behavior (BV), and figure-of-merit (FOM,
BV2/Ron,sp) are compared in Table 2. Cell pitch (CP) is the most critical factor affecting
Ron,sp. The smaller cell pitch of the TMOSFETs with a grid pattern produces a lower Ron,sp.
For the same cell pitch, the channel area has a greater influence on Ron,sp. The P+ source
for the stripe and grid patterns is influenced by greater forward blocking characteristics
than the P+ source for the square pattern.
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Table 2. Summary of device structures and static characteristics.

Device Structure

Simulation Results

Specific On-Resistance
(Ron,sp)

[mOhm-cm2]

Forward Blocking (BV)
[V]

Figure-of-Merit (FOM)
[MW/cm2]

Square pattern (CP = 4.6 µm) 2.86 1830 1172

Stripe pattern (CP = 4.0 µm) 2.80 1998 1426

Grid pattern (CP = 3.0 µm, Lpp = 0.5 µm) 2.73 2061 1556

Grid pattern (CP = 3.0 µm, Lpp = 1.0 µm) 2.74 2061 1549

Grid pattern (CP = 3.0 µm, Lpp = 1.5 µm) 2.76 2061 1539

Grid pattern (CP = 3.0 µm, Lpp = 2.0 µm) 2.78 2061 1526

Grid pattern (CP = 3.0 µm, Lpp = 2.5 µm) 2.82 2061 1508

Grid pattern (CP = 4.0 µm, Lpp = 0.5 µm) 2.81 2002 1426

Grid pattern (CP = 4.0 µm, Lpp = 1.0 µm) 2.83 2003 1420

Grid pattern (CP = 4.0 µm, Lpp = 1.5 µm) 2.85 2001 1406

Grid pattern (CP = 4.0 µm, Lpp = 2.0 µm) 2.88 2002 1393

Grid pattern (CP = 4.0 µm, Lpp = 2.5 µm) 2.92 2000 1370

Grid pattern (CP = 4.6 µm, Lpp = 0.5 µm) 2.88 1903 1260

Grid pattern (CP = 4.6 µm, Lpp = 1.0 µm) 2.89 1974 1347

Grid pattern (CP = 4.6 µm, Lpp = 1.5 µm) 2.92 1962 1320

Grid pattern (CP = 4.6 µm, Lpp = 2.0 µm) 2.95 1939 1274

Grid pattern (CP = 4.6 µm, Lpp = 2.5 µm) 3.00 1927 1238

4. Conclusions

In this paper, 1.7-kV 4H-SiC trench-gate MOSFETs with a P+ source pattern are investi-
gated in terms of P+ source dimension (length and width) on static characteristics, such as
output characteristic and forward blocking voltage by 3-D numerical device simulation. It is
demonstrated that P+ source pattern is the important factor in TMOSFETs due to cell-pitch
and P+/N+ junction curve effect. The proposed TMOSFETs with P+ source with grid pattern
reduced the cell-pitch approximately 35% and decreased the p-n junction effect. As a result,
the grid P+ source TMOSFETs has a low specific on-resistance of 2.73 mOhm-cm2 and a
high breakdown voltage of 2061 V. Compared with the conventional P+ source pattern
TMOSFET structures, simulation results show that the Figure-Of-Merit (FOM, BV2/Ron,sp)
of the proposed grid pattern TMOSFET is improved by approximately 33%.
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