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Abstract: Priority-based logistics and the polarization of drones in civil aviation will cause an ex-
traordinary disturbance in the ecosystem of future airborne intelligent transportation networks. A
dynamic invention needs dynamic sophistication for sustainability and security to prevent abusive
use. Trustworthy and dependable designs can provide accurate risk assessment of autonomous aerial
vehicles. Using deep neural networks and related technologies, this study proposes an artificial intel-
ligence (AI) collaborative surveillance strategy for identifying, verifying, validating, and responding
to malicious use of drones in a drone transportation network. The dataset for simulation consists of
3600 samples of 9 distinct conveyed objects and 7200 samples of the visioDECT dataset obtained from
6 different drone types flown under 3 different climatic circumstances (evening, cloudy, and sunny)
at different locations, altitudes, and distance. The ALIEN model clearly demonstrates high rationality
across all metrics, with an F1-score of 99.8%, efficiency with the lowest noise/error value of 0.037,
throughput of 16.4 Gbps, latency of 0.021, and reliability of 99.9% better than other SOTA models,
making it a suitable, proactive, and real-time avionic vehicular technology enabler for sustainable
and secured DTS.

Keywords: assisted learning; deep learning; detection; drone transportation; invasion; real-time;
security; surveillance

1. Introduction

Regardless of the plethora of potential advantages that prompted the creation of un-
manned aerial vehicles (UAV), the proliferation of drones is likely to cause unprecedented
disruption of future air-based transport ecosystems due to their susceptibility to societal
and cybersecurity threats from non-state actors [1,2]. The author in [3] argues that secu-
rity and privacy issues are frequently raised in relation to novel concepts propelled by
innovation. Ironically, the more sophisticated an innovation becomes, the greater the need
for introspective transparency in the enabling technology’s decision-making process [4] to
ensure security. The viability and acceptability of innovation depend on the deployment of
reliable methodologies and designs to address security concerns. A drone transportation
system (DTS) is an emerging mobile cyber–physical system (CPS) that comprises the con-
vergence of real-time control systems, distributed systems, embedded systems, and edge
networks (wireless sensor networks) for the smart mobility of goods and services.

In recent years, unmanned aerial vehicles (UAV) and other intelligent autonomous
systems (IAS) have become increasingly common, especially for “priority-based logistics,”
which has raised concerns about the reliability of the technologies underpinning these
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systems and, consequently, the value placed on human lives [5,6]. As a result, if creative,
adaptive strategies are not in place to prevent the misuse of UAV technology, an expansion
in the intelligence and autonomy of UAVs will jeopardize their future use [7,8]. According
to the authors in [9], a drone invasion is a calculated and planned attempt to sabotage
operations, confuse workers, destroy installations, and perhaps leak important information.
Such invasions are carried out through unauthorized access to restricted areas. According
to the United States Federal Aviation Authority (FAA), there were 8344 drone-related
violations between 2016 and 2019 [10] despite available counter-invasive technologies.
Furthermore, there are already instances of invasions employing quad-copter UAVs (such
as the DJI Phantom) for recreational, logistics, and consumer use to destroy industrial
sites, transport dangerous goods over borders, and assault important installations [11,12].
Therefore, if sufficient proactive surveillance systems are not in place to confirm a drone’s
legitimacy and appropriateness, the sight of a UAV deployed for logistics in a smart city
over a drone transportation network (DTN) can overwhelm a civilian area, inflict distress,
and cause severe emotional torture. Consequently, this chaotic scenario might endanger
the viability of DTS as an intelligent vehicle transportation enabler.

The neutralization of an invasive drone encroachment in a DTS is a cooperative,
multivariate, and cognitive decision-making process that depends on the quality of the
data. Neutralization activities include deciding whether a drone is legitimate, determining
its jurisdiction, and determining its integrity within the airspace transportation network.
Sadly, there are not many trustworthy datasets available in this field. Furthermore, prior
research focused on single-modal, license/authorization, flight path, or operating boundary
drone detection, paying little to no attention to the attached objects, rendering its decision-
making procedures ineffective [13–15]. Didactically, according to the authors in [5,6], a
drone’s perceived risk in a DTN depends on how well one understands the source, the
attached objects, and the drone’s network behavior. Additionally, due to its inherent
shortcomings, using a single detection method to accomplish this purpose is ineffective.
Moreover, the majority of neutralization techniques are either manual, militaristic, or
reactive [10,16,17]. Undoubtedly, improper neutralization of invasive drones in a DTN,
incorrect visual recognition of conveyed objects, and late or inaccurate detection can harm
the future of DTS. Hence, a trustworthy tracking method should not only notify users that
something is present in the network (detection) but also give a detailed description of the
predetermined characteristics it is using (identification).

Therefore, to address various drone-related threat dynamics in a timely, accurate,
efficient, and situation-aware manner, sustainable DTS requires a synergistic, scalable, and
multifaceted networked-integration surveillance approach that makes use of 5G innova-
tions and artificial intelligence (AI) capabilities [18]. This study is a novel attempt to address
these problems by proposing a collaborative approach for determining a flown drone’s
legitimacy using a fusion of a vision-based deep learning (DL) model and lidar technology.
Assisted learning (AL) is an emerging machine learning framework that aims at autonomy,
model privacy, data privacy, and unlimited access to local resources [19]. Unlike federated
learning, the goal of AL is to provide protocols that significantly expand the learning
capabilities of decentralized agents by assisting each other with their private modeling
processes without sharing confidential information. Using neural networks and related
technologies, assisted collaborative cognition in this context entails comprehending the
activity and behavior of the drone, identifying its origin, and remembering its established
relationships within a transportation network or route before choosing the best course of
action among various dynamic scenarios from different network-based detection sources.

The specific contributions of this paper are:

• To design a multimodal invasive drone detection network that can detect and classify
various drones in a DTN operating in ambient environments, estimate their range,
and identify the conveyed objects’ characterization in real-time.
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• To present a reliable and robust dataset for trustworthy and real-time malicious drones
with attached object detection and elicitation that encompasses most real-life scenarios
in a DTN.

• To develop a mutivariate perceived danger analysis in tandem with the scenario’s
current characterization required for cognitive data-centric decision making.

• To formulate a multivariate situation-aware encroachment neutralization strategy for
ascertaining the appropriate decision for any given dynamic state.

• To evaluate the model’s performance with other state-of-the-art (SOTA) models and ap-
proaches.

This paper is organized into the following sections: Section 2 provides a brief overview
of existing DTS surveillance methods. Section 3 presents the proposed system design, model
architecture, and methodology. Section 4 highlights the experimental results, discussion,
and performance evaluation, and Section 5 concludes with a promising research direction
and open issues.

2. Overview of Invasive Drone Encroachment Techniques

This section provides an accessible overview of several research initiatives to stop
recurrent intrusions and disturbances in a DTN using convergence approaches, as well as
investigations into drone surveillance tactics in DTS.

2.1. Invasive Drone Encroachment Neutralization Techniques in DTS

The maintenance and security of drone transportation present a variety of surveillance
issues due to the continued advancement of the drones’ underlying technology [1,20]. To
conduct drone surveillance, it is necessary to communicate with, identify, authenticate,
elicit, and disarm drones considered dangerous from a drone pool in a DTN. Effective
drone surveillance entails the convergence or fusion of many technologies that work
together for a specific purpose. Hence, the breakdown of the entire system implies a
failure of the underlying technology in any of its components. As shown in Figure 1, a
variety of methods (radio frequency, radar, thermal, acoustic, vision, and sniffing) are used
to determine the location of a drone, the timing of its entry into a spatial area, and the
appropriate divergent action (disable, disarm, or destroy) to take to keep the UAV within an
authorized jurisdiction or destroy it [5,21,22]. Only the vision-based approach of these can
provide an accurate visual description of the drone and the conveyed object with attendant
weaknesses, which is essential for selecting the appropriate neutralizing response [23].

Figure 1. Architecture of collaborative cognitive invasive encroachment scheme highlighting the
detection and classification, identification and unique recognition, threat analysis, and situation-aware
neutralization interactions.
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2.2. Collaborative Counter-Invasive Encroachment Approaches in DTS

Modern hybrid counter-invasive encroachment techniques combine sensor technology
with hardware control systems to overcome the drawbacks of each detection method,
expand the scope of detection, and enhance decision-making ability.

The use of multiple radio frequency (RF) scanners in detecting drones is prevalent
these days due to its lower cost compared with radar detection technologies [3]. With
multiple RF fusion detection technology, the control commands and other crucial data about
multiple tracked drones and their operators in the network can be retrieved. However,
newer drone designs typically outperform this sensor fusion surveillance strategy. A vision-
acoustic sensor fusion strategy tends to improve detection precision by leveraging exact
representation and long-range detection [24]. The effectiveness of the method depends
on the auditory signals’ resistance to weather and other external factors as well as the
precise visual description of the identified objects generated by electro-optical cameras.
The inherent signal interference in a noisy environment is its drawback.

While many hybrid invasive drone encroachment and neutralization technologies
integrate vision and radar, little attention is paid to integrating vision and light detection
and ranging (LIDAR). Both RADAR and LIDAR detection aim at wide-area aerial object
detection and identification. However, while RADAR uses radio waves to detect objects,
LIDAR makes use of light waves. RADAR can detect objects at a distance of up to 30 km,
but its capacity to do so is constrained by the size of its antenna. On the other hand, LIDAR
offers 3D mapping with a high detection resolution accuracy of airborne objects and is the
ideal alternative for a portable solution, which informs the deployment of LIDAR for 3D
point cloud image generation. According to the authors in [25], LIDAR can now function at
wavelengths above 1400 nm with a 500 m object detection range, 10% object reflectivity, and
a 99% recognition confidence level. Consequently, recognition is a more difficult challenge
than detection because it depends on the fine resolution and precision of real-time image
processing, which is made possible by deep learning. Therefore, the drawbacks of the
single application of each of these detection and recognition technologies can be addressed
by integrating vision with the LIDAR approach, assisted by an AI learning model.

In reality, most drone surveillance architectures and configurations use network-based
symbiotic multi-dimensional surveillance system implementations that rely on trustworthy
AI models and data as well as operate on low-latency networks to make up for shortcomings
in the current sensor fusion drone detection technology, as shown in Figure 2. Obtaining
trustworthy data is currently difficult in this area. When collaborative learning is involved,
the quality of decisions, the privacy of data, and the timeliness of responses become critical
success factors in this mobile cyber–physical system. As a result, this paper’s goal is
to enhance the existing vision-LIDAR fusion architecture to increase its detection speed,
recognition accuracy, and range estimate. To do this, we developed a reliable drone-based
dataset, proposed an effective underlying image-lidar-based detector, and formulated
an assisted-learning strategy to determine the degree of invasion, evaluate the drone’s
proximity to the targeted area, ascertain the impact of its threat(s), and choose the response
strategy to use. This method of drone invasion defense will help the drone transportation
system (DTS) become more acceptable and sustainable as a potential future “just-in-case”
airborne vehicle type in smart cities.

3. Materials and Methods
3.1. ALIEN Design for Secured DTS

Managing complex and dynamic activities in real-time system designs demands both
swiftness and accuracy. AI and system autonomy are inextricably linked. A scenario-
based, adaptive-conscious, cognition-friendly AI model is at the heart of a data-centric,
hard-based, real-time cyber–physical system. The ALIEN scheme therefore predicates
and perpetuates situation-aware safe-channel neutralization, effective detection of variant
UAVs, accurate visual identification of conveyed objects, and a timely interception in
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clusters, as conceptualized in the block diagram in Figure 1 and the system flowchart in
Figure 2 respectively.

Figure 2. System flow of ALIEN procedure to cooperative counter-invasion in DTN.

The objective function of the ALIEN scheme (as seen in Equation (1)) is an optimal so-
lution to maximize DTS counter-invasive deployment through efficient resource utilization
that is subject to time.

Mathematically, this is expressed as;

Imax = tiDi + tiDd
r λi

+ tiDNi ; (1)

where Imax = objective function for the optimal solution; Di, Dd
r λ, and DN = decision vari-

ables representing drone detection (see Section 3.3), attached object recognition
(see Section 3.5), and neutralization (see Section 3.7); subject to ti, the time taken to per-
form each of these tasks for each ith drone in the DTS network. Performing these tasks
with a centralized procedure and feedback will imply poor timing or a delayed, counter-
productive response.

There are parallel activities for detection and identification before neutralization (the
ultimate decision). Identification involves performing a threat analysis to determine the
position, legality, and danger of the drone and the object it is carrying. The model and
associated item of the drone are determined by the detection task using morphological
features. The system takes in drone images and coordinates, performs pattern discovery
using the underlying detector, produces output, feeds the output for further analysis, and
chooses the best response strategy to use using heterogeneous sensors (electro-optical
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camera and topographic lidars), databases, networks, etc. The robustness of the system is
measured by how effectively it can distinguish between different drone types and sizes with
discrete attached objects when operating in sunny, cloudy, and evening climatic conditions.

3.2. Camera-Lidar Sensor Calibration

For airborne object detection and ranging operations, an Ouster OSI-128 lidar and a
digital camera (Logitech C922) are used. As shown in Figure 1, the lidar uses an infrared
source to sense an object’s movement, track its direction and speed, and determine its
elevation from the ground network. To calibrate the camera and lidar, it is necessary
to determine how the sensors are oriented and placed relative to one another. These
calibration parameters are transformed into sensor measurement data, which is essential
when updating the coordinate system. Geometrical and optical characteristics of the camera,
such as its distortion coefficient, primary point, and focal length, are required to estimate
the camera’s translation and rotation with respect to the lidar. Using the camera calibration
approach, these features can be approximated. To estimate the collection of feature points,
this work uses a checkerboard target [26]. In calculating the camera’s intrinsic matrix,
each feature point is related to many angles. The perspective-n-point (PnP) technique then
obtains the extrinsic camera and lidar parameters.

The PnP algorithm minimizes the reprojection error in pose estimation between the
corresponding 2D points in the camera image and the corresponding 3D points in the lidar.
The appropriate 3D–2D points are carefully chosen by using the reflective map of the lidar
measurements from several checkerboard targets. As a result, more calibration accuracy
than when employing a single plane is recorded.

3.3. ALIEN Detector and Ranging Estimation (D)

In all operational environments, an effective drone and range detector must distinguish
drones from similar flying objects and offer a reliable range estimate of their distance from
the detecting device. To do this, Figure 3 presents the proposed heterogeneous drone
detection, range logic, and fusion procedure.

return

Lidar 
(OSI-128)

Electro-optical 
Camera 

(Logitech C922)

Unified Transformation 
Coordinate System

EDDN

Drone Detection 
with range estimates

(Dr)

PnP
Algorithm

3D Points
estimates

2D drone
images

2D drone
targets

3D Point
targets

Figure 3. Logic flow of the efficient drone and ranging detector (EDRD) indicating how the drone
images from the electro-optical camera and the ranging estimates from the lidar converge for efficient
detection estimation and prediction.

Object detection is carried out on the aerial images acquired by the electro-optical
camera using the efficient drone detector network (ALIEN) model. To combine detection
performance speed and accuracy in real-time, the ALIEN is an improved version of the
DRONET [5] detector model that incorporates strip networks (SPP), focus, path aggregation
networks (PANET), and other technologies, as illustrated in Figure 4.
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Figure 4. ALIEN model with its the underlying structures. The backbone layer comprises cross
partial network (CSP) and focus for feature extraction. The neck layer consist of path aggregation
network for feature aggregation, while the head layer has the YOLOv5 for actual prediction.

The improvement in the detection model is the addition of extra bottleneck CSP
layers at the backbone and neck layers, as captured in Table 1. Using a secure networked
electro-optical camera, the “Backbone” receives the collected drone image (input), where
feature extraction is carried out using a cross-stage partial network (CSP). After entering
the “Neck” with PANET and the feature pyramid network (FPN) for feature fusion, the
“Head” produces the real detection results, which include the position, score, size, and
class. The bottleneck CSP at the backbone layer, combined with SPP and focus, reduces
the complexity of large gradient information, truncates the gradient flow of the optimized
network, and preserves feature extraction accuracy, as shown in Figure 5.

Figure 5. BottleNeck CSP block showing its constituent convolution blocks.

To do this, CSP separates the feature map of the base layers into two. While the first
enters a dense block, the other gets integrated with the feature map and transferred to the
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next stage. The feed-forward propagation and weight update for this process are captured
in Equations (2) and (3).

Y


Yk = Wk ∗ [Y0′′ , Y1, ..., Yk−1]

Yt = Wt ∗ [Y0′′ , Y1, ..., Yk]

Yu = Wu ∗ [Y0′ , Yt, ]

(2)

W


Wk′ = f (Wk, gi0′′ , gi2, gi3, ..., gik−1)

Wk′ = f (Wk, gi0′′ , gi2, gi3, ..., gik)
Wu′ = f (Wu, gi0′ , git)

(3)

with Yk being the input of the (k + 1)th at the dense layer, gi being the network gradient
information, and W being the weight. The backbone produces output with fewer channels,
layers, and larger images.

Then, to further reduce the information path, enhance feature pyramid operations,
and boost image localization accuracy, image instance segmentation is applied at the neck
layer using PANET, which comprises four cardinal procedures. Table 1 summarizes the
ALIEN convolutional structure, listing the specific convolutional parameters and values of
its components.

Table 1. ALIEN convolutional structure.

ALIEN Model Configuration Specification

Layer Output Shape Descriptions

depth_multiple 0.33 model depth
multiple

width_multiple 0.50 layer channel
multiple

[−1, 1, Focus, [64, 3]]
[−1, 1, Conv, [128, 3, 2]]
[−1, 3, BottleneckCSP, [128]]
[−1, 1, Conv, [256, 3, 2]]
[−1, 9, BottleneckCSP, [256]]
[−1, 1, Conv, [512, 3, 2]]
[−1, 9, BottleneckCSP, [512]]
[−1, 1, Conv, [1024, 3, 2]]
[−1, 1, SPP, [1024, [5, 9, 13]]]

Backbone

[−1, 3, BottleneckCSP, [1024, False]]

CSP performs
the feature
extraction
on the
acquired
aerial
images

[−1, 1, Conv, [512, 1, 1]]
[−1, 1, nn.Upsample, [None, 2, ‘nearest’]]
[[−1, 6], 1, Concat, [1]]
[−1, 3, BottleneckCSP, [512, False]]
[−1, 1, Conv, [256, 1, 1]]
[−1, 1, nn.Upsample, [None, 2, ‘nearest’]]
[[−1, 4], 1, Concat, [1]]
[−1, 3, BottleneckCSP, [256, False]]
[−1, 1, Conv, [256, 3, 2]]
[[−1, 14], 1, Concat, [1]]
[−1, 3, BottleneckCSP, [512, False]]
[−1, 1, Conv, [512, 3, 2]]
[[−1, 10], 1, Concat, [1]]
[−1, 3, BottleneckCSP, [1024, False]]

Neck and
Head

[[17, 20, 23], 1, Detect, [nc, anchors]]

Image
segmentation,
Feature
Aggregation,
and eventual
prediction are
carried out
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First, a bottom-up path aggregation operation is performed to improve the localization
capabilities of the feature extraction hierarchy by dispersing the low-level patterns. Then,
feature levels with the same spatial size that corresponds to P2 to P5 are produced using
bottom-up augmentation. Second, an new feature map with scales ranging from N2 to N5
is created. Each Ni enters the convolution blocks in phases to further shrink the spatial size
of the input. A fused feature map is then produced by fusing the reduced map and each
Pi. This enters one more convolution block and generates a new Ni + 1 for the subsequent
sub-network, which leads to the third step, adaptive feature pooling. To achieve adaptive
pooling, each proposal is assigned to a different feature level. Then, the fourth operation is
fully-connected fusion. Fully connected fusion is carried out by utilizing region of interest
(ROI) alignment on the feature grids. ROI alignment distinguishes the properties of the
foreground and background masks of the input by training more sample aerial images
using the parameters of the fully linked layers, which makes actual prediction possible
at the head component. Particularly for small objects, PANET dramatically improves the
image feature process.

At the head layer, actual prediction outcomes are performed based on the neck layer’s
characterization (drone, attached object, etc.). The YOLO head of the detector model
applies the CNN concept to detect objects by using a single network to divide the image
into regions of interest (N ∗ N grid), as seen in Figure 6.

Figure 6. Drone feature extraction process highlighting the principles for determining outcome.

Then, using the formula in Equation (4), the “head” predicts each bounding box region
and probability before calculating the overlap known as the intersection of union (IOU).

⇒ Iou =

[
A∩ ∗

1
A∪

]
; (4)

where A∩ = area of intersection, and A∪ = area of union. The Iou value ranges between
0 and 1 with a threshold > 0.5. To enhance the performance of the traditional YOLOv5
model’s aerial object recognition and prediction, the highlighted network configuration
settings in Table 1 are the key modifications made.

Thereafter, the PnP technique [27] is employed to extract global and local charac-
teristics from the 3D points to acquire the visual aerial object detection from the ALIEN
detector model with its associated lidar measurements. It is not essential to perform the
vertical binning required for other representations because PnP converts 3D points into
pillar representation. The 3D point target from the PnP algorithm and the 2D drone target
from the ALIEN model is then transformed into a single coordinate system using the sensor
calibration parameters, and the point clouds are then projected onto the detected drone
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images to represent the range estimate, object detection, and identification (Dr) as shown
in Figure 3.

3.4. Assisted Learning for Invasive Drone Interception (Dd)

To intercept invasive drone encroachment in an aerial transportation network, a
cognitive networked-based real-time decision is taken by carrying out perceived danger
or threat analysis to identify and intercept a perceived malicious drone or drones from
among other drones and aerial objects in an aerial transportation network. Precision and
promptness are essential elements.

Theorem 1. Given that there are nd numbers of drones in a DTN, the estimated danger (Dd
r ) to be

carried out by a particular presumed malicious drone (Dr) in the network is a function of the union
of the defined metrics and elements in the universal set of its operation as expressed in Equation (5):

Dd
r = f {Do ∪ D f ∪ Dl}, (5)

where Dd
r = overall drone’s perceived danger,

Dl = legality determinant based on proximity and range measurement,
Df = quantifier for physical feature of the drone, and
Do = conveyed object characteristics.

All transmitted messages in the DTN must be operated within a declared maximum
load (Lmax), have a defined priority (kp), and be delivered within a set time (tp) since
drone interception needs real-time communication among the participating nodes. Thus,
minimizing detection error (|(tp+1)− (tp−1)|), protocol latency (tp+1), and transmission
delay (tp−1) is crucial in the network for effective interception. Based on the output of the
model and related network media outputs, each of these parameters is evaluated. The
procedures for intercepting a drone that is believed to be harmful in a DTN are outlined in
Algorithm 1 with the drone-report as the expected output.

Algorithm 1: Steps for Invasive Drone Interception Dd
r .

1 Input: Acquire variables: D, Do, D f ,...Dl ;
2 Edge server executes (Capture aerial objects D):
3 while True do
4 if D==Drone then
5 Initialize attached identification step Do in Equation (6) from Section 3.5;
6 Initialize physical feature quantification step D f in Equation (15);
7 Initialize legality and proximity determinant step Dl in Equation (14) in

Section 3.6;
8 Compare the values of steps 2–4 with networked parameters;
9 Take an appropriate cognitive decision;

10 end
11 return drone-report;
12 end

3.5. Harmful Object Recognition (Do) and Feature Quantification (D f )

An inappropriate sense of panic can be generated by the sight of a UAV with a
strange object attached. As shown in the network diagram in Figure 7, simultaneous visual
identification of a drone and the object it is conveying in a DTN is a challenging object
detection task (an NP hard issue).



Sensors 2023, 23, 1233 11 of 29

Figure 7. Assisted learning scheme for invasive encroachment neutralization in a DTN highlighting
the various hubs of surveillance devices.

The detection devices (A, B, and C) in the DTN distinguish between different detected
aerial objects and choose the best state of each object based on dynamic characteristics.
In AL, each cluster for invasive drone encroachment (say, device A) analyzes the drones
within its sensing range (a,1; a,1; a,0; a,0; a,0) based on its unique characteristics. Then, with
the help of its underlying detection model, it carries out feature extraction and learns from
the detected object pattern. Then, the hub shares and communicates the learned or acquired
knowledge with other clusters (devices B and C) in the DTN. With subsequent detection
and learning, the acquired knowledge from each node is constantly updated in the DTN
by the participating nodes/clusters thereby fostering connected intelligence for timely
decision making. Therefore, this precise collaborative identification ensures proper and
faster eliciting of hostile drones attempting to encroach into the network and differentiates
them from hobbyist or logistics drones, thereby gauging their perceived threat in any given
setting. To analyze this multivariate attached object recognition and elicitation scenario
problem, we use Theorem 2.

Theorem 2. Given that a detected drone is elicited to be malicious (Dd
r ), the dynamic estimate of

its threat (Dd
r λ) in a given environment is a measure of its attached object characterization (Dd

r o),
the technique for object detection (Dd

r f ), path planning/routing (Dd
r path), and variability of its time

(Dd
r time). This is expressed as Equation (6):

Dd
r λ = f [((Dd

r o ∪ Dd
r f ) ∪ Dd

r path)
Dd

r time ], (6)

where Dd
r o= Ot = conveyed object threat induced by a drone represented as (a,1), (b,1), and (c,1);

Dd
r f = other physical feature quantifier = q;

Dd
r path = the drone’s flight path = p; and

Dd
r time = response time = t, represented in Figure 7 by (a, b), (a, c), and (b, c). The maximum value

of Dd
r time is set at α, β, and 1. In this study, less attention is given to Dd

r path and Dd
r time.
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The other physical feature quantifier’s (q) estimation is dependent on the underlying
detection technology deployed. Therefore, a malicious drone’s Dd

r f value can be a combi-
nation of weight/kinetic energy Dd

r (o,k) = k, noise level Dd
r (o,n) = n, loaded object Dd

r (o,o′) =
o, and scanability Dd

r (o,s) = s values as expressed in Equation (7).

Dd
r f = (k, n, o, s), (7)

Generally, the mathematical formulae for deriving the loaded object (o), i.e., Do,o′ from
an electro-optical sensor reading is given by Equation (8):

Dr
d(o,o ′) = o =

[
(

level
4

) ∗Wl

]
, (8)

where level is the drone’s proximity to the field of view as measured by the lidar point
cloud, and Wl is the perceived weight of the object being transported. For instance, prompt
action and caution are triggered to reroute the drone’s movement if the recognized object
(Dd

r (o,o′) = o) is found to be potentially dangerous and inside the line of sight. In general,
the dynamic threat estimate of a malicious invasive drone in a DTN is determined by
substituting Equation (6) for the enlarged expression of D f from Equation (7).

Dr
dλ =

{(
(Ot ∪ (k, n, o, s)) ∪ Dd

r path)
Dd

r time
)
∗ Nd; (9)

where Nd = number of swarming drones with conveyed objects within line of sight. How-
ever, keep in mind that the loaded object, Dr

d(o,o ′) , is a subset of Dd
r o, i.e., o ⊆Ot. As a result

of the law of association, Equation (9) is transformed into Equation (10):

Dd
r λ =

{(
((k, n, o, s) ∪ p)t) ∗ Nd; (10)

Each of these factors in a hybrid anti-drone model is obtained from several sensor
metrics of the underlying detecting technology (video, acoustic, thermal, thermal, radio
frequency, etc.). Because this strategy is vision-based, only the values used in deriving
D(o,o;′) (Ot) can be determined from the electro-optical and lidar range sensor readings.
Equation (10) is so changed to:

Dd
r λ = f [(((Ot + Θ) ∪ p)t] ∗ Ndrones; (11)

where Θ represents other physical feature quantifiers associated with other detection
technologies. In addition, p and t are not covered as they are outside the scope of this study.
Thus, the total drone threat value is:

∴ ΣNd
i DT =max[α(Dr

dλ)]; (12)

where max and α values represent the maximum allowable drone’s conveyed object threat
value; nd is the number of detected drones with conveyed objects. Algorithm 2 highlights
the steps for attached object identification and elicitation in a DTN.
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Algorithm 2: Harmful Object Recognition and Elicitation (Dr
dλ ).

1 Input: Acquire variables; Nd, i, dt, ns = (a, x)(b, x)(c, x)...n;
2 Initialize prediction step pr ← i;
3 Initialize step counter k← 0;
4 Initialize total nodes D = 1, 2, ..., d;

5 Initialize acquisition of network signal load ns
6 while True do
7 if k < i then
8 for each d ∈ D do
9 S(x,y) ← gather sensor data (ns, dt);

10 if S(x,y) == 1 then
11 Recognize as a drone with object;
12 Nd ← register as potential threat nd Nd ← Nd + 1;
13 Call ThreatElicitation Function
14 end
15 end
16 else
17 Recognize as a drone without object;
18 N′d ← N′d + 1;
19 end
20 end
21 end
22 else
23 z← i− Nd register the number of no-threat drones in the network
24 end
25 Function Threat Elicitation if Nd(status) == 1 then
26 Recognize Nd as harmful;
27 Initialize Proximity and Legality Step in Section 3.6;
28 Initialize Situation-Aware Neutralization in Section 3.7;
29 end
30 else
31 Recognize Nd as a logistic drone in the network;
32 end
33 return attached-object-id-report;

3.6. Assessing Drone Encroachment Legality (Dl)

Aside from determining the harmful status of DTS insight based on object charac-
teristics (see Equation (6)), we verify the drone’s encroachment status. The assumption
that several UAVs operating in a specific mapped area are given true flight paths is kept.
Adherence to defined pathways, aside from authentication, helps establish whether an
incoming drone’s flight is legal and permitted to enter a restricted area.

Mathematically, Equation (13) defines whether or not a drone is legal.

Dl = f
[
Ap ∪ Ak

]
, (13)

where Ap = area of interest/the mapped area priority level, and A f = authorization per-
mit/authentication key to operate within such a classified zone. Authenticating a drone’s
authorization status in a DTN is an emerging research issue [28–30].

Mathematically, Ap estimates the distance between the target drone and the predeter-
mined restricted zone as expressed in Equation (14):

⇒ Ap = Lb =

[
1

1 + exp(da − Dmax
2 )

]
, (14)
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where Lb = the detection range/legality boundary, da is the distance between the area of
interest and the detected drone, and Dmax = the system’s allowable detection range based
on the sensor (it is usually a constant value). An environment that is categorized or a
significant spatial domain is indicated by a high-priority area value. Active and suitable
neutralizing decisions are necessary as the drone moves closer (based on measurements
from the point cloud’s lidar range). The step-by-step procedure for determining a drone’s
closeness, legality, and authorization is summarized in Algorithm 3.

Algorithm 3: Proximity and Legality Assessment (Dlk ).

1 Input: Acquire variables; Dr, Ak, Lb, gi;
2 Acquire drone proximity value p← Dr from the ALIEN in Section 3.3;
3 Acquire area map info.← gi;
4 Acquire drone authorization key← Ak;

5 Compute legality boundary from Equation (14)← Lb;
6 while True do
7 Check Drone Authorization;
8 if Ak == False then
9 Declare Unauthorized; D ← D

′
u;

10 Initialize Situation-Aware Neutralization in Section 3.7;

11 Check Drone Legality
12 if Dr <= Lb then
13 Declare Malicious; D ← D

′
u;

14 Initialize Situation-Aware Neutralization in Section 3.7;

15 Check Mapped Area Priority
16 if gi == high then
17 Declare Red Flag Alert;
18 end
19 else
20 Declare Low Alert;
21 end
22 Initialize Situation-Aware Neutralization in Section 3.7;
23 end
24 else
25 return Proximity Check;
26 end
27 end
28 else
29 Register authentication parameters in DTN
30 end
31 end
32 return drone-legality-status;

3.7. Adaptive Neutralization (DN)

In a real-time control system routine, an adaptive and cognitive response feature is
essential to avoid the deployment of flawed regimens or schedulers that use preset routines
and set off false response alerts. Before instantiating and responding to a given scenario, an
adaptive neutralization strategy should:

• Detect the peculiarity of the aerial object and its ranging measurement: drone (Dr) or
not drone, (D′r) (see Section 3.3);

• Identify the conveyed object: attached objects (Do) or no-attached-object, (Do
′) (see

Section 3.5);
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• Access the harmfulness of conveyed objects: harmful (DT) or not harmful, (DT
′),

through threat analysis (see Section 3.5);
• Determine the legality of the drone’s route: legal (Dl) or not legal, (Dl

′) (see Section 3.6);
and

• Ascertain the authorization to operate: authorize (A f ), or not authorize, (A f
′) (see

Section 3.6),

Before taking the appropriate neutralization approach: destroy (De f ense Mode), dis-
arm (Sa f e Mode), or direct (Re − route Mode). To analyze the neutralization response
scenario, we use Theorem 3.

Theorem 3. Assume that a given drone model ∂D, conveying an identified object ∂D(o,o′ ), with
a classified status ∂D(T,T′ ), flies into an environment based on legality route ∂D(l,l′ ), and has
authorization key to operate ∂A( f , f ′ ), the objective function of the neutralization response provided
that flight path Dpath is known and response time of the system, Dtime is swift and is given by
Equation (15):

DNmax =
[
(∂D ∗ ∂D(o,o′ ) ∗ ∂D(T,T′ ) ∗ ∂D(l,l′ ) ∗ ∂A( f , f ′ )) ∗ Ndrones

]
;

s.t.Dpath, Dtime

(15)

where DNmax represents the optimal solution for maximum neutralization action, representing the
three (3) possible responses (destroy, disarm, or direct/re-route) depending on the dynamic value or
state of DN , and ∗ is the weight multiplier effect of each counter-invasive activity subject to the time
required to perform each activity and the path flight of the drone.

The ALIEN technique ensures proactive and automatic drone involvement in the
network at changing dynamic intervals based on extracted and acquired features, behav-
ioral traits, and other networked system information instead of rule-of-thumb heuristics.
Algorithm 4 summarizes this proactive and situation-aware neutralization reaction.

3.8. Dataset Collection, Characterization, and Preprocessing

To assess UAV encroachment, two (2) datasets are used for simulation purposes; one
for invasive UAV detection and the other for attached object identification. We created
the visioDECT dataset for UAV detection, available on the IEEE Dataport [31]. VisioDECT
comprises 20,924 drone samples taken from six (6) UAV models. Each of these UAV types
represents a superclass. Each of these three superclasses contains three (3) scenarios (cloudy,
evening, and sunny) of flown drones that represent the subclass. Then, each subclass
represents the individual drone samples of different sizes flown at various locations, with
different distances and altitudes and at different times of the day. The attached object
recognition dataset comprises 3600 samples from nine (9) attached objects mounted to
drones to represent the classes. Table 2 summarizes the dataset description and distribution.
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Algorithm 4: Pseudocode for Situation-Aware Neutralization (N(d,s,r)).

1 Input: Capture all variables; ∂D(o,o′), ∂D(T,T′), ∂D(l,l′), ∂A( f , f ′), Dpath, Dtime;

2 Initialize Drone detection: ∂D(o,o′) ← D (Algorithm 1);
3 Initialize Object Elicitation: ∂D(T,T′) ← Dr

dλ (Algorithm 2);
4 Initialize Legality-Authentication: ∂D(l,l′), ∂A( f , f ′) ← Dlk (Algorithm 3);

5 Edge server executes (adaptive response N(d,s,r)):
6 while True do
7 if Dlk == false then
8 if D == Drone and Dr

dλ == harmful then
9 Execute Destroy drone

10 end
11 else
12 Execute Disarm drone
13 end
14 end
15 else
16 Execute Direct drone
17 end
18 end

19 Function Destroy(D(d));
20 Initialize destroy-action[];
21 Acquire area priority value; gi from Algorithm 3;
22 for each Du’ in N(d) do
23 if Du’.isnan() and gi ==True then
24 Execute Direct to re-route drone;
25 N(d,s,r)←model.predict([Dl , Dd]);
26 destroy.append(DN(d,s,r)

);
27 end
28 Execute Jamming routine
29 end
30 Function Disarm(D(a));
31 Initialize disarm-action[];
32 Repeat step 21;
33 Compare Drone Legality status from Algorithm 3;
34 Execute Direct to re-route drone;
35 Execute Jamming routine N(d,s,r)←model.predict([Dl , Da]);
36 destroy.append(DN(d,s,r)

);

37 Function Direct(D(e));
38 Initialize direct-action[];
39 Repeat steps 21 to 22;
40 Move drone to normal route;
41 N(d,s,r) ←model.predict([Dl , De]);
42 destroy.append(DN(d,s,r)

);

43 return report-neutralization;
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Table 2. Dataset Characterization.

Dataset Description

UAV
Model Scenario Sample

Size
Conveyed

Objects
Sample

Size

Anafi-Ext Sunny 200 Gun 400

Evening 200
Medical
Supplies 500

Cloudy 200 Spy camera 400

DJI-Phantom Sunny 200
Sealed
Package 300

Evening 200 Containers 350
Cloudy 200 Food Items 500

DJI-FPV Sunny 200 Explosives 240
Evening 200 Missile 400
Cloudy 200 Total Sample (SN) 3600

EFTE410S Sunny 200
Evening 200
Cloudy 200

Mavic-Ent Sunny 200
Evening 200
Cloudy 200

Mavic-Air Sunny 200
Evening 200
Cloudy 200

Total Sample (SN) 7200

These drone types were chosen after considering research by [32] on their popularity
in pertinent industries. Additionally, the need to consider both customized drones used
in industry and by enthusiasts justifies the inclusion of these drones in the sample space.
A detailed explanation of the visioDECT dataset generation and collected data can be
accessed via [31]. The datasets were manually created by flying each UAV model under
different weather conditions, at different times, and in different locations. As demonstrated
in Figure 8, videos of the flown drones with attached objects (at heights ranging from 30 to
100 m) were captured using digital cameras and lidars.

Then, using the “Free Video to JPG” software, the captured video frames were con-
verted into a series of sample frames. To ensure the accuracy of the data, the data frames
were sorted to eliminate samples of frames with no drones in the background. Then,
each sample frame was labeled by creating bounding boxes around the target objects. To
generate ground truth values, bounding boxes were drawn around the target objects, as
shown in Figure 6. This arduous AI labeling process was accomplished with the help of
the “Make Sense” application. Only 7200 samples (34.4%) of the visioDECT were used
for model simulation, as shown in Table 2 describing the sample size distribution of the
dataset for the experimental setup.

Figure 8. (a) Images of dataset capturing and flown drones at different altitudes and climate; (b) im-
ages of drones with attached objects.
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3.9. Experimental Setup

For simulation, the datasets were split into three portions for model training, testing,
and validation: 70%, 20%, and 10% to prevent model overfitting. All models were created
using the same network depth-multiple and width-multiple values of 0.33 and 0.50, together
with extra hyperparameters as given in Table 3.

Table 3. Model hyperparameters.

Model Parameters
No. Parameters Values

1 Batch size 8, 16, 24, 32, 48, 64, 128, 160
2 Box loss 0.05
3 Epoch 100
4 Input size 416 × 416 × 3
5 Learning rate 0.01 (0.005)
6 Weight-decay 0.0005
7 Warmup-epochs 3.0
8 Warm-momentum 0.8

Model ablation studies were carried out by varying the hyperparameters to validate
the detection performance of the proposed model. To evaluate the capability of the pro-
posed model for knowledge discovery and learning, transfer learning was implemented.
The pre-trained weights were used to determine the point cloud for range measurement
using PointPillars. Before model training, different image augmentations were applied
to the images to lessen object misrepresentation. After that, the best and last weights
were used to evaluate the inference of the model. The experimental simulation platform
was carried out in a Python environment with PyTorch 1.10 framework on a computer
running Windows 10 with the following specifications: Intel(R) Core(TM) i5-8500 CPU @
3.00GHz, 6Core(s), NVIDIA GeForce GT 1030, GPU CUDA:0 (Tesla K80, 11441.1875MB),
and 36GB RAM.

4. Experimental Results and Discussion

The experimental findings are presented in this section to assess how well the sug-
gested ALIEN works to identify and elicit harmful drones and attached objects in a DTN.
Additionally, a thorough performance evaluation comparison of the ALIEN model and
SOTA approaches were performed using performance metrics, such as mean average
precision (mAP), specificity, sensitivity, F1-score, G-mean, throughput (number of float-
ing point operations per second (FLOPS)), and latency/response timeliness (frames per
second). A further evaluation of the reliability and efficiency of the proposed model was
performed to demonstrate that the scheme meets the criteria for a timely and efficient
counter-invasive response.

4.1. Invasive Drone Detection and Elicitation by the ALIEN Model

Based on the visioDECT dataset [31], the findings in Table 4 illustrate the effectiveness
of the ALIEN model for efficient drone detection and classification across scenarios.
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Table 4. UAV model detection and classification performance.

Proposed Model Detection and Classification Performance

UAV
Models Scenario mAP

%
Sensitivity

(R+
c ) %

Specificity
(R−

c ) %
G-Mean

%

Anafi-Ext sunny 99.50 75.00 49.86 61.15
evening 99.50 100.00 46.10 67.89
cloudy 99.50 85.00 45.20 61.98

DJI-Phantom sunny 99.50 100.00 47.21 68.70
evening 94.50 95.00 49.71 68.72
cloudy 99.50 100.00 46.13 67.91

DJI-FPV sunny 99.50 100.00 44.85 66.97
evening 24.90 100.00 47.50 68.92
cloudy 99.50 100.00 44.15 66.45

EFTE410S sunny 99.50 100.00 46.12 67.91
evening 44.60 75.00 52.25 62.59
cloudy 90.80 100.00 49.13 70.09

Mavic-Ent sunny 80.00 82.30 48.50 63.17
evening 66.70 61.60 49.68 55.48
cloudy 81.00 82.50 43.75 60.08

Mavic-Air sunny 99.50 100.00 44.12 66.42
evening 12.00 100.00 49.95 70.67
cloudy 99.50 15.00 45.12 26.01

Mean average precision (mAP) as a metric assesses the capacity of a model for accurate
positive prediction and elicitation, expressed in Equation (16) as;

mAP =

[
∑k

i=i Ave.Pr(i)
K

]
, (16)

with K = number of samples in the dataset, and Ave.Pr(i) = average precision of each i
sample. From Table 4, ALIEN achieved on average a 99.5% mAP value in detecting all
UAV models for the cloudy and sunny scenarios, implying a high-level positive prediction
capability. In addition, a closer look indicates that ALIEN performed relatively poorly in
the evening due to obscured vision, with the lowest mAP of 12% for “Mavic-Air“ drones.
Notwithstanding, a 99.5% mAP achieved in detecting miniature “Anafi-Ext” drones in the
evening gives credence to the detection precision of ALIEN.

Sensitivity (R+
c ) measures the ability of a model to make accurate positive predictions.

That is, the likelihood of a positive test reflects how well the model picks up true positives,
written as seen in Equation (9):

Sensitivity(R+
c ) =

[
tp ×

1
tp + fn

]
, (17)

where tp = true positive predictions, and fn= false negative predictions by the model,
respectively. A high sensitivity value denotes a good model performance. According to
Table 4, the sensitivity value of the proposed model ranges from 75% to 100%, implying
that the ALIEN model accurately detects various drones in different climatic conditions
and at varying altitudes.

From Figure 9, a 100% sensitivity value achieved by the ALIEN model in detecting a
distant and miniature drone, Ana f i-extended in the evening scenario is remarkable.
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Figure 9. Sensitivity graph of ALIEN performance for detecting UAV models across all scenarios.

Furthermore, to assess the true negative prediction capacity of the ALIEN model for
accurate invasive drone elicitation from other aerial objects, specificity (R−c ) is expressed as
by Equation (18);

Speci f icity(R−c ) =
[

tn ×
1

tn + fp

]
, (18)

with tn being true negative errors in prediction (i.e., returning a right signal that the detected
aerial object is not a drone), and fp representing false positive errors in prediction (i.e.,
returning a wrong signal that an aerial object is a drone when it is not) by ALIEN model.
A low R−c value denotes good model performance. The low average R−c value of 42.5%
achieved by the ALIEN model (see Table 4) indicates the capacity of the model to handle the
difficult task of simultaneous detection and elicitation of multiple aerial objects in a DTN.

The moving average results for the evening and cloudy climatic conditions in Figure 10
reveal that the ALIEN model can sufficiently decide that the detected aerial object is not a
drone (∂D

′
) even in an obscure scene, which is necessary to prevent unjustified interruption

of the airspace.

Figure 10. Specificity graph of ALIEN performance for detecting UAV models across all scenarios.
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Finally, to further examine the prediction characteristics of the ALIEN model, par-
ticularly when there is an uneven distribution in the variability of the sample size of the
dataset, we evaluate a trade-off between sensitivity (R+

c ) and specificity (R−c ), otherwise
called the geometric mean (G-mean). The mathematical definition of G-mean is:

G-mean = (Rc
+ × Rc

−)
1
2 , (19)

The results in Table 4 affirm that the low G-mean value (between 26.01–70.67%)
recorded by the ALIEN model indicates good prediction performance when there is an
uneven sample distribution. At a glance, the result from Figure 11 affirms the prediction
ability of the proposed model with an uneven sample distribution.

Figure 11. G-mean graph of ALIEN performance showing the trade-off between R+
c and R−c in

detecting different UAVs across all scenarios.

4.2. ALIEN Learning Capacity through Ablation Study

Finding a balance between the reliance of the model on batch gradient descent and
stochastic gradient descent can determine the objectivity of the model in terms of error
committal and accuracy for each full pass of the training algorithm (epoch) throughout
the entire training set. To carry out the ablation study on the proposed model, the training
set was divided into various mini-batch sizes and used to calculate the error and update
its coefficients, as shown in Table 5. A mini-batch size (sn) refers to the portion of the
training dataset (SN) that the CPU processes simultaneously. The training time increases
with sn size.

Table 5. Model ablation based on hyperparameter tuning.

ALIEN Model Ablation Performance.

Batch size Epoch mAP
%

Sensitivity
(R+

c ) %
Box_Loss

8 100 99.5 100 0.037
16 100 99.5 100 0.039
24 100 99.5 100 0.044
32 100 99.6 100 0.046
48 100 99.6 100 0.050
64 100 99.8 100 0.052
96 100 99.6 100 0.053

128 100 99.5 100 0.059
144 100 99.5 100 0.062
160 100 99.5 100 0.063



Sensors 2023, 23, 1233 22 of 29

The result of the ablation study shows a gradual decline in the error minimization by the
ALIEN model, an indication of a good learning ability across all batch sizes (batch 8 = 0.037,
batch 16 = 0.039, etc.), with little prediction error as the batch size grew at a specified epoch
of 100 and learning rate of 0.005 as captured in the line graph of Figure 12.

Figure 12. Box loss graph across different batch sizes indicating ALIEN’s learning capability in
predicting results on different operation quanta.

The results from the performance evaluation analysis (sensitivity, specificity, irrational
behavior (F1), etc.) in response to detecting drones and attached objects under dynamic
environmental scenarios confirm the suitability of the ALIEN model as an efficient under-
lying model for multi-scale invasive drone and aerial object detection and status elicitation
necessary for intercepting illegal drone operations in a DTN at different altitudes and
distances, as shown in the detected samples in Figure 13 with their range estimates.

Figure 13. Drone detection samples by the ALIEN model across drone models at different heights
and scenarios.

4.3. Attached Object Recognition by the ALIEN Model

In a DTN that is used for threat analysis and situation-aware neutralizing decisions, ac-
curate and exact transmitted object identification and elicitation are essential to distinguish
a hobby drone or logistics drone from a presumed malicious drone (see Section 3.5).

The values from Table 6 show that the ALIEN model can, to some extent, detect
and differentiate various conveyed objects by each UAV type (see samples of recognized
attached objects Figure 14) with mAP values ranging from 99.7% to 31.7%, maximum
sensitivity value of 89.5%, and specificity value of 51.1%.
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Table 6. Conveyed objects status recognition.

Recognition of Conveyed Objects by the ALIEN Model

Conveyed
Objects

mAP
%

Sensitivity
(R+

c )%
Specificity

(R−
c ) %

G-Mean
%

Medical Supplies 48.5 65.5 43.3 53.3
Spy Camera 33.9 59.1 40.8 49.1
Sealed Packages 30.2 36.8 30.1 33.3
Containers 95.2 89.5 51.1 67.6
Guns 31.7 41.2 11.2 21.5
Food Items 84.5 84.3 49.6 64.6
Missile 99.7 68.5 44.5 55.2
Explosives 80.0 45.2 34.5 39.5

Figure 14. Samples of recognition of conveyed objects by ALIEN.

In addition, with a 99.7% accurate visual recognition of conveyed objects, ∂D(o,o′ ) (as
shown in Figure 15), the harmful status or otherwise, ∂D(T,T′ ), of the targeted drone can
easily be ascertained through proper threat analysis as detailed in Section 3.5. This result
validates the capacity of the ALIEN model for simultaneous drone detection and attached
object recognition.

Figure 15. Graph showing the mAP, sensitivity, specificity, and G-mean values of ALIEN in identify-
ing different conveyed objects by the drones.
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4.4. Performance Evaluation

Rationality and timeliness in decision making are crucial elements in any time-sensitive
and precision-driven real-time system (such as an anti-drone system). This section compares
and evaluates the performance of the ALIEN model with different YOLO models and other
SOTA DL models.

4.4.1. ALIEN and YOLO variants

The results in Table 7 summarize the performance of the ALIEN model and variants
of YOLO, highlighting the computational complexity analysis of each model.

Table 7. Models performance evaluation I.

UAV Detection Performance Conveyed Object Recognition Performance

Models Back F1 Time Train. Space F1 Time Train. Space
Bone (%) (fps) Time GFLOPs (%) (fps) Time GFLOPs

v3 Darknet 95.5 0.016 s 10 m 57 s 23.4 68.9 0.015 s 1 m 8 s 23.3
v5s Tiny-s 98.1 0.021 s 5 m 27 s 16.5 61.5 0.022 s 2 m 54 s 16.4

p2+v5 sPPF 99.1 0.023 s 16 m 52 s 19.2 74.5 0.024 s 3 m 45 s 19.1
fpn+v5 FPN 82.9 0.022 s 13 m 23 s 16.2 77.7 0.023 s 2 m 55 s 16.3
ALIEN Hybrid 99.8 0.021 s 03 m 0 s 16.1 80.1 0.021 s 1 m 8 s 16.1

The F1-score (F1) defined by Equation (20) measures the change in precision and
sensitivity values of a model and quantifies how rationally the model behaves while
performing a task.

⇒ F1 = 2×
[

Pr ∗ R+
c ∗

1
Pr + R+

c

]
, (20)

where Pr represents the precision of the model represented as mAP; and R+
c is the re-

call/sensitivity of the model. In ML, F1 − score is preferred as a better performance
evaluation metric than accuracy because an ML model needs to be rational while executing
a task to minimize the false prediction or detection rate. The ALIEN model outperformed
other YOLO models with F1-scores (F1) of 99.8% for drone detection and 80.1% for con-
veyed object recognition. This validates that the ALIEN model is more effective than other
models for effective counter-invasive encroachment neutralization in a DTN.

The results in the line graph in Figure 16 show the mAP values of each model across
the epochs, confirming the effectiveness of the ALIEN model for counter-invasive drone
encroachment detection.

Figure 16. Hyperparameter graph showing the average precision of different models in identifying
conveyed objects by UAVs.
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Furthermore, the latency of a model checks how quickly it responds to events (i.e.,
prediction time). By using the asynchronous execution method to measure delay, the results
confirm that the ALIEN model outperformed other YOLO models with a latency value of
0.021s for both drone detection and conveyed object recognition.

4.4.2. ALIEN and SOTA Model Performance

For exhaustive performance evaluation, the results in Table 8 highlight the computa-
tional complexity analysis of the ALIEN model and other SOTA models.

Table 8. Models performance evaluation II.

Overall Model Performance (Detection and Identification)

Models mAP R+
c F1 Time Rel. Space Used

(%) (%) (%) (fps) Loss GFLOPS

v3 97.20 89.50 95.50 0.016s 0.0426 23.30
v5s 96.50 100.0 98.10 0.022s 0.0440 16.50

p2+v5 98.30 100.0 99.10 0.024s 0.0587 19.10
fpn+v5 100.0 70.80 82.90 0.023s 0.0421 16.20

SqueezeNet 83.41 85.10 88.50 0.030s 0.0921 22.50
GoogleNet 89.55 88.75 89.10 0.035s 0.0685 24.10

VGG-16 89.25 83.20 86.10 0.039s 0.0781 26.50
MobileNet V2 74.50 72.05 74.01 0.476s 0.0951 18.40

ResNet 89.53 90.10 89.81 0.040s 0.0983 21.70
ALIEN 99.50 100.0 99.80 0.021s 0.0370 16.10

Firstly, throughput defines how frequently each model receives service requests or the
maximum number of input instances a neural network can handle in a specific time. This
is expressed mathematically in Equation (21);

⇒ Throughput(Nt) =

[
Nb ∗ bn ∗ (

1
Tt
)

]
, (21)

with Nb being the number of batches, bn is the batch size, and Tt represents total time
in seconds. According to Table 8, the ALIEN model achieved the best throughput of
16.1 GFLOPS which is closely followed by f pn + 5v5 with 16.20 GFLOPS, YOLOv5 with
16.50 GFLOPS, and then MobileNet with 18.40 GFLOPS. However, overall, the ALIEN
model has a better prediction performance than other SOTA models using other evaluation
metrics, thereby making the proposed model a preferable choice model for counter-invasive
encroachment.

Secondly, the dependability or reliability of a model is the measure of its error mini-
mization, otherwise called loss. When compared to other SOTA models, the ALIEN model
achieved the lowest loss (0.0370) in Table 8. Though the other YOLO variants exhibited
similar low error minimization values (such as 0.0426 for YOLOv3, 0.0421 for fpn+v5,
etc.), the ALIEN model still had the least loss value, signifying its reliability in prediction
performance.

Thirdly, the efficiency of a real-time system is measured as the ratio or point at which
its precision (mAP) coincides with its sensitivity (Rc+) in carrying out a particular task.

Thirdly, the efficiency of a real-time system is measured as the ratio or point at which
its precision (mAP) coincides with its sensitivity R+

c ) in carrying out a particular task.
Equation (22) defines efficiency as;

⇒ E f f iciency(ξ) =
[

Pr

R+
c

]
, (22)

From the result in Table 8 , v3 has
[ 97.20

89.50
]

ξ value, v5s has
[ 96.50

100.0
]

ξ value, p2+v5 has[ 98.30
100.0

]
ξ value, fpn+v5 has

[
100.0
70.80

]
ξ value, etc. However, the ALIEN model achieved a
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[ 99.50
100.0

]
ξ value validating the model with the highest efficiency in handling multi-scale

counter-invasive drone with aerial objects encroachment as well as conveyed object recog-
nition prediction under dynamic scenarios. This prediction efficiency is further verified by
the confusion matrix in Figure 17 and the detected samples in Figures 13 and 14, with a
minimal degree of misclassification.

Figure 17. ALIEN confusion matrix.

4.5. Adaptive Encroachment Neutralization Analysis

According to the analysis of the experimental data presented above, the proposed
model is capable of achieving high drone detection (D) values of 99.8% and effective
conveyed object recognition (Drd

λ
) value of 80.1%, which are required for perceived threat

analysis, at a shorter response time (Dtime) of 0.021s, which is required for prompt adaptive
neutralization (DN(max)

), and less memory consumption of 16.1%. The deployment of
the ALIEN model as an underlying DL counter-invasion detection model in a mobile
cyber–physical system operating with the hard-real-time control system principle can
effectively carry out proper perceived threat analysis and drone authentication and trigger
the appropriate neutralization strategy to stop or nullify a suspected malicious drone
encroachment in a DTN before it disrupts the entire airspace transportation system, creates
social apprehension, and creates public disapproval in an attempt to malign legal drone
usage for critical emergency purposes and priority-based logistics.

The condition of a drone in the DTN can be determined at any time by combining
these learnable DL model-based parameters (D, Drd

λ
, Dtime, and DN(max)

) with other sensor-
based and systems/network-derived parameters, such as legality authentication (Dlk ),
flight path (Dpath), map area priority (gi), and the appropriate authentication security
infrastructure. This guarantees that the evolving anti-drone control system can adeptly
instantiate, identify, and elicit perceived malicious invasive drone encroachment from
drifting hobby and logistics drones before launching an automated counter-response that
could endanger the development of drone technology as a viable priority-based freight
carrier. The sustainability of DTS is therefore guaranteed by this approach to invasive
drone encroachment detection, identification, and neutralization because it permits only
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authorized drone-based logistics, airborne transports, and hobby drones to operate along
the approved routes in the DTN while circumspectly observing premeditated malicious
drone activities aimed at disrupting the network.

5. Conclusions

This work proposes a robust approach to ascertaining safety and security in a drone
transportation network by circumspectly determining the malicious status of a drone in the
network using a multi-modal deep-learning approach. The approach collaboratively detects
and elicits the harmful status or otherwise of a drone in flight in a drone transportation
network by detecting the drone in the network, identifying the conveyed objects, assessing
the legality boundary of the drone, and determining its authenticity and authorization
to operate before deciding the appropriate counter-invasive encroachment response to
initiate based on given dynamic metrics and feedback parameters. Performance evaluation
and comparison with nine other SOTA models were performed. The experimental results
validate the adequacy and inventiveness of the proposed approach in ensuring security
and sanity in a drone-based intelligent transport system for the viability and sustainability
of DTS through objectivity and circumspection in decision making before interfacing with
perceived targets.

Due to their miniature size and concealment of conveyed objects, low detection
precision was observed in the prediction results. Future work will tackle this and other
emerging problems by developing a drone-based swarm optimization algorithm to enhance
the learning of the detection network model and improve performance. In addition,
consideration will be given to drone authentication and authorization in a DTN using
semi-blockchain technology and a functional non-fungible token to interface with the
evolving drone technology landscape and its diverse usage as a viable intelligent vehicle
for a just-in-case supply chain.
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Abbreviations
The following abbreviations are used in this manuscript:

Acronym Meaning
AI Artificial Intelligence
AL Assisted Learning
ALIEN Assisted Learning Invasive Encroachment Neutralization
CNN Convolution Neural Network
CPS Cyber Physical System
CSP Cross Stage Partial Network
DL Deep Learning
DTN Drone Transportation Network
DTS Drone Transportation System
EDDN Efficient Drone Detector Network
FLOPS Floating point Operations Per Seconds
FPN Feature Pyramid Network
IAS Intelligent Autonomous System
IOU Intersection Of Union
LIDAR Light Detection and Ranging
mAP Mean Average Precision
ML Machine Learning
PANET Path Aggregation Network
RADAR Radio Detection and Ranging
SOTA State-of-the-Art
SSD Single Shot Detector
TEAS Timely, Efficient, Accurate, Situation-aware
UAV Unmanned Aerial Vehicles
VGG Visual Geometry Group
YOLO You Only Look Once
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