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Abstract: Two hybrid composites (SnP@MCM−41 and SnP@SiO2) were fabricated by chemical
adsorption of (trans-dihydroxo)(5,10,15,20-tetraphenylporphyrinato)tin(IV) (SnP) on mesoporous
structured Mobil Composition of Matter No. 41 (MCM−41) and SiO2 nanoparticles. These materi-
als were characterized by Fourier-transform infrared spectroscopy, ultraviolet–visible spectroscopy,
fluorescence spectroscopy, transmission electron microscopy, and field-emission scanning electron
microscopy techniques. The incorporation of SnP into MCM−41 and SiO2 supports efficient photocat-
alytic degradation of the anionic erioglaucine, cationic rhodamine B, and neutral m-cresol purple dyes
under visible light irradiation in an aqueous solution. The performances of degradation of these dyes
by these photocatalysts under visible light irradiation varied from 87 to 95%. The pseudo-first-order
degradation rate constant of organic dyes for SnP@MCM−41 was higher than those of SnP@SiO2

and SnP. These visible light photocatalysts showed remarkable stability and reliable reusability.

Keywords: hybrid composite; Sn(IV)-porphyrin; mesoporous structure; photocatalytic degradation;
water remediation

1. Introduction

The global environment suffers from water pollution due to increased industrial and
agricultural activities, which causes serious problems for aquatic life [1,2]. Every year,
large amounts of hazardous substances such as dyes, pesticides, pigments, herbicides,
phenols, biphenyls, and nitro and amino compounds are discharged into water bodies,
impairing the drinking quality of water. In this regard, scientific efforts to remove these
toxic substances from wastewater are increasing [3,4]. Numerous physicochemical methods
including adsorption [5], filtration [6], precipitation [7], and advanced oxidation processes
(AOPs) [8,9] have been employed to remove these pollutants. AOP is the most suitable
technology because it is simple, has a low cost and high degradation rate, and degrades the
entire pollutant to nontoxic H2O and CO2 without generation of other secondary pollutants.
Appropriate photocatalysts in the AOPs absorb visible light from the sun and generate
reactive oxygen species in situ, which promote the degradation of chemicals in water. A
large number of photocatalysts have been used to analyze the degradation of organic pollu-
tants in water. Porphyrinoids (free-base porphyrins and metalloporphyrins) largely absorb
visible light and can be used as visible-light-activated photocatalysts [10,11]. However, the
use of porphyrinoids in homogeneous catalysis is limited by their aggregation in solution,
small surface area, poor reusability, and difficulty in postseparation of the catalyst from
the reaction mixture [12]. In addition, it is necessary to develop new photocatalysts to
overcome main challenges such as the reduced bandgap, increased solar absorption, fast
electron–hole recombination, and smooth recovery from the reaction medium. To this
end, porphyrin-based hybrid composite materials have been promising photocatalysts
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for the degradation of organic pollutants in water and have attracted considerable atten-
tion in the applied chemistry community over the past decades [13–17]. In this method,
porphyrinoids are combined with one or more components, leading to the formation of
nonaggregated nanomaterials with controlled surface morphologies. These materials ex-
hibit remarkable features compared to starting compounds, including a large surface area,
high physiochemical stability, and morphology-dependent physical properties.

In this context, we have been interested in hybrid nanocomposite materials comprising
metalloporphyrins and mesoporous supports. In this study, a mesoporous Mobil Composi-
tion of Matter No. 41 (MCM−41), which consists of a hexagonally well-ordered structure
with large pore size and surface area, was used. The numerous silanol groups on the
cavity surface attract other functional groups for chemical or physical adsorption [18–20].
Commercial SiO2 nanoparticles were used for comparative studies. We selected Sn(IV)-
porphyrins as a source of porphynoid compounds. Sn(IV)-porphyrin was selected over
others owing to its unique optical properties and peculiar octahedral geometry. Owing
to the oxophilic nature of the Sn(IV) center, Sn(IV)-porphyrin can readily form stable
six-coordinated complexes with two oxyanions of alkoxides or carboxylates at the trans
position. This advantageous tuning capability of Sn(IV)-porphyrins enables creation of co-
ordination complexes [21–25], multiporphyrin arrays [26–28], and nanostructures [29–31],
which exhibit characteristic functions. In particular, supramolecular nanostructures based
on Sn(IV)-porphyrins have been intensively studied for the application of photocatalysis
of AOPs for water remediation [32–40]. Therefore, the combination of Sn(IV)-porphyrins
with the mesoporous MCM−41 not only enables morphology fabrication of the surface but
also enhances the photocatalytic degradation efficiencies of organic pollutants by manifold
compared to the parent Sn(IV)-porphyrins (Scheme 1). As model organic pollutants, an-
ionic erioglaucine (EG) [41], cationic rhodamine B (RhB) [42], and neutral m-cresol purple
(MCP) [43] dyes were chosen to investigate photocatalytic degradation. These pollutants
are potentially carcinogenic even at very low concentrations, non-biodegradable, and long-
lasting in aqueous solutions. These water-soluble dyes have been widely used in the textile,
paper-printing, and leather industries and are discharged in significant amounts to the
environment. This results in undesirable water pollution, and thus it is required to remove
these dyes from wastewater.
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2. Results and Discussion
2.1. Fabrication and Characterization

Hybrid composites (SnP@MCM−41 or SnP@SiO2) composed of Sn(IV)-porphyrin
and support materials were fabricated through the reaction of SnP with silanol groups of
mesoporous materials. Condensation of the axial hydroxo ligand of Sn(IV)-porphyrin with
a silanol group of the silica surface forms Sn−O−Si chemical bonds in the fabrication of
the hybrid composites, as shown in Scheme 1. In a typical procedure, SnP was reacted
with MCM-41 or SiO2 in dichloromethane at room temperature for 24 h, and then the solid
was filtered to obtain a hybrid composite of SnP@MCM-41 or SnP@SiO2. The amount of
adsorbed Sn(IV)-porphyrin (SnP) was estimated based on the tin content of the hybrid
composite, SnP@MCM−41 or SnP@SiO2, measured by ICP analysis. The chemically
adsorbed amounts of SnP in SnP@MCM−41 and SnP@SiO2 were estimated to be 0.094
and 0.091 mmol/g, respectively.

The surface modification was characterized by zeta potentials determined by the
degree of electrostatic repulsion of the surface. As shown in Table S1, the average zeta
potentials of SiO2 and MCM-41, and SnP are −23.80 and −30.66 mV, respectively. On
the other hand, the average zeta potentials of SnP@SiO2 and SnP@MCM−41 are −17.56
and −27.53 mV, respectively. The positively increased zeta potentials for SnP@SiO2 and
SnP@MCM−41 compared to those for bare SiO2 and MCM−41 show the strong binding of
SnP with SiO2 and MCM−41, which indicates the formation of desired hybrid composites.

FTIR spectra of SnP@MCM−41 and SnP@SiO2 were compared to those of SnP, SiO2,
and MCM−41, as shown in Figure 1. In the FTIR spectrum of SnP, the absorption peaks
at 1021 and 796 cm−1 belong to the bending vibration of N−H and out-of-plane bending
vibration of C−H in the benzene ring, respectively. The peaks at 3381, 1590, and 1409 cm−1

are attributed to the stretching vibrations of N−H, C=C, and C−N in the pyrrole ring,
respectively. The peaks at 3600 cm−1 are assigned to the stretching vibrations of the OH
signal of the axial hydroxo ligand present in the Sn(IV)-porphyrin. The absorption peaks
at 1052 and 805 cm−1 are characteristic peaks of Si−O−Si stretching, while the peaks at
470 and 950 cm−1 are assigned to the bending of Si−O−Si and Si−OH for MCM−41,
respectively. On the other hand, the peaks at 1063 and 803 cm−1 are characteristic peaks
of Si−O−Si stretching, while those at 472 and 949 cm−1 are assigned to the bending
of Si−O−Si and Si−OH for SiO2, respectively. The appearance of the peaks at 3430
and 1630 cm−1 could be attributed to adsorbed water and silanol groups of both SiO2
and MCM−41. The FTIR spectrum of SnP@MCM−41 shows the characteristic band of
Si−O−Si stretching at 1055 cm−1. On the other hand, the absorption peak at 1070 cm−1 is
assigned to the Si−O−Si stretching of SnP@SiO2. All other peaks are unchanged or slightly
changed from those of the starting components. These observations indicate the attachment
of SnP to MCM−41 and SiO2 to form SnP@MCM−41 and SnP@SiO2, respectively.

The structural patterns of SnP, SnP@MCM−41, and SnP@SiO2 were examined by
X-ray diffractometer (Figure S1). It is evident from Figure S1 that the peaks are broad, and
the XRD patterns are very similar for a typical amorphous solid. SnP shows two peaks
centered at 9.8◦ and 17.8◦. On the other hand, SnP@MCM−41 and SnP@SiO2 exhibit
main peaks at 21.9◦ and 21.3◦, respectively.

Solid-state UV–vis spectra reflect the light absorption properties of SnP, SiO2, MCM−41,
SnP@MCM−41, and SnP@SiO2 (Figure 2). SnP exhibits strong light absorption at 429 nm
belonging to the Soret band and two weak absorptions at 569 and 607 nm corresponding to
the Q−bands. In contrast, SiO2 and MCM−41 did not exhibit strong light absorbance in the
visible region. Compared to SnP, SnP@MCM−41 exhibits strong light absorption at 423 nm
attributed to the Soret band and three weak bands at 519, 557, and 597 nm attributed to the
Q−bands. Similarly, SnP@SiO2 exhibits strong light absorption at 425 nm attributed to the
Soret band and three weak bands at 519, 558, and 598 nm attributed to the Q−bands. This
observation implies that the Soret band, as well as the Q−bands of SnP, were blue-shifted,
which confirms the strong attachment of SnP in both hybrid composites, SnP@MCM−41
and SnP@SiO2. The bandgap energy (Eg) calculated by the Tauc plot method is 2.53 eV for
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SnP@MCM−41, which is lower than that of SnP (2.85 eV). Similarly, the bandgap energy
of SnP@SiO2 (2.64 eV) is lower than that of SnP (Table S2). Therefore, the enhanced light
absorptions and narrower bandgaps of SnP@MCM−41 and SnP@SiO2 can effectively im-
prove solar energy utilization, generating more photo-generated carriers to participate in the
photocatalytic degradation reaction.
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As the separation efficiency of photo-generated carriers has an important role in the
photocatalytic process, its behavior was investigated by fluorescence spectroscopy. As
shown in Figure 3, SnP emits fluorescence at 600 and 652 nm under excitation light with a
wavelength of 560 nm, whereas SiO2 and MCM−41 do not exhibit fluorescence emission.
Both hybrid composites similarly exhibited a set of emission bands, at 602 and 652 nm for
SnP@MCM−41 and at 603 and 653 nm for SnP@SiO2. The emission peak-to-peak ratio of
SnP was changed for SnP@MCM−41 and SnP@SiO2, which suggests strong adhesion.
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TGA curves for the materials are presented in Figure 4. SnP exhibits large weight loss
starting at 350 ◦C. For SnP@MCM−41, the first change in the curve between 60 and 90 ◦C
is assigned to the removal of physically adsorbed water on the surface, corresponding to
a weight loss of approximately 2%. Additional weight loss was observed around 510 ◦C,
attributed to the elimination of surface-bound organic groups of SnP. On the other hand,
SnP@SiO2 experienced apparent weight loss starting at 525 ◦C, where the surface-bound
organic groups of SnP were removed. The TGA observations indicate that SnP@MCM−41
and SnP@SiO2 are thermally stable up to 550 ◦C.

The structural and morphological development of the fabricated SnP@MCM−41
and SnP@SiO2 was investigated by FE−SEM. The morphologies of SnP@MCM−41 and
SnP@SiO2 along with those of the starting materials are presented in Figures 5 and S2.
The FE−SEM images show that SnP@MCM−41 has an average diameter of approxi-
mately 100 nm with a narrow size distribution (Figure 5d). Compared to MCM−41,
SnP@MCM−41 has an irregular surface, possibly due to the chemical adsorption of SnP
on the surface of MCM−41. On the other hand, the sphere-shaped SnP@SiO2 has an aver-
age diameter of approximately 70 nm. Notably, the morphology of SnP does not exhibit
a characteristic shape and size. EDS mapping images of SnP@SiO2 and SnP@MCM−41
(Figures S3 and S4) confirm the homogeneous distribution of elements (C, N, O, Si, and Sn).
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The mesoporous structure of SnP@MCM−41 was further confirmed by TEM. The
TEM image of SnP@MCM−41 (Figure 6) shows regular arrays of cylindrical mesopores
forming a one-dimensional pore system in contrast to SnP@SiO2. The mesoporous
channel of MCM−41 was thus expected to facilitate the efficient transport of electrons
and holes photo-generated from SnP. The hydrodynamic particle sizes of SnP, SiO2,
MCM−41, SnP@MCM−41, and SnP@SiO2 in a suspension were measured by DLS. The
average particle size in each aqueous solution had a narrow distribution with diameters
of 40, 45, 70, 125, and 100 nm for SnP, SiO2, MCM−41, SnP@MCM−41, and SnP@SiO2,
respectively (Figure S5).

The nitrogen sorption isotherms for determination of the permanent porosities of
MCM−41 and SnP@MCM−41 are presented in Table S3. The BET surface area and av-
erage pore size of SnP@MCM−41 are 648.7 m2/g and 1.53 nm, respectively, suitable for
catalytic applications due to the large available surface. The decreases in the surface area
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and pore size from the bare MCM−41 to SnP@MCM−41 provide evidence for the incor-
poration of SnP within the channels of mesoporous frameworks. Therefore, MCM−41 was
successfully coupled with SnP to form the SnP@MCM−41 mesoporous hybrid composite
that maintained high thermal stability and a large surface area.
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2.2. Photocatalytic Degradation of Organic Dyes

The photocatalytic performances of SnP@MCM−41 and SnP@SiO2 were investigated
by the degradation of the organic dyes under visible light irradiation in aqueous solutions.
For this purpose, anionic EG, cationic RhB, and neutral MCP were selected as target
pollutant dyes for photocatalytic degradation. After approximately 30 min to reach the
adsorption–desorption equilibrium, 5, 18, and 25% of EG was adsorbed by SnP, SnP@SiO2,
and SnP@MCM−41, respectively (Figure S6). This indicates that the large surface area
and mesoporous framework of SnP@MCM−41 can promote mass diffusion and enhance
adsorption. Time-dependent absorption spectra of EG in the presence of SnP@MCM−41
under visible light irradiation are shown in Figure S7. Negligible decay of the EG dye was
observed in the absence of either visible light or photocatalyst SnP@MCM−41 (Figure S8),
which implies that visible light is essential for the degradation of the EG dye in addition
to photocatalysts. In Figure S7, the absorbance of the EG dye at 629 nm decreases with
the increase in the visible light irradiation time. Figure 7 shows that all prepared catalysts
exhibit significant progress in the photodegradation of EG in an aqueous solution.

The degradation of the EG dye in the presence of photocatalysts can be described by
its degradation efficiency, (C0 − C)/C0, where C0 is the initial concentration of EG and C
is the concentration at time t. The observed degradation rate of EG is 13% for SnP, 87%
for SnP@SiO2, and 95% for SnP@MCM−41 within 90 min of irradiation of visible light
(Figure 7). Therefore, the photocatalyst SnP@MCM−41 exhibits better performance toward
the degradation of the EG dye than SnP and SnP@SiO2. To further elucidate the reaction
kinetics for the decay of the EG dye, we used the pseudo-first-order concept, expressed by
ln(C0/C) = kt, which is generally used for a photocatalytic degradation experiment if the
initial concentration of the dye is low, where k is the pseudo-first-order degradation rate
constant. Based on the data plotted in Figure 7, the reaction kinetics of EG dye degradation
are presented in Figure S9. The first-order rate constant for the degradation of the EG dye is
0.002 min−1 for SnP, 0.022 min−1 for SnP@SiO2, and 0.029 min−1 for SnP@MCM−41.

The photodegradation performances of SnP@MCM−41 and SnP@SiO2 were further
analyzed toward diverse targets (cationic RhB and neutral MCP dyes) under visible light
irradiation. Time-dependent absorption spectra of RhB in the presence of SnP@MCM−41
under visible light irradiation are shown in Figure S10. As shown in Figures 8 and S11,
the pseudo-first-order rate constant for the degradation of RhB is 0.0006 min−1 for SnP,
0.011 min−1 for SnP@SiO2, and 0.013 min−1 for SnP@MCM−41.
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On the other hand, time-dependent absorption spectra of MCP in the presence of
the photocatalyst SnP@MCM−41 under visible light irradiation are shown in Figure S12.
The pseudo-first-order rate constant for the degradation of MCP is 0.001 min−1 for SnP,
0.021 min−1 for SnP@SiO2, and 0.024 min−1 for SnP@MCM−41 (Figures 9 and S13).
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The reusability of the photocatalysts SnP@MCM−41 and SnP@SiO2 is crucial for
practical application, which was evaluated by recycling tests on SnP@MCM−41 toward
EG dye degradation (Figure S14). Even after 10 consecutive cycles, SnP@MCM−41 still
maintains a high performance for the degradation of the EG dye with a reduction of only
8%, which indicates that the photocatalyst SnP@MCM−41 has remarkable stability. After
the degradation reaction, the structure of SnP@MCM−41 was additionally analyzed to
confirm the stability of this photocatalyst. As shown in Figures S15 and S16, the FTIR
spectrum and FE−SEM image of the used SnP@MCM−41 closely resembles that of the
as-prepared state, which indicates that the mesoporous framework of this photocatalyst
was intact during the photocatalytic reaction. Moreover, the process for the recovery of
these photocatalysts, SnP@MCM−41 and SnP@SiO2, from the reaction mixture was very
simple through successive filtration, washing, and drying procedures.

We optimized the reaction conditions in terms of the EG dye/photocatalyst ratio,
temperature, and pH of the solution. Photodegradation experiments were carried out
at different temperatures to evaluate the effect of temperature on the degradation of
the EG dye by the photocatalyst SnP@MCM−41. With the increase in temperature, the
degradation efficiency increases up to 50 ◦C (Figure S17). The pH of the aqueous EG dye
solution apparently affected the degradation rate of the EG dye, as shown in Figure S18.
The rate of degradation increases from pH = 2 to pH = 8, and then decreases to pH = 12. To
evaluate the effect of the dye/photocatalyst ratio on the degradation of the EG dye, various
concentrations of the EG solution (5, 10, 15, 20, 25, 30, 35, and 40 mg L−1) were applied
with a constant amount (20 mg) of the photocatalyst SnP@MCM−41. The degradation
rate decreases with the increase in the concentration of the EG dye. Most of the EG dye
is degraded at concentrations of 5−25 mg L−1, while approximately 60% of the dye is
degraded even at 40 mg L−1 (Figure S19).

Among all photocatalysts, SnP@MCM−41 shows the highest photodegradation rate,
which can remove about 95% of EG dye within 90 min. To determine the effect of the amount of
SnP adsorbed onto SnP@MCM−41 for photocatalytic activity, a series of SnP@MCM−41 sam-
ples varying only in a molar amount of SnP with respect to MCM−41 per gram (MCM−41/g)
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were used for the measurement of the EG dye degradation rate (Figure S20). The photodegrada-
tion rate of EG for composites SnP@MCM−41 (0.01 mmol/g to 0.2 mmol/g) was higher than
pure SnP. The rate also increased when the molar amount of SnP compared to MCM−41/g in-
creased in the composite, reaching the maximum of 0.1 mmol/g. After that, the rates decreased
from 0.15 mmol/g to 0.2 mmol/g. When the molar amount of SnP to MCM−41/g is lower
than 0.05 mmol/g, the host photocatalyst SnP has low content in the composite to reduce the
amount of photogenerated carriers, resulting in relatively low catalytic efficiency. When the
molar amount ratio is higher than 0.1 mmol/g, SnP significantly agglomerates on the MCM−41
surface, reducing reactive sites, suppressing photogenerated charge separation, and gradu-
ally reducing degradation efficiency of EG dye. This suggests the synergistic effect between
SnP and MCM−41 is responsible for the noticeably enhanced photocatalytic activity of the
composite SnP@MCM−41.

We previously reported a possible mechanism for the photodegradation of organic
dyes by porphyrin-based nanomaterials in an aqueous solution under visible light irradia-
tion [38,39]. Usually, the mechanism includes five steps. In step 1, a photocatalyst in an
aqueous solution absorbs light upon exposure to visible light irradiation along with the
EG dye. Valence-band electrons are promoted to the conduction band after crossing the
bandgap. This assists in the generation of electron–hole (e−/h+) pairs at the surface of the
photocatalyst. These photogenerated holes (h+) react with H2O to form a highly reactive
hydroxyl radical (•OH) (step 2). On the other hand, the excited electron reacts with the
dissolved O2 to generate highly reactive superoxide radical anions (O2

−•) in step 3. These
photogenerated, highly reactive superoxide radical anions and hydroxyl radicals react with
the EG dye and degrade it into small molecules and finally to CO2 and H2O (steps 4 and
5). The photocatalytic degradation mechanism of 4-chlorophenol and acid orange 7 by
SnP-based photocatalysts was similarly discussed [14].

The mechanism consists of five steps for a porphyrin-based porous framework P:

P + hν→ P∗ ( e− + h+) (1)

H2O + h+ → •OH + H+ (2)

O2 + 2e− → O2
−• (3)

•OH + EG→ degraded products (4)

O2
−• + EG→ degraded products (5)

Radical trapping experiments were carried out to detect the photogenerated reactive
species during the photocatalytic degradation of the EG dye [44,45]. We used ethylene-
diaminetetraacetic acid disodium (Na2EDTA) to capture holes, tert-butanol (tBuOH) to
capture hydroxyl radicals (•OH), and para-benzoquinone (p-BQ) for superoxide radical
anions (O2

−•) during the photodegradation experiment of the EG dye in the presence of
SnP@MCM−41. Figure S8 confirms that the EG dye degradation rate is critically affected
in the presence of tBuOH as well as p-BQ. Superoxide radicals (O2

−•) are a major reactive
species compared to hydroxyl radicals (•OH) responsible for the catalytic degradation
of the EG dye in an aqueous solution. However, the degradation of the EG dye was not
affected by the presence of Na2EDTA or photogenerated holes.

We also analyzed the degradation products of the EG dye after visible light irradiation
in the presence of the photocatalyst SnP@MCM−41. The reaction mixture was analyzed by
electrospray ionization–mass spectrometry (ESI-MS) after 45 min for each photodegradation
experiment (Figure S21). New peaks in the mass spectra confirmed the degradation of the
EG dye to new small molecules [46]. Based on the mass spectra in Figure S16, possible
intermediates for the degradation of the EG dye are shown in Figure 10. Initially, the
base peak (m/z = 769 for [EG−Na]) and another peak (m/z = 373 for [EG−2Na]) belong
to the anionic EG dye. The EG dye can be fragmented in two different manners. The
first is through cleavage of the tertiary amine bond and formation of two low-molecular-
weight fragments with a secondary amine (m/z = 577) and 3-methyl-benzenesulfonic acid
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(m/z = 171). This secondary amine can further undergo hydrolysis and generate a tertiary
alcohol derivative (m/z = 594). Again, successive oxidation of tertiary alcohol leads to
formation of lower-molecular-weight fragments (m/z = 339 and 93). In the second process,
the cleavage of the C–C double bond leads to formation of two lower-molecular-weight
amine fragments (m/z = 459 and 290). These low-molecular-weight amines can then
undergo successive hydrolysis that leads to formation of benzenesulfonic acid (m/z = 157).
Finally, these lower-molecular-weight intermediate molecules were further fragmented
and mineralized into CO2 and H2O. The total organic carbon (TOC) value was calculated
to estimate the removal of the EG dye by photocatalysts [47]. The TOC removal percentage
attained using SnP@MCM−41 was only 75%.
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Finally, the degradation performances of organic dyes represented by the pseudo-
first-order rate constants for SnP@MCM−41 and SnP@SiO2 were compared to those of
selected photocatalysts reported in the literature. As listed in Table 1, SnP@MCM−41 and
SnP@SiO2 under visible light irradiation exhibit higher than or comparable degradation
performances for EG, MCP, and RhB to those of most reported photocatalysts.
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Table 1. Performances of degradation for EG, MCP, and RhB by various photocatalysts.

Photocatalyst Dye Rate Constant (min−1) References

TiO2 (P−25) EG 0.0473 [48]
γ−Irradiation EG 0.0018 [49]

TiO2 (UV) EG 0.025 [50]
CdS (one-dimensional) EG 0.008 [51]

SnP EG 0.002 This study
SnP@SiO2 EG 0.022 This study

SnP@MCM−41 EG 0.029 This study
Electrochemical-oxidation MCP 0.32 [52]

ZnO MCP 0.022 [53]
SnP MCP 0.001 This study

SnP@SiO2 MCP 0.021 This study
SnP@MCM−41 MCP 0.024 This study

TiO2 (P−25) RhB 0.001 [53]
Co0.6Zn0.4Fe2O4 RhB 0.015 [54]
TiO2/MgZnAl RhB 0.005 [55]

CdS RhB 0.003 [56]
ZnO RhB 0.009 [57]

TiO2 NTs/Bi2MoO6 RhB 0.0077 [58]
SnP RhB 0.0006 This study

SnP@SiO2 RhB 0.011 This study
SnP@MCM−41 RhB 0.013 This study

3. Materials and Methods

MCM−41 and SiO2 nanoparticles were purchased from Sigma–Aldrich. All other
chemicals were purchased from TCI and used without further purification unless otherwise
specified. (trans-Dihydroxo)(5,10,15,20-tetraphenylporphyrinato)tin(IV) (SnP) was pre-
pared similarly according to the previously reported procedure [59]. CH2Cl2 and pyrrole
were distilled from a solution over calcium hydride. Fourier-transform infrared (FTIR) spec-
tra were acquired using a Shimadzu FTIR−8400S spectrophotometer (Shimadzu, Tokyo,
Japan). Steady-state ultraviolet–visible (UV–vis) spectra were recorded using a Shimadzu
UV-3600 spectrophotometer (Shimadzu, Tokyo, Japan). Fluorescence spectra were recorded
using a Shimadzu RF-5301PC fluorescence spectrophotometer (Shimadzu, Tokyo, Japan).
Powder X-ray diffraction (PXRD) patterns were obtained on a Bruker AXS D8 Advance
powder X-ray diffractometer (Bruker, Billerica, MA, USA). A thermogravimetric analysis
(TGA) was performed using an Auto-TGA Q500 instrument (TA Instruments, New Cas-
tle, DE, USA). The Brunauer−Emmett−Teller (BET) surface area was determined using
an analyzer (BELSORP-mini volumetric adsorption equipment) through N2 adsorption
isotherms at 77 K. The surface area and pore size were estimated using an Autosorb-iQ and
Quadrasorb SI. Field-emission scanning electron microscopy (FE−SEM) and transmission
electron microscopy (TEM) images were acquired using a MAIA III (TESCAN, Brno, Czech
Republic) and JEOL/JEM 2100, respectively. Zeta potentials were measured with an Otsuka
Electronics ELSZ−2. Dynamic light scattering (DLS) experiments and inductively cou-
pled plasma (ICP) analysis were performed using a NanoBrook 90Plus DLS size analyzer
(Brookhaven, NY, USA) and ICP−Spectrociros CCD instrument, respectively.

3.1. Fabrication of SnP@MCM−41

Dried MCM−41 (3.0 g) was added into a solution of SnP (0.23 g) dissolved in CH2Cl2
(100 mL, ~3.0 mM) and stirred for 24 h at room temperature. The solids were filtered and
washed three times successively with acetone, CH2Cl2, and N,N−dimethylformamide.
Afterward, the solids were dried in a vacuum oven for 4 h at 80 ◦C, which yielded a powder
of SnP@MCM−41 (2.864 g).
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3.2. Fabrication of SnP@SiO2

Using dried SiO2 (3.0 g), a powder of SnP@SiO2 (3.003 g) was obtained by the
same procedure.

3.3. Photocatalytic Degradation Experiment

The photocatalytic efficiencies of these hybrid composites were investigated by pho-
todegrading EG, RhB, and MCP dyes in each aqueous solution. In a typical procedure,
20 mg of the photocatalyst was added to 250 mL of an aqueous solution of EG (20 mg L−1,
distilled water with pH of 7.0) with stirring at 298 K. The reaction mixture was allowed
to stand in dark for 30 min to reach the adsorption−desorption equilibrium. Afterward,
the irradiation process was started using a 150 W xenon arc lamp with a UV cut-off filter
(ABET Technologies, Old Gate Lane, Milford, CT, USA) at 298 K. After irradiation with
visible light, a 3 mL suspension was collected at regular intervals. The photocatalyst was
separated from the solution by centrifugation and collected by filtration with filter paper.
The concentration of EG was determined by measuring the absorbance at 629 nm using
a UV–vis spectrophotometer. Similarly, an aqueous solution of RhB (40 mg L−1) dye was
prepared, and its concentration was determined by assessing the absorbance at 553 nm.
For the MCP dye, we used an aqueous solution of MCP (65 mg L−1) and determined its
concentration at 435 nm.

4. Conclusions

Hybrid composites of SnP@MCM−41 and SnP@SiO2 were fabricated by the reaction of
(trans-dihydroxo)(5,10,15,20-tetraphenylporphyrinato)tin(IV) (SnP) with the mesostructured
MCM−41 and nanoparticle SiO2, respectively. The formation of hybrid composites was
readily achieved through condensation between the hydroxo ligand of SnP and silanol groups
of MCM−41 or SiO2. These hybrid composites were fully characterized by FTIR spectroscopy,
UV–vis spectroscopy, fluorescence spectroscopy, TEM, and FE−SEM techniques. The incor-
porated SnP onto the mesoporous structure provided efficient photocatalytic degradation
for the anionic EG, cationic RhB, and neutral MCP dyes under visible light irradiation in
an aqueous solution. The pseudo-first-order degradation rate constant of organic dyes for
SnP@MCM−41 was higher than those of SnP@SiO2 and SnP. These visible light photo-
catalysts showed remarkable stability and reliable reusability. Our report on visible light
photocatalysts provides a valuable contribution for the treatment of dyed wastewater and
encourages the development of highly effective hybrid composites composed of porous
materials and visible light photocatalysts for applications in environmental remediation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28041886/s1, Table S1: Zeta potentials and mobilities of
SiO2, SnP@SiO2, MCM−41, SnP@MCM−41, and SnP; Table S2: Band-gap energies (Eg) calculated
by the Tauc plot method; Table S3: Porosities of MCM-41 and SnP@MCM−41; Figure S1: XRD
patterns of SnP, SnP@SiO2, and SnP@MCM−41; Figure S2: High-resolution FE−SEM images of
(a) SiO2, (b) SnP@SiO2, (c) MCM−41, (d) SnP@MCM−41, and (e) SnP; Figure S3: EDS mapping
of SnP@SiO2; Figure S4: EDS mapping of SnP@MCM−41; Figure S5: Hydrodynamic particle
size distributions of SnP, SiO2, MCM−41, SnP@MCM−41, and SnP@SiO2 obtained by the DLS
method; Figure S6: Adsorptivities of SnP, SnP@MCM−41, and SnP@SiO2 for the EG dye; Figure S7:
Time-dependent absorption spectra of EG in the presence of SnP@MCM−41 under visible light
irradiation; Figure S8: Various external effects on the degradation of the EG dye in the presence
of SnP@MCM−41 under visible light irradiation. ([Na2EDTA]0 = [p-BQ]0 = [tBuOH]0 = 2 mM,
pH = 7.0, T = 298 K); Figure S9: Kinetics for the photocatalytic degradation of EG under visible
light irradiation by the photocatalysts SnP, SnP@MCM−41, and SnP@SiO2; Figure S10: Time-
dependent absorption spectra of the RhB dye in the presence of SnP@MCM−41 under visible
light irradiation; Figure S11: Kinetics for the photocatalytic degradation of RhB under visible light
irradiation by the photocatalysts SnP, SnP@MCM−41, and SnP@SiO2; Figure S12: Time-dependent
absorption spectra of the MCP dye in the presence of SnP@MCM−41 under visible light irradiation;
Figure S13: Kinetics for the photocatalytic degradation of MCP under visible light irradiation by
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the photocatalysts SnP, SnP@MCM−41, and SnP@SiO2; Figure S14: Typical catalytic cycle (up
to 10 cycles) for the photocatalyst SnP@MCM−41 for the degradation of the EG dye; Figure S15:
Comparison of FT-IR spectra of SnP@MCM−41 before and after the degradation of the EG dye;
Figure S16: Comparison of FE−SEM images of SnP@MCM−41 before and after the degradation of
EG dye; Figure S17: Effect of the temperature on the degradation of the EG dye by SnP@MCM−41;
Figure S18: Effect of the pH of the solution of the EG dye for photodegradation by SnP@MCM−41;
Figure S19: Effect of the concentration of the EG dye for photodegradation by SnP@MCM−41
(20 mg) within 90 min of visible light irradiation; Figure S20: Effect of the amount of SnP adsorbed
onto SnP@MCM−41 composite for photocatalytic degradation of EG dye, where X = mmol of SnP
per gram of MCM−41; Figure S21: ESI-MS spectrum (negative ion mode) of the reaction mixture of
EG in the presence of SnP@MCM−41 after 45 min of visible light irradiation.
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