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Abstract: Recently, human–robot interaction technology has been considered as a key solution for
smart factories. Surface electromyography signals obtained from hand gestures are often used to
enable users to control robots through hand gestures. In this paper, we propose a dynamic hand-
gesture-based industrial robot control system using the edge AI platform. The proposed system can
perform both robot operating-system-based control and edge AI control through an embedded board
without requiring an external personal computer. Systems on a mobile edge AI platform must be
lightweight, robust, and fast. In the context of a smart factory, classifying a given hand gesture is
important for ensuring correct operation. In this study, we collected electromyography signal data
from hand gestures and used them to train a convolutional recurrent neural network. The trained
classifier model achieved 96% accuracy for 10 gestures in real time. We also verified the universality
of the classifier by testing it on 11 different participants.

Keywords: convolutional recurrent neural network; edge AI; electromyography; human–robot
interaction; robot operating system; robot control

1. Introduction

Robot remote control has been studied in various fields, such as space exploration by
robots [1–3], remote firefighting mobile robots for firefighting tasks at fire sites [4,5], military
robots used in battlefields [6,7], and disaster rescue robots used at disaster sites [8–10].
Additionally, there are surgical robots [11], construction robots [12], and disability assistance
robots that increase human work capacity [13]. Despite the development of robots with
good mobility and work capabilities, it is difficult for robots to identify interactive scenarios
and human intentions.

Therefore, research on human–robot interaction (HRI) technology that recognizes
human information, judgments, and expressions has been actively pursued in recent
years. HRI technology consists of recognition, judgment, and expression technologies
for achieving communication between humans and robots. Various studies have used
recognition technology to allow robots to detect human intentions based on face recognition,
motion recognition, voice recognition, and hand gesture recognition. Additionally, studies
have been conducted on specific HRI applications using facial image recognition [14,15],
motion recognition, robot remote control systems based on skeletal data [16], autonomous
driving robots based on voice recognition [17], and robotic hand control systems using
hand gesture recognition [18].

Hand gesture recognition technologies are categorized into dynamic and static hand
gestures. Static hand gestures are easier to recognize because they have little to no move-
ment. However, they can be limited in expressiveness and are far from natural hand
movements. Dynamic hand gestures can capture a wider range of natural hand gestures
but can be more complex and difficult to classify due to the pattern changes during the
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gesture. In studies on controlling industrial robots, hand gesture recognition technology is
mainly used as a recognition technology for communication based on the similarity between
robot arms and human arms. Such a control scheme is intuitive and is used in various fields,
including medicine, engineering, and rehabilitation. Hand gesture recognition technology
has been applied in studies on controlling a six-degree-of-freedom robot arm [19], virtual
reality interaction [20,21], and message notification for patient care systems [22].

Studies on hand gesture recognition have been conducted using electromyography
(EMG) signals, which are a type of biosignal. EMG signals are microscopic electrical signals
that can be obtained from muscular activity and are widely used in various fields, including
robotics and rehabilitation medicine. However, hand gesture patterns must be learned
because obtained EMG signals are not always the same, even for the same motion. Based
on the recent development of AI technology, it performs excellently on various recognition
tasks. Popular models include the convolutional neural network (CNN) and recurrent
neural network (RNN). Various studies have been conducted on learning EMG-based hand
gestures using CNNs [19,23], RNNs [24,25], and convolutional recurrent neural networks
(CRNNs) [26,27]. A CNN is an artificial neural network inspired by the concepts of the
visual cortex of the brain. CNNs are mainly used for image deep learning and have
achieved excellent performance. An RNN is another type of artificial neural network that
excels at processing time series data. Unlike a CNN, an RNN recursively refers to previous
states when calculating future states. Long short-term memory (LSTM) has been proposed
to solve long-term dependency issues associated with forgetting previous information
when the time step grows. Additionally, the gated recurrent unit (GRU) is a high-speed
model with performance similar to that of LSTM that simplifies the cells of the time steps
constituting LSTM networks. A CRNN is a high-performance classification neural network
that combines the feature extraction capabilities of a CNN with the classification capabilities
of an RNN for time-series data. In the structure of a CRNN, input data pass through
multiple convolutional layers, activation functions, and pooling layers. The resulting
flattened features are inputted into an RNN layer, and the class with the highest probability
is the output.

Although there have been many studies on hand gesture classification using deep
learning, few studies have utilized a universal deep learning model to classify dynamic
hand gestures and control robots. This paper proposes a system for dynamic hand gesture
recognition on an embedded board using a deep learning model and the control of an
industrial robot using a robot operating system (ROS). The proposed system uses a model
that learns EMG signals using a CRNN structure. This model can recognize 10 hand
gestures and works for users who have not participated in training. Figure 1 presents the
configuration of the proposed system.

Figure 1. Proposed system configuration. EMG data are transmitted from the EMG sensor to the ROS
environment on an NVIDIA Jetson Nano. The ROS-based embedded system controls a gripper and
UR3 manipulator using the gesture classifier trained via deep learning.
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The main contribution of this study is to propose a novel classifier for dynamic hand
gestures using CRNN based on EMG. As shown in [28], there are many studies on the
classification of static hand gestures, but there is still a lack of research on the classification
of dynamic hand gestures using EMG. Therefore, to classify the dynamic hand gestures,
we develop a classifier that includes the CRNN structure trained by EMG data collected
from a forearm. To verify the performance of the proposed classifier, we experiment
with a gesture classification based on a group that did not participate in the collection of
training data, and then the experiment results represent high accuracy compared to other
papers. Furthermore, the proposed classifier is implemented on the embedded system in a
ROS-based robot control system, resulting in the effective control of an industrial robot by
dynamic hand gestures without requiring an external PC.

The remainder of this paper is organized as follows. Section 2 presents the con-
figuration of the proposed system and the hardware components used in the system.
Section 3 describes the proposed edge AI system, including defined hand gestures and
control schemes, EMG data collection, and training and testing using CRNN structures. In
Section 4, we present hand gesture classification and industrial robot control experiments
to demonstrate the effectiveness of the proposed method. Finally, Section 5 concludes
this paper.

2. System Configuration
2.1. Robot Arm and Gripper

The industrial robot considered in this study is the smallest UR3 robot in the Universal
Robot CB3 series. The UR3 robot arm is a cooperative robot arm with a collision detection
function. The UR3 robot consists of a six-axis joint robot arm with joints labeled as “base”,
“shoulder”, “elbow”, “wrist 1”, “wrist 2”, and “wrist 3”, as shown in Figure 2. As shown
in Table 1, the maximum payload and maximum working radius are 3 kg and 500 mm,
respectively. As shown in Table 2, the operating range of all joints is ±360°, excluding
wrist 3, which can be rotated infinitely. The Universal Robot ROS Driver was installed to
provide users with a stable interface between the UR robot and ROS.

Figure 2. Industrial robot UR3 used to test the proposed system. The manipulator processes six
degrees of freedom.
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Table 1. Specifications of the UR3 CB-series.

Technical Specifications of the UR3

Weight 11 kg/24.3 lbs
Payload 3 kg/6.6 lbs
Reach 500 mm/19.7 in

Repeatability ±0.1 mm/±0.0039 in
Degrees of freedom 6 rotating joints

Table 2. Working range and speed of the UR3 robot joints.

Robot Arm Joints Working Range Maximum Speed

Base ±360° ±360°/s
Shoulder ±360° ±360°/s

Elbow ±360° ±360°/s
Wrist 1 ±360° ±360°/s
Wrist 2 ±360° ±360°/s
Wrist 3 Infinite ±360°/s

As shown in Figure 3, the gripper consists of two fingers, each of which is 140 mm wide.
The Robotiq ROS package was installed to control the gripper in the ROS environment.

Figure 3. The gripper used in the proposed system is Robotiq’s 2F-140 gripper.

2.2. Myo Armband Sensor

In this study, we used a commercial EMG sensor called the Myo gesture control
armband, as shown in Figure 4, which presents the measurements of muscle integrity.
The Myo armband is a lightweight and inexpensive product, so many studies on EMG have
used this device. It also supports the desired ROS package, making it suitable for use in this
study. The device has eight surface EMG electrodes, a nine-axis inertial measurement unit
composed of a three-axis accelerometer, three-axis gyroscope, and three-axis magnetometer,
and a Bluetooth module for transmitting EMG data. The Myo armband has a notch filter
that is used to perform denoising at a frequency of 50 Hz. It is a gesture-based human
interface device developed by Thalmic Labs. When wearing the Myo armband on the
forearm, samples are obtained at a rate of 200 Hz. The ros_myo ROS package was installed
to enable ROS communication of the data obtained from the Myo armband. The ros_myo
ROS package uses a sampling frequency of 50 Hz.
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Figure 4. Myo gesture control armband EMG sensor used in this study. The wearable device has
eight surface EMG channels.

2.3. Embedded Environment

The embedded board used in the proposed system is an NVIDIA Jetson Nano devel-
oper kit. The Jetson Nano is designed to support entry-level edge AI applications and
devices. It also includes accelerated libraries for deep learning, computer vision, graphics,
multimedia, etc. We installed image files, including the NVIDIA JetPack 4.6 SDK based
on Ubuntu 18.04, to construct accelerated AI applications. For ROS communication, it
was connected to the internet using a wireless LAN adapter Wi-Fi dongle. The CRNN
model of our hand gesture classifier was trained using Python 3.6 in the TensorFlow GPU
2.4.0 environment.

3. Methods
3.1. Hand Gestures

The proposed system uses EMG signal data based on hand gestures as inputs. Ten
gestures that can intuitively express the movements of industrial robots, grippers, and user
intentions were defined. The defined gestures are newly defined gestures, separate from the
five classes of gestures recognized by the Myo armband by default. Additionally, as shown
in Figure 5, the gestures were defined by considering the reflection of human intentions,
differences in hand gestures, and ease of hand gestures. The defined hand gestures are
“Close”, “Open”, and “Fist” for gripper control, “Right”, “Left”, “Thumb up”, “Thumb
down”, and “Supination”, “Pronation”, for industrial robot arm control, and “Rest” as the
default state for classifying hand gestures. All gestures are performed with the right hand.
Start at “Rest”, perform a specific action, and then return to “Rest” for 1 s. For “Rest”, hold
“Rest” for 1 s.

Figure 5. Dynamic hand gestures used in the proposed system.
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“Rest” does not control anything on its own but serves as a base state. “Close”, which
is the gesture of holding an object, causes the gripper to close. “Open”, which is a spreading
gesture, causes the gripper to open. “Fist”, which is the gesture of clenching a fist, causes
the gripper to close half way. “Right”, which is the gesture of pointing to the right with the
index finger, causes the base of the industrial robot to turn clockwise. “Left”, which is the
gesture pointing to the left with the index finger, causes the base of the industrial robot to
turn counterclockwise. “Thumb up”, which is the motion of extending the thumb upward,
causes the shoulder of the industrial robot to turn clockwise. “Thumb down”, which is the
motion of extending the thumb downward, causes the shoulder of the industrial robot to
turn counterclockwise. “Supination”, which is the supination of the forearm, causes the
wrist 3 joint of the industrial robot to turn clockwise. “Pronation”, which is the pronation
of the forearm, causes the wrist 3 joint of the industrial robot to turn counterclockwise.

3.2. Data Acquisition

EMG data are microscopic electrical signals that can be obtained from muscle activity.
EMG data are collected when wearing the Myo armband, as shown in Figure 6. One hand
gesture operation (one set) was collected in the form of 400 EMG data from 50 samples of
8 channels over 1 s. The 400 EMG data were normalized using min-max normalization and
then reshaped into a two-dimensional form with dimensions of 50 × 8 for deep learning
model training. Figure 7 illustrates how the EMG data collected for each gesture were
normalized and plotted. EMG measurements of different magnitudes corresponding to
different hand gestures are the main characteristics of the data. Table 3 presents one set
of EMG data. The data were collected from seven subjects (five males and two females)
to create a universal classifier that can be used by both men and women. When collecting
data for the ten hand gestures, each subject repeated each hand gesture 500 times. Of the
500 datasets collected, 400 and 100 were used as the training and validation data, respec-
tively. Overall, 2800 training data were collected for each hand gesture, resulting in a total
of 28,000 training data. We collected 700 validation data for each hand gesture, resulting in
a total of 7000 data for validation.

Figure 6. Band-shaped sensor worn on the user’s right forearm. Channel 4 should be aligned
horizontally with the back of the user’s hand.
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Figure 7. Plots of data collected using the Myo armband. Each gesture is represented by a graph of
eight channels. The characteristics of each gesture can be observed in this graph.
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Table 3. One set of normalized EMG data.

Ch.1 Ch.2 Ch.3 Ch.4 Ch.5 Ch.6 Ch.7 Ch.8

1 0.00996 0.00996 0.07597 0.03238 0.01308 0.00685 0.0056 0.00623
2 0.01557 0.13574 0.06476 0.02428 0.01619 0.01308 0.04608 0.03674
3 0.01494 0.18991 0.06538 0.02304 0.01557 0.01059 0.04483 0.02491
4 0.01557 0.18493 0.06227 0.01806 0.0137 0.00996 0.04359 0.01681
∼
48 0.02242 0.16065 0.08219 0.02491 0.01059 0.00934 0.01121 0.01121
49 0.01743 0.16999 0.08468 0.02242 0.00996 0.00809 0.00934 0.00872
50 0.01681 0.17933 0.09278 0.0193 0.00934 0.00809 0.00747 0.00809

3.3. Proposed CRNN

A CRNN is a high-performance classification neural network that combines the feature
extraction capabilities of a CNN with the time series classification capabilities of an RNN.
The proposed CRNN structure is presented in Figure 8. The input data are normalized
EMG data. The convolutional layer consists of a 3 × 3 convolution filter. The pooling layer
is a max-pooling layer with dimensions of 2 × 2. As the neural layers progress, the number
of filters increases to 16, 32, and 64 to extract complex features. This structure is repeated
three times to maintain the feature map size within a valid range. The extracted features
are inputted into the fully connected layer. In the fully connected layer, a multidimensional
array is flattened into a one-dimensional array and then inputted into the GRU layer. Finally,
the data pass through a dense layer consisting of a rectified linear unit activation function
and Softmax function, which output values for the 10 classes. Training was performed
for 100 epochs, the learning parameters were set to 171 and 326, and the training data
were shuffled. Figure 9 presents the training accuracy and loss according to the number
of training epochs of the CRNN model. When the CRNN model is trained for 100 epochs,
the accuracy increases and the loss decreases. Regarding the training results, the accuracy
is 1.0 and the loss is 0.0247.

There are several methods available for checking the correctness of AI-based solutions.
Such methods include formal verification, adversarial training, and abstract interpreta-
tion [29–31]. We evaluated the performance of our deep learning model using a confusion
matrix. A confusion matrix is a measure that facilitates easy evaluation of how often an AI
model confuses different classes. The values in a confusion matrix can be used to calculate
performance metrics for deep learning model classification evaluation, including accuracy,
precision, recall, and F1 score.

Figure 8. Proposed CRNN architecture consisting of three convolutional layers, GRU layers, and two
dense layers.
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Figure 9. Training results for the proposed CRNN model.

4. Experiments and Results

Our hand gesture classification and industrial robot control experiments were con-
ducted in two ways. One experiment was conducted on the subjects from which training
data were collected, and another experiment was conducted on other subjects for whom no
training data were collected. Both experiments were conducted with the system configura-
tion shown in Figure 1. Both experiments were conducted using the hand gesture classifier
model trained on the EMG data from the first group of participants.

4.1. Subjects from Whom Data Were Collected

In the first experiment, the subjects from whom training data were collected were
tested. Each subject performed each gesture 50 times, and the seven subjects performed a
total of 3500 trials. The confusion matrix in Figure 10 represents the classification results
for all the subjects in the first experiment. In this confusion matrix, each row and column
represent predicted and actual values, respectively. The individual confusion matrices of
the subjects can be found in Figures A1–A7 in Appendix A.

Figure 10. Confusion matrix for the subjects who participated in data collection.
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These figures reveal high classification rates for subjects 1 (97.0%), 2 (95.4%), 3 (96.6%),
4 (96.2%), 5 (97.0%), 6 (96.6%), and 7 (97.2%). The highest and lowest classification rates were
obtained for subjects 7 (97.2%) and 2 (95.4%), respectively. The hand gesture classification
and industrial robot control experiment yielded a high classification rate of 96.57% for
all subjects participating in learning. The hand gesture with the highest classification
rate was “Rest” (100%), while that with the lowest classification rate was “Thumb down”
(94%). The hand gesture classifier in the proposed system extracted features accurately and
achieved high classification performance for the EMG signals. It is also insensitive and
robust to EMG signal variation.

4.2. Subjects from Whom No Data Were Collected

In the second experiment, the subjects from whom no training data were collected
were tested. Each subject performed each gesture 50 times, and the four subjects performed
a total of 2000 trials. The confusion matrix in Figure 11 presents the classification results for
all the subjects in the second experiment. In the confusion matrix, each row and column
represent predicted and true values, respectively. The individual confusion matrices of the
subjects are presented in Figures A8–A11 in the Appendix A.

Figure 11. Confusion matrix for the subjects who did not participate in data collection.

These figures reveal high classification rates for subjects 8 (95.8%), 9 (93.6%), 10 (95.8%),
and 11 (95.2%). The highest classification rates were obtained for subjects 7 and 10 (95.8%),
while the lowest classification rate was obtained for subject 9 (93.6%). The results of the
hand gesture classification and industrial robot control experiment involving the subjects
who did not participate in learning yielded a high classification rate of 95.10%. The hand
gestures with the highest and lowest classification rates were “Rest” (100%) and “Pronation”
(90%), respectively. The hand gesture classifier used in the proposed system exhibited high
performance, even for subjects who did not participate in learning. This demonstrates that
the hand gesture classifier is a transferable model that can learn the hand gesture data of
multiple people, including men and women.

4.3. Comparisons to Previous Studies

Table 4 compares our results to those of previous studies in terms of inputs, methods,
numbers of gestures, numbers of data collection and testing subjects, performance, field of
application, and edge AI. Images were used as inputs in [32,33], while the other studies
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used EMG signals as inputs. Compared to [19,26,34–36], which used EMG signals as inputs,
we achieved superior performance. Previous studies [37–40] used different deep learning
models and EMG data to classify hand gestures. These studies tested the universality of
their models by evaluating their accuracy on a group not involved in the data collection.
The reported test accuracies in these studies were either lower or comparable to the accu-
racies achieved in this paper. In this study, an overall accuracy of 96.04% was obtained
experimentally for seven participants who participated in learning and four participants
who did not. Furthermore, compared to [19,24,26,32–36,40,41], our study contributes more
to the development of edge AI systems.

Table 4. Comparisons to previous studies. (X: Not used, O: Used).

Input Method Gesture Subjects (Acquisition/Test) Performance Field Edge AI

[32] Image DCNN 10 1/1 98% Gesture recognition X
[33] Image CNN 10 1/1 84.5% Robotic arm control X
[19] EMG CNN 7 -/18 (11 men and 7 women) 93.14% Robotic arm control X
[26] EMG CRNN 6 6/6 92.5% Gesture recognition O
[34] EMG K-NN 6 -/10 86.0% Gesture recognition O

[35] EMG FNN 6
120 (90 men and 30 women)/

60 (45 men and 15 women) 96.87% Gesture recognition X

[36] EMG ANN 6 12/12 98.7% Gesture recognition O
[24] EMG RNN 17 - 86.7% Gesture recognition X
[41] EMG SKNN 6 4/4 95.83% Gesture recognition X

[37]
EMG

& IMU
Adaptive
LS-SVM 7 18 (12 men and 6 women)/22 92.9% Gesture recognition X

[38] EMG CRNN 5 7/12 84.2%
Robot arm contorl

& Gesture recognition X

[39]
EMG

& IMU MLP 10 20 (15 men and 5 women)/6 78.94% Gesture recognition X

[40] EMG ViT 23 6/7 97% Gesture recognition X

Proposed
method EMG CRNN 10 7 (5 men and 2 women)/

11 (8 men and 3 women) 96.04% Robotic arm control O

5. Conclusions

We proposed a dynamic hand-gesture-based industrial robot control system using an
edge AI platform and CRNN. The proposed system utilizes an edge AI system that can
remotely control industrial robots using hand gestures, regardless of location. Embedded
systems receive EMG signals collected by a Myo armband. A CRNN is used as a hand
gesture classification model based on EMG data in the proposed system. The proposed
system remotely controls industrial robots and grippers based on an ROS. The performance
of the hand gesture classifier was evaluated through two experiments. The results of the
first experiment revealed a high classification rate (96.57%) for subjects who participated
in learning. The hand gesture classifier was insensitive to variations in EMG signals and
exhibited robust classification performance. The results of the second experiment revealed
a high classification rate (95.10%), even for subjects who did not participate in learning.
Therefore, our hand gesture classifier is a transferable model that is applicable to both
men and women. However, using only a single EMG sensor limits the number of muscles
that can be monitored, and deep learning models have the disadvantage of requiring a
large number of parameters, even for a basic structure. In the future, to classify more
complex movements, we plan to conduct a study using two Myo armbands on the forearm
and upper arm. Additionally, we will apply a network-in-network structure to the deep
learning structure we developed to make it more lightweight.



Electronics 2023, 12, 1541 12 of 19

Author Contributions: Conceptualization, B.P.; methodology, E.K. and J.S.; software, E.K.; validation,
E.K. and Y.K.; data curation, E.K.; writing—original draft preparation, E.K.; writing—review and
editing, J.S., Y.K. and B.P.; visualization, E.K.; supervision, B.P.; project administration, B.P.; funding
acquisition, B.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the
Grand Information Technology Research Center support program (IITP-2023-2020-0-01612) super-
vised by the IITP (Institute for Information & communications Technology Planning & Evaluation).

Data Availability Statement: Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Figure A1. Confusion matrix of a subject who participated in data collection (subject 1).

Figure A2. Confusion matrix of a subject who participated in data collection (subject 2).
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Figure A3. Confusion matrix of a subject who participated in data collection (subject 3).

Figure A4. Confusion matrix of a subject who participated in data collection (subject 4).
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Figure A5. Confusion matrix of a subject who participated in data collection (subject 5).

Figure A6. Confusion matrix of a subject who participated in data collection (subject 6).
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Figure A7. Confusion matrix of a subject who participated in data collection (subject 7).

Figure A8. Confusion matrix of a subject who did not participate in data collection (subject 8).
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Figure A9. Confusion matrix of a subject who did not participate in data collection (subject 9).

Figure A10. Confusion matrix of a subject who did not participate in data collection (subject 10).
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Figure A11. Confusion matrix of a subject who did not participate in data collection (subject 11).

References
1. Sutoh, M.; Otsuki, M.; Wakabayashi, S.; Hoshino, T.; Hashimoto, T. The right path: Comprehensive path planning for lunar

exploration rovers. IEEE Robot. Autom. Mag. 2015, 22, 22–33. [CrossRef]
2. Huang, P.; Zhang, F.; Cai, J.; Wang, D.; Meng, Z.; Guo, J. Dexterous tethered space robot: Design, measurement, control, and

experiment. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 1452–1468. [CrossRef]
3. Hassanalian, M.; Rice, D.; Abdelkefi, A. Evolution of space drones for planetary exploration: A review. Prog. Aerosp. Sci. 2018,

97, 61–105. [CrossRef]
4. Mittal, S.; Rana, M.K.; Bhardwaj, M.; Mataray, M.; Mittal, S. CeaseFire: The fire fighting robot. In Proceedings of the 2018

International Conference on Advances in Computing, Communication Control and Networking (ICACCCN), IEEE, Greater Noida,
India, 12–13 October 2018; pp. 1143–1146.

5. Kim, J.H.; Starr, J.W.; Lattimer, B.Y. Firefighting robot stereo infrared vision and radar sensor fusion for imaging through smoke.
Fire Technol. 2015, 51, 823–845. [CrossRef]

6. Jentsch, F. Human-Robot Interactions in Future Military Operations; CRC Press: Boca Raton, FL, USA, 2016.
7. Kot, T.; Novák, P. Application of virtual reality in teleoperation of the military mobile robotic system TAROS. Int. J. Adv. Robot.

Syst. 2018, 15, 1729881417751545. [CrossRef]
8. Shin, S.; Yoon, D.; Song, H.; Kim, B.; Han, J. Communication system of a segmented rescue robot utilizing socket programming

and ROS. In Proceedings of the 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), IEEE,
Jeju, Republic of Korea, 28 June–1 July 2017; pp. 565–569.

9. Hong, S.; Park, G.; Lee, Y.; Lee, W.; Choi, B.; Sim, O.; Oh, J.H. Development of a tele-operated rescue robot for a disaster response.
Int. J. Humanoid Robot. 2018, 15, 1850008. [CrossRef]

10. Kakiuchi, Y.; Kojima, K.; Kuroiwa, E.; Noda, S.; Murooka, M.; Kumagai, I.; Ueda, R.; Sugai, F.; Nozawa, S.; Okada, K.; et al.
Development of humanoid robot system for disaster response through team nedo-jsk’s approach to darpa robotics challenge
finals. In Proceedings of the 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), IEEE, Seoul,
Republic of Korea, 3–5 November 2015; pp. 805–810.

11. Haidegger, T. Autonomy for surgical robots: Concepts and paradigms. IEEE Trans. Med Robot. Bionics 2019, 1, 65–76. [CrossRef]
12. Brosque, C.; Galbally, E.; Khatib, O.; Fischer, M. Human-Robot Collaboration in Construction: Opportunities and Challenges.

In Proceedings of the 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications
(HORA), IEEE, Ankara, Turkey, 26–27 June 2020; pp. 1–8.

13. Sabuj, B.; Islam, M.J.; Rahaman, M.A. Human robot interaction using sensor based hand gestures for assisting disable people. In
Proceedings of the 2019 International Conference on Sustainable Technologies for Industry 4.0 (STI), IEEE, Dhaka, Bangladesh,
24–25 December 2019; pp. 1–5.

14. Chen, X.; Xu, H.; Wang, L.; Wang, B.; Yang, C. Humanoid Robot Head Interaction Based on Face Recognition. In Proceedings of
the 2009 Asia-Pacific Conference on Information Processing, IEEE, Shenzhen, China, 18–19 July 2009; Volume 1, pp. 193–196.

http://doi.org/10.1109/MRA.2014.2381359
http://dx.doi.org/10.1109/TAES.2017.2671558
http://dx.doi.org/10.1016/j.paerosci.2018.01.003
http://dx.doi.org/10.1007/s10694-014-0413-6
http://dx.doi.org/10.1177/1729881417751545
http://dx.doi.org/10.1142/S0219843618500081
http://dx.doi.org/10.1109/TMRB.2019.2913282


Electronics 2023, 12, 1541 18 of 19

15. Li, T.H.S.; Kuo, P.H.; Tsai, T.N.; Luan, P.C. CNN and LSTM based facial expression analysis model for a humanoid robot. IEEE
Access 2019, 7, 93998–94011. [CrossRef]

16. Sripada, A.; Asokan, H.; Warrier, A.; Kapoor, A.; Gaur, H.; Patel, R.; Sridhar, R. Teleoperation of a humanoid robot with
motion imitation and legged locomotion. In Proceedings of the 2018 3rd International Conference on Advanced Robotics and
Mechatronics (ICARM), IEEE, Singapore, 18–20 July 2018; pp. 375–379.

17. Jung, S.W.; Sung, K.W.; Park, M.Y.; Kang, E.U.; Hwang, W.J.; Won, J.D.; Lee, W.S.; Han, S.H. A study on precise control of
autonomous driving robot by voice recognition. In Proceedings of the IEEE ISR 2013, IEEE, Atlanta, GA, USA, 15–17 October
2013; pp. 1–3.

18. Gourob, J.H.; Raxit, S.; Hasan, A. A Robotic Hand: Controlled With Vision Based Hand Gesture Recognition System. In
Proceedings of the 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI), IEEE,
Rajshahi, Bangladesh, 8–9 July 2021; pp. 1–4.

19. Allard, U.C.; Nougarou, F.; Fall, C.L.; Giguère, P.; Gosselin, C.; Laviolette, F.; Gosselin, B. A convolutional neural network for
robotic arm guidance using sEMG based frequency-features. In Proceedings of the 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), IEEE, Daejeon, Republic of Korea, 9–14 October 2016; pp. 2464–2470.

20. Liu, Y.; Yin, Y.; Zhang, S. Hand gesture recognition based on HU moments in interaction of virtual reality. In Proceedings of
the 2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics, IEEE, Nanchang, China, 26–27
August 2012; Volume 1, pp. 145–148.

21. Clark, A.; Moodley, D. A system for a hand gesture-manipulated virtual reality environment. In Proceedings of the Annual
Conference of the South African Institute of Computer Scientists and Information Technologists, Johannesburg, South Africa,
26–28 September 2016; pp. 1–10.

22. Ketcham, M.; Inmoonnoy, V. The message notification for patients care system using hand gestures recognition. In Proceedings
of the 2017 International Conference on Digital Arts, Media and Technology (ICDAMT), IEEE, Chiang Mai, Thailand, 1–4 March
2017; pp. 412–416.

23. Chen, L.; Fu, J.; Wu, Y.; Li, H.; Zheng, B. Hand gesture recognition using compact CNN via surface electromyography signals.
Sensors 2020, 20, 672. [CrossRef]

24. Samadani, A. Gated recurrent neural networks for EMG-based hand gesture classification. A comparative study. In Proceedings
of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE,
Honolulu, HI, USA, 18–21 July 2018; pp. 1–4.

25. Toro-Ossaba, A.; Jaramillo-Tigreros, J.; Tejada, J.C.; Peña, A.; López-González, A.; Castanho, R.A. LSTM Recurrent Neural
Network for Hand Gesture Recognition Using EMG Signals. Appl. Sci. 2022, 12, 9700. [CrossRef]

26. Jo, Y.U.; Oh, D.C. Real-Time Hand Gesture Classification Using Crnn with Scale Average Wavelet Transform. J. Mech. Med. Biol.
2020, 20, 2040028. [CrossRef]

27. Hu, Y.; Wong, Y.; Wei, W.; Du, Y.; Kankanhalli, M.; Geng, W. A novel attention-based hybrid CNN-RNN architecture for
sEMG-based gesture recognition. PLoS ONE 2018, 13, e0206049. [CrossRef]

28. Jaramillo-Yánez, A.; Benalcázar, M.E.; Mena-Maldonado, E. Real-time hand gesture recognition using surface electromyography
and machine learning: A systematic literature review. Sensors 2020, 20, 2467. [CrossRef] [PubMed]

29. Krichen, M.; Mihoub, A.; Alzahrani, M.Y.; Adoni, W.Y.H.; Nahhal, T. Are Formal Methods Applicable To Machine Learning And
Artificial Intelligence? In Proceedings of the 2022 2nd International Conference of Smart Systems and Emerging Technologies
(SMARTTECH), Riyadh, Saudi Arabia, 22–24 May 2022; pp. 48–53. [CrossRef]

30. Urban, C.; Miné, A. A Review of Formal Methods applied to Machine Learning. arXiv 2021, arXiv:2104.02466. https://doi.org/
10.48550/ARXIV.2104.02466.

31. Seshia, S.A.; Sadigh, D.; Sastry, S.S. Toward Verified Artificial Intelligence. Commun. ACM 2022, 65, 46–55. [CrossRef]
32. Ashiquzzaman, A.; Oh, S.; Lee, D.; Lee, J.; Kim, J. Compact Deeplearning Convolutional Neural Network based Hand Gesture

Classifier Application for Smart Mobile Edge Computing. In Proceedings of the 2020 International Conference on Artificial
Intelligence in Information and Communication (ICAIIC), IEEE, Fukuoka, Japan, 19–21 February 2020; pp. 119–123.

33. Arenas, J.O.P.; Moreno, R.J.; Beleño, R.D.H. Convolutional neural network with a dag architecture for control of a robotic arm by
means of hand gestures. Contemp. Eng. Sci. 2018, 11, 547–557. [CrossRef]

34. Benalcázar, M.E.; Jaramillo, A.G.; Zea, A.; Páez, A.; Andaluz, V.H. Hand gesture recognition using machine learning and the Myo
armband. In Proceedings of the 2017 25th European Signal Processing Conference (EUSIPCO), IEEE, Kos, Greece, 28 August–2
September 2017; pp. 1040–1044.

35. Benalcázar, M.E.; Valdivieso Caraguay, Á.L.; Barona López, L.I. A User-Specific Hand Gesture Recognition Model Based on
Feed-Forward Neural Networks, EMGs, and Correction of Sensor Orientation. Appl. Sci. 2020, 10, 8604. [CrossRef]

36. Zhang, Z.; Yang, K.; Qian, J.; Zhang, L. Real-time surface EMG pattern recognition for hand gestures based on an artificial neural
network. Sensors 2019, 19, 3170. [CrossRef]

37. Colli Alfaro, J.G.; Trejos, A.L. User-independent hand gesture recognition classification models using sensor fusion. Sensors 2022,
22, 1321. [CrossRef]

38. Li, Q.; Langari, R. EMG-based HCI Using CNN-LSTM Neural Network for Dynamic Hand Gestures Recognition. IFAC-
PapersOnLine 2022, 55, 426–431. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2019.2928364
http://dx.doi.org/10.3390/s20030672
http://dx.doi.org/10.3390/app12199700
http://dx.doi.org/10.1142/S021951942040028X
http://dx.doi.org/10.1371/journal.pone.0206049
http://dx.doi.org/10.3390/s20092467
http://www.ncbi.nlm.nih.gov/pubmed/32349232
http://dx.doi.org/10.1109/SMARTTECH54121.2022.00025
https://doi.org/10.48550/ARXIV.2104.02466
https://doi.org/10.48550/ARXIV.2104.02466
http://dx.doi.org/10.1145/3503914
http://dx.doi.org/10.12988/ces.2018.8241
http://dx.doi.org/10.3390/app10238604
http://dx.doi.org/10.3390/s19143170
http://dx.doi.org/10.3390/s22041321
http://dx.doi.org/10.1016/j.ifacol.2022.11.220


Electronics 2023, 12, 1541 19 of 19

39. Colli-Alfaro, J.G.; Ibrahim, A.; Trejos, A.L. Design of User-Independent Hand Gesture Recognition Using Multilayer Perceptron
Networks and Sensor Fusion Techniques. In Proceedings of the 2019 IEEE 16th International Conference on Rehabilitation
Robotics (ICORR), Toronto, ON, Canada, 24–28 June 2019; pp. 1103–1108. [CrossRef]

40. Zhang, Z.; Kan, E.C. Novel Muscle Monitoring by Radiomyography (RMG) and Application to Hand Gesture Recognition. arXiv
2022, arXiv:2211.03767.

41. Tepe, C.; Erdim, M. Classification of EMG Finger Data Acquired with Myo Armband. In Proceedings of the 2020 International
Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), IEEE, Ankara, Turkey, 26–27 June
2020; pp. 1–4.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ICORR.2019.8779533

	Introduction
	System Configuration
	Robot Arm and Gripper
	Myo Armband Sensor
	Embedded Environment

	Methods
	Hand Gestures
	Data Acquisition
	Proposed CRNN

	Experiments and Results
	Subjects from Whom Data Were Collected
	Subjects from Whom No Data Were Collected
	Comparisons to Previous Studies

	Conclusions
	Appendix A
	References

