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Abstract: Welding is the most expensive process in building ships and offshore plants. Therefore,
the quantity of welding material should be calculated for the subsections (cells) of the blocks for
efficient work planning, and welding paths must be generated for welding automation. Three-
dimensional (3D) computer-aided design (CAD) models have been used for this work. However,
relevant information regarding welding is often omitted, and a separate database and interface to this
database must be developed. In this study, a method of lightweight model-based weld line generation
is proposed, followed by the calculation of bead length for welding material quantity estimation and
welding path generation. Experiments were performed on various test cases of curved parts and
blocks. The proposed method accurately generated weld lines, calculated bead length, and generated
welding paths in a short time of approximately 1 s.

Keywords: lightweight model; ships; offshore plants; weld line; welding material quantity; welding path

1. Introduction

Three-dimensional computer-aided design (3D CAD) models are used in various ways
for design review and production support because they are highly legible [1,2]. A CAD
model of a ship or offshore plant consisting of millions of parts contains information related
not only to geometry but also to design and production, resulting in a large amount of data.
Additionally, using a 3D CAD model can be inefficient because triangular mesh generation
is required for visualization. To address this problem, lightweight models composed of
triangular meshes have been increasingly used [3–6]. Typical lightweight file formats
include STL (stereolithography), JT (Jupiter tessellation), 3D XML (3D extensible markup
language), XVL (extendable virtual world description language), and VRML (virtual reality
modeling language) [7,8]. The lightweight model created by converting a 3D CAD model
can be used to check for interferences that may occur during installation and election,
calculation of material quantity, and planning of the production process [9].

A lightweight model of a ship or offshore plant is generated through several stages,
including conversion into a neutral format such as SAT, IGES, or STEP files, tessellation,
weight-lightening, and linkage to design and production information [10]. The lightweight
model can vary depending on triangular element density, file format, and compression
method. However, if only geometric information is saved, it can be created in 5 to 10% of
the size of the 3D CAD model [5]. Due to the nature of building ships and offshore plants,
their designs change frequently. In such cases, the updated 3D CAD model is automatically
converted into lightweight files, and the application program uses them as needed [11].

Ships and offshore plants are typically built by assembling blocks as basic units [12].
Welding is the most expensive process in building blocks. Therefore, manufacturing time,
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workshops, welding equipment, and manpower are determined based on the welding
material quantity [13–16]. In particular, the welding material quantity should be calculated
for the subsections of the blocks for efficient work planning. The factors affecting the
quantity of welding material include bead length (welding length), welding type, welding
position, assembly state, welding leg, and automation. In previous studies on welding
material quantity estimation, a method based on geometric information in the 3D CAD
model has been used [17–20]. However, it can only estimate the quantity at the block level,
making it difficult to extract information at the subsection level.

Welding can cause numerous quality problems [21–23]. Recently, welding automation
robots have been widely used to reduce costs in the welding process and improve welding
quality. Welding is classified into three categories: manual welding, which is performed
purely by a worker; semiautomatic welding, which uses a carriage; and automatic welding,
which uses an articulated or gantry robot. In the semiautomatic welding process, the path
is defined by a rail or manually without a preset path. In automatic welding, the welding
path is generated in advance, and the robot follows this path to perform the welding.

Weld line information is stored within the 3D CAD system used by the shipyard. This
information is mainly used to estimate the work volume for the welding process. However,
it is often missing in the design and modification processes. Additionally, it is necessary
to build a separate database and develop the interface to this database in order to use this
information for the welding material quantity estimation and the welding path generation.

Lightweight models have smaller data sizes, relatively few security problems, and
simple file structures, making them considerably more accessible than 3D CAD models.
Furthermore, most shipyards have been using lightweight models in recent years. Con-
sidering this trend, a method to generate weld lines from the lightweight model without
any use of 3D CAD models is proposed in this paper. Additionally, calculating bead length
for welding material quantity estimation and planning welding paths are presented as
applications of the generated weld lines. To the best of our knowledge, this is the first study
that attempts to use the lightweight model to support the welding process in shipyards.

The remainder of this paper is organized as follows: Section 2 introduces the
lightweight model. Section 3 presents a method to generate weld lines from the lightweight
model. Section 4 discusses two applications of generated weld lines: bead length calcu-
lation for welding material quantity estimation and welding path planning. Section 5
concludes this study.

2. The Lightweight Model

The size of the neutral CAD model file is significantly reduced in the lightweight
model, which represents 3D geometry in the form of a triangular mesh. The file size varies
depending on the density of the triangular mesh, as shown in Figure 1. For example, the size
of the IGES file in Figure 1a is 7559 kB. However, if triangular meshes are tessellated from
this file, smaller file sizes of 1986, 3783, and 6211 kB are obtained, as shown in Figure 1b–d,
respectively. The geometry saved in the 3D CAD model is divided into numerous triangles
in the tessellation process, resulting in an increase in the data size and memory usage and a
reduction in visualization performance. Therefore, in the lightweight model, a low-density
triangular mesh is generated. However, this can cause errors in the boundary line segments
of the lightweight model that correspond to the boundary curves in the CAD model. Thus,
when generating weld lines from the lightweight model, it is important to restore the weld
lines without any errors compared to the curves in the CAD model.
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Figure 1. Comparison of data sizes of CAD and mesh models.

3. Weld Line Generation

The weld joining methods commonly used in shipbuilding and offshore plant con-
struction are classified into butt welding and fillet welding, as illustrated in Figure 2. Butt
welding involves joining two parts horizontally, while fillet welding involves joining one
part on top of the other vertically. In butt welding, two parts are welded at the top and
bottom sides, whereas in fillet welding, two parts are welded at both sides. Consequently,
there are two weld lines in the two cases of Figure 2. Welding takes place at the locations
where two parts meet, and the two joining methods are categorized based on the angle
at which the two parts intersect. The weld line corresponds to the situation where the
boundary edge of a part meets the face of the adjacent part.

A ship or offshore plant structure consists of numerous blocks. A block, in turn,
consists of numerous parts. The following operations are performed for each part to
generate a weld line:

(1) Removal of redundant (or duplicated) nodes: If there are multiple nodes with the
same coordinate value, only one of them is left alone while the rest are removed. The
node information of the elements that reference the removed nodes is updated with
the one remaining node.

(2) Generation of the boundary element edge: The node referenced by the element is
used to generate the element edge. The angle information for the element adjacent to
each element edge is calculated. If the calculated angle deviates from 180◦ or if there
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is no adjacent element in the vicinity, the element edge is classified as a boundary
element edge.

(3) Face identification: the faces in the mesh model are identified based on the boundary edges.
(4) Generation of the boundary edges of a face: the boundary edges of the classified face

are generated by connecting the boundary element edges.
(5) Generation of a weld line: if the part’s boundary edge and its adjacent part’s face

intersect, the intersection line is calculated and classified as a weld line.
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3.1. Redundant Node Removal and Boundary Edge Generation

In the lightweight model, there is no information on the topology between triangles.
Therefore, using purely coordinate values, a distance map is constructed, and the redundant
nodes are removed. Figure 3a shows the lightweight file structure in the STL format, which
is commonly used. Figure 3b shows the result of the removal of redundant nodes: 12 nodes
are reduced to 8.
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After the removal of the redundant nodes, a data structure is created, as shown in
Figure 4. The basic triangular data structure is used to represent the mesh model. An
element has three nodes and three element edges. Each element’s edge has its own node
and element information. For each node, the information of all adjacent elements is stored
as a list. Each element’s edge also stores the information of all adjacent elements as a list.
After the generation of the data structure in this manner, the angle formed by two elements
for each element edge is checked to extract the boundary element edge. In Figure 4b, the
red lines show the boundary element edges identified in a mesh model. If the angle formed
by an element adjacent to a particular element edge deviates significantly from 180◦ (as
shown by the red solid line in Figure 4b) or if there is no adjacent element, the element edge
is classified as a boundary element edge (as shown by the red dotted lines in Figure 4b).
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3.2. Face Identification and Boundary Curve Generation

The faces of the mesh model are identified using the boundary element edges. An
arbitrary element is selected, and if its element edge is not a boundary element edge, other
elements adjacent to this edge are contained in the same face. This process is repeated
for the non-boundary element edges of the newly contained elements in the face, and the
elements to be contained in the same face are continuously expanded. In Figure 5a, suppose
that element E1 is the starting element. Element edge N1N3, among the element edges of
this element, is not a boundary element edge. Therefore, E2, an element adjacent to the
element edge N1N3, is contained in the same face that element E1 belongs to. As there are
no more cases of non-boundary edges in element E1, E3 is chosen as a new starting element
among the unchecked elements. Applying the same method shows that elements E3 and
E4 are contained in the same face. Finally, two faces are identified, as shown in Figure 5b.
Boundary element edges are then generated for each identified face. For example, in the
case of a face containing elements E1 and E2, the boundary element edges are element
edges N1N4, N4N3, N3N2, and N2N1.

After the identification of the faces, the data structure of their parts is constructed.
As shown in Figure 6, a part has multiple faces, and each face consists of the boundary
edges and elements contained in the face. The face’s geometry is not represented as a
parametric function but as a set of triangular elements. Each part is represented by a
boundary representation (B-rep) model surrounded by faces. Each face is represented by a
trimmed polygon surface composed of a triangular element set and boundary edges.
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3.3. Weld Line Generation

Welding is performed at locations where two parts meet [24]. Therefore, if the bound-
ary edge of one part lies on an adjacent part, it becomes a weld line. However, checking
for intersections along all boundary edges can be time-consuming. To address this, in-
tersections are first checked accurately in minimal time by constructing a bounding box
for the parts, faces, and edges. The sequence for checking for intersections is as follows:
First, intersections are checked for the bounding box of the two parts that are the targets
of intersection checking. If there is an intersection, it is then checked whether each face of
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part 1 intersects with part 2. The face of part 2 that intersects with the face of part 1 is then
identified. Finally, it is checked whether an edge of part 1 intersects with the face of part 2.

In the case of the butt type, the section where two edges overlap is considered a weld
line. For the fillet type, if an edge of part 1 is contained in the face of part 2, it also becomes a
weld line (Figure 2). Since the butt-type weld line is also a case where the edge is contained
in the face of part 2, the same method can be applied. Figure 7 illustrates a scenario where
reinforcement is welded to a curved part. In this case, if an edge of part 1 is contained in the
face of part 2, the intersection points with the edge of part 1 are determined for all edges
of the face of part 2. It is then verified whether the start and end points of the edge lie on
the face. Figure 7a provides an example of weld line generation for a scenario where there
is only one intersection point and one of the start or end points lie on the part. Figure 7b
provides an example of weld line generation for a scenario where both start and end points
lie on the part’s face. Figure 7c provides an example of weld line generation for a scenario
where there are two intersection points. The weld line is represented as a straight line for a
flat face and as a curve for a curved face. In general, two paired weld lines exist parallel to
each other, and multiple weld lines may exist on one part. Figure 7d provides an example
of weld line generation for Cases 1, 2, and 3.
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Figure 8 shows examples of weld line generation for butt and fillet types. Two parts
mate at their boundary edges in the butt type, as shown in Figure 8a. In the fillet type,
the edge of one part is adjacent to the faces of another part, as shown in Figure 8b. Pipe
welding belongs to the butt type, precisely case 2 of Figure 8a.
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4. Application of Generated Weld Lines

The lightweight model is based on the ship coordinate system. In an assembly plant of
blocks (semi blocks and large blocks), the task is performed by placing them on the floor. In
general, the base plate is placed on the floor, while the direction of the longitudinal stiffener
is arranged consistently. In the lightweight model, it is necessary to find the base plate and
longitudinal stiffener and move their geometry according to the direction of the work floor.
In other words, the lightweight model’s coordinate system must be converted from the
ship coordinate system to the work coordinate system before the calculation of the bead
length (welding length) and generation of the welding path.

The part type is classified into a base plate, collar plate, longitudinal stiffener, girder,
floor, bracket, and others, as shown in Figure 9. The floor is a part that is perpendicular
to the x-axis based on the ship coordinate system. The x-axis indicates the bow-and-stern
direction. The girder refers to a thin plate among the bow-and-stern direction parts, while
the longitudinal stiffener refers to the reinforcement in the bow-and-stern direction. The
bracket is a part that reinforces the floor and longitudinal stiffener.

The work coordinate system is established by identifying one base plate and one
longitudinal stiffener. Typically, the base plate is a thin plate with the largest area in
the block, while the longitudinal stiffener is a part with a long length and small width.
Therefore, the plane with the largest area among all parts of the block is selected as the
base plate. The longitudinal stiffener is situated adjacent to the selected base plate and
is identified by locating a part with a long length and small width or height using the
bounding box values. Subsequently, the work coordinate system is defined by setting the
longitudinal stiffener’s direction as the x-axis and the vertical direction of the base plate as
the z-axis.
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4.1. Bead Length Calculation for the Welding Material Quantity Estimation

Welding material quantity estimation requires bead length and leg length. Bead length
can be calculated using the weld lines after performing the procedure explained in the
remainder of this section. The exact welding material quantity needs the geometry of
the two parts to be welded to be identified. However, the lightweight model does not
directly contain this information. Therefore, additional information is extracted, as shown
in Figure 10, from the lightweight model using the generated weld lines.
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In general, a larger thickness requires a larger quantity of welding material. Thus, the
thicknesses of the two parts to be welded are extracted and saved. The thickness is the
distance between the two faces with the largest areas in the part. The type of welding is
determined based on the position of the two parts to be welded. Fillet welding is generally
performed during the process of assembling blocks, after the semi block assembly process.
The level of difficulty varies depending on the welding position. In welding work, the part
placed on the floor becomes the base plate, and the welding position is determined with
respect to the base plate. The welding position can be classified as flat, vertical, horizontal,
and overhead. Flat welding corresponds to the weld line placed parallel to the base plate.
Vertical welding is performed from the bottom direction (−z) to the top direction (+z),
perpendicular to the base plate. Overhead welding refers to a case where the weld line is
placed at the bottom of the base plate. If the above three positions do not apply, it becomes
horizontal welding.

4.2. Path Planning for Welding Automation

In automatic welding, a welding path is generated, and then a robot performs the
welding by following this path. The method for generating the welding path required for
automatic welding is as follows:

(1) Part type classification: the shape and direction information of the part are used to
classify the part type.

(2) Cell generation and weld line classification: The working radius of the welding robot
is limited. After generating the subsections (cells) where the robot can perform the
task after its installation, the lightweight model is divided based on the subsections.
The weld line is then classified for each subsection.

Each part’s type is determined by the following method: The candidate type is speci-
fied according to the direction. The normal direction of the face with the largest area in the
part is used to primarily classify the type. If the normal direction is the x-axis, the part type
is a collar plate and floor. If the normal direction is the y-axis, it is a longitudinal stiffener,
girder, and bracket. If the normal direction is the z-axis, it is a base plate.

After the primary classification, the final part type is specified by checking whether
each part satisfies a set of conditions. Here, the area refers to the value of the largest face of
the part. The base plate, must have a small thickness and a large area, with the bounding
box located at the lowest position. For the floor and girder, the thickness must be small,
and the bottom plane of the bounding box must be close to the base plate. Furthermore,
they must be high in the height direction. The longitudinal stiffener must have a bounding
box in which the bottom plane is close to the base plate while being short in the height
direction and long in the x-direction. The bracket must have a small thickness and area,
while the bottom plane of the bounding box is off the base plate. Moreover, the bracket
must be placed on the longitudinal stiffener. The collar plate must have a small thickness
and area. The bottom plane of the bounding box must not be too far from the base plate,
and the top plane must not be too high. All parts that do not satisfy the above conditions
are classified as other parts. The user may change them as needed to perform the task.

The result of the classification of the part types for a block consisting of 177 parts,
as shown in Figure 11a, is presented in Figure 11b. There were 4 base plates, 29 floors,
4 girders, 11 longitudinal stiffeners, 24 collar plates, 31 brackets, and 75 other parts classified.

A subsection where a robot performs welding after installation is referred to as a cell;
it is distinguished by the floor and longitudinal stiffener or girder as the boundary. Cell
generation is performed using the following method: First, the face placed on the base plate
is identified for the floor, girder, and longitudinal stiffener. A centerline is generated for
each face, and these centerlines are connected to form a line for the same structural member.
In the case of a floor, multiple lines can be generated due to slot holes. All intersection
points of the girder, longitudinal stiffener, and floor are calculated, and if the length is
too small, it is extended to proceed with the calculation. Cells are generated as many as
(number of girders + longitudinal stiffeners) × number of floors × 2. A cell is rectangular in
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shape, but it may not be rectangular if the member is tilted. If the workspace is divided into
multiple cells, they can be merged as long as they can be worked on simultaneously. Lower
or upper cells are merged if there is no floor between them and left or right cells are merged
if there is no longitudinal stiffener or girder. Figure 12 shows the result of cell generation.
With 10 girders and longitudinal stiffeners and 8 floors, 160 cells were generated in total
(Figure 12a). Cells without floors were merged, and those without structural members were
excluded, resulting in the generation of 85 cells (Figure 12b). After the cells are generated,
the weld lines are grouped based on the cells.
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5. Experiments

A prototype system was implemented according to the proposed method, and ex-
periments were performed for several test cases. The hardware used in the experiments
was a Windows OS-based personal computer equipped with an i9-12900K CPU, 64 GB of
memory, and an SSD M.2 NVMe storage device. Visual Studio 2019 (C++) was used as the
development tool.

Figure 13 shows the result of the generation of weld lines for a curved-part geometry. A
lightweight model (Figure 13b) was generated from a CAD model (Figure 13a) to determine
the accuracy of weld line generation. In the geometry, 14 reinforcements are mounted
on one curved part, and 32 weld lines were generated. Two butt-type weld lines were
generated at the places where the two curved parts met, and 30 fillet-type weld lines were
generated at the places where the reinforcements and curved parts met. All of these cases
correspond to flat welding. The bead length (welding length) was 35,622.02 mm, while
the length calculated by the actual CAD data was 35,623.83 mm. The calculation lasted
0.02 s. An error of 1.61 mm occurred in the calculation of the length of the boundary edges
by interpolating the nodes of the lightweight model. This shows that the length of the weld
lines was calculated very accurately.
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Figure 13. Weld line generation from a block with curved plates.

Figure 14 shows the result of the generation of the weld lines for a block. The block
consists of 56,662 triangles and 134 parts. 843 weld lines were generated in this block.
The total bead length (welding length) was 718.35 m, while the total time required to
generate the weld lines was 0.25 s. Butt-type weld lines were generated for piping. The
weld lines were properly generated at all places where the parts met. Figure 15 depicts
an example of automatic welding path generation. The semi block of a ship (Figure 15a)
consists of 32,898 triangles and 148 parts. For a preliminary welding process, only the
weld lines corresponding to the work process need to be generated. Figure 15b illustrates
the generation of 259 weld lines for fillet welding, with a total length of 123.16 m and a
required time of 0.67 s. The weld lines were generated for all places where members meet,
except for those used in the subassembly. Work in the subassembly is determined by the
member type. For instance, the base plate and longitudinal stiffener were already worked
on in the previous process. In the current process, work is performed at the junction of
the floor and longitudinal stiffener. Figure 15c shows the 80 generated cells. Figure 15d
displays the weld lines generated for Cells 3 and 9.
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The welding lines in this study were generated from the lightweight model without
considering the distortions and bending occurring in structures. As a result, the weld lines
generated by the proposed method may differ partially from those used in the field. To
address this issue, welding robots can be equipped with measuring devices such as touch
sensors to adjust weld positions if necessary.

6. Conclusions

A method of generating weld lines based on a lightweight model instead of a 3D CAD
model is proposed. The generated weld lines are then used to calculate the bead length
for welding material quantity estimation and to plan welding paths. The process involves
removing redundant nodes, generating boundary edges, identifying faces, generating
boundary curves for the faces, and extracting the weld lines to generate the weld lines from
the lightweight model. Before calculating the bead length and generating welding paths, the
coordinate system of the lightweight model is converted from the ship coordinate system
to the work coordinate system. Information such as welding type, welding thickness,
welding length, and welding position is extracted to calculate the bead length for welding
material quantity estimation. Finally, after classifying the part types and generating the
cells (subsections), the weld lines contained in each cell are classified and used to perform
welding path planning. Experiments on various test cases confirm that weld line generation,
bead length calculation, and welding path generation can be performed accurately in a
short time of approximately 1 s.

The proposed method is timely and can improve the utilization of lightweight models,
given that most shipyards have been using them in recent years. Additionally, it offers a
solution for cases where weld line information is missing from the 3D CAD model. To the
best of our knowledge, this is the first study to utilize lightweight models to support the
welding process in shipyards.

Future work includes investigating the estimation of welding material quantities for
each manufacturing stage to facilitate accurate distribution and scheduling of welding
tasks for workers, as well as the automatic generation of welding robot paths. Furthermore,
since the welding position varies based on the geometry of the block in the work process
rather than the design coordinate system, the algorithm that automatically specifies the
basic parts will need enhancement.
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