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Abstract: The objective of this work was to design a versatile readout circuit for patch-type wearable
devices consisting of a Transimpedance Amplifier (TIA). The TIA performs Current to Voltage
(I–V) conversion, the most widely used technique for amperometry and impedance measurement
for various types of electrochemical sensors. The proposed readout circuit employs a digitally
controllable feedback resistor (R f ) technique in the TIA to improve accuracy, which can be utilized
in a variety of electrochemical sensors within a current range of 0.1 µA–100 µA. It is designed to
accommodate multiple sensors simultaneously to track multiple target analytes for high accuracy
and versatile usage. The readout circuit consists of low power operational amplifier (op–amp) and
digital circuit blocks, is designed and fabricated with Magna 0.18 µm Complementary Metal Oxide
Semiconductor (CMOS) technology, which provides low power consumption and a high degree of
integration. The design has a small size of 0.282 mm2 and low power consumption of 0.38 mW with
a 3.3 V power supply, which are desirable factors in wearable device applications.

Keywords: TIA; I–V conversion; CMOS; patch type electrochemical sensing system; healthcare devices

1. Introduction

Wearable devices have emerged as powerful tools for environmental examination,
healthcare devices, and motion recognition, despite some challenges such as miniaturiza-
tion and low power while ensuring accuracy, that limit their widespread applicability as
continuous monitoring systems of target information [1–3]. Especially with the current
trend in an acceleration of global population aging, one-third of the population has been
reported to be over 60 years of age in most regions by 2050, resulting in a high demand for
healthcare wearable devices [4]. Since the immune response declines with age, the elderly
might suffer from many more health risks, which requires healthcare workforces [5]. The
wearable devices could be used to address some of the challenges related to detecting and
managing adverse health conditions in aging populations, and to reducing ubiquitous
healthcare issues [6,7]. As the demand for wearable devices for healthcare continues to rise,
it has generated a booming market, and the companies are now seeing the opportunities
of supplying wearable healthcare technologies to their consumers as beneficial. So far,
wristwatches, gloves, patches, headbands, eyeglasses, and necklaces have been reported
as types of wearable devices [8–16]. The wristwatch is the most affordable and widely
invented wearable device type since it can provide good wearing comfort and obtain
information from the skin. At the same time, it does not require flexibility other than the
wristband part, which indicates that commercial-off-the-shelf (COTS) can be utilized as
components to build readout circuits for interpreting sensors’ information. As a result,
we can find watch type of commercial products easily available in the market, such as the
Apple Watch (Apple Inc., Cupertino, CA, USA), Fitbit (Fitbit, San Francisco, CA, USA),
Samsung Galaxy Watch (Samsung Electronics, Suwon, Korea), and so on. Those mentioned
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commercial products show positive effects to improve people’s life quality and reduce
the potential emergency situation; however, they have limitations as healthcare devices
since they are mainly focused on motion recognition utilizing accelerometer and gyroscope
to track physical activities, not electrochemical sensors or biosensors which can diagnose
or sense symptoms of disease from the body. The mentioned limitation makes them not
suitable for accurate and multifunctional healthcare devices. For example, in the case of
stress, which is considered a source of many types of illness, a watch type stress monitoring
device is not able to perform a comprehensive stress analysis since it can only measure skin
conductance [15].

Recent research studies in the sensor field have explored various wearable sensors
for monitoring electrophysiological signals and bio-analytes [17–21]. Epidermal materials
provide classes of skin-mounted sensors in physical formats that enable intimate, conformal
contact with the skin. The soft, non-irritating nature of this contact yields an interface that
simultaneously provides high precision and high accuracy measurement of biophysiologi-
cal parameters, such as temperature, hydration, strain, and biopotential. Such epidermal
sensors are ultrathin, breathable, and stretchable, with mechanical and thermal properties
that closely match to the skin itself to enable effective skin integration with minimum
constraints on natural processes [18,19]. Not limited to developing single target wearable
flexible sensors, the latest studies are trying to adopt multifunctional sensors in a single
platform [17,18,20,21]. For instance, one research group reported a multifunctional sweat-
based electrochemical physiological hybrid skin patch for precise glucose detection in sweat
with pH and temperature correction and simultaneous monitoring of electrocardiogram
(ECG) [20]. However, only a few of the complete patch type devices have been reported
due to the constraints on readout circuits. The readout circuits can be implemented using
COTS or Integrated Circuit (IC). Generally, the COTS is preferred in most of the readout
circuits for wearable devices since it is easily accessible, so that less time is required to
prove the concept. However, readout circuit comprised of COTS is not suitable as patch
type of the device since it is not flexible nor miniaturized. Especially, if the readout circuit
needs to deal with multiple sensors, the burden increases because it requires more COTS
components. Therefore, to avoid utilizing COTS components, devices consist of a sensor
and a Radiofrequency (RF) antenna, where sensor output is voltage since an RF antenna
can only transfer voltage information [22]. In other works, if patch type of the healthcare
device’s sensor output is a current, only sensor validation is conducted with test equipment
through external wires [17,21]. Therefore, the I–V converter designed in IC for multiple
sensors is required to build a complete patch type of the healthcare device. Moreover, the
IC is not only offering miniaturization but also shows better accuracy than the COTS.

Herein, we report a versatile and wide ranged I–V converter circuit for multiple patch
type of sensors which is fabricated using the Complementary Metal Oxide Semiconductor
(CMOS) process. It can accommodate five sensors, which can be expandable; its measurable
sensor current range is 0.1 µA to 100 µA, which is chosen based on the practical sensor
output current range [23–25]. The rest of this paper is organized as follows. Section 2
describes the specifications and design of the proposed readout circuit. Then, Section 3
discusses simulation and IC test results. Finally, the conclusion is drawn in Section 4.

2. Design of Readout Circuit

Several high-performance current measurement circuit topologies are discussed in [26–41].
One of the common architectures for low current measurements is based on an integrator
followed by a differentiator [34–36]. This structure provides a high gain and linear response
at the cost of a low dynamic range of about 5 decades and takes a long time to accumulate
the small current into a measurable voltage signal. Moreover, the integrator is prone to
saturation and requires either additional DC current offset compensation or an active reset
switch. Another well-known architecture is a logarithmic I–V converter, which works on the
principle of compression of the input signal and utilizes an exponential device as a feedback
element in the Transimpedance Amplifier (TIA) [27–29]. Although the logarithmic amplifier
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can provide a very wide dynamic range, it often comprises linearity of the output response.
Furthermore, it is accompanied by a significant temperature sensitivity and nonlinearity
that are difficult to address without the use of an additional temperature compensation
circuit. Few other current measurement circuits rely on capacitive TIA (C-TIA) to perform
current-to-frequency (I-F) conversion [33]; timed integrators with a switched capacitor
network or correlated double sampler [37–41]; variable gain amplifiers with external voltage
control or digital gain control [26,31,32]; and use of large feedback resistor realized as an on-
chip active pseudo resistor or off-chip external resistor. In the case where a pseudo resistor
is realized using a transistor, the resistance is inversely proportional to the input current,
which leads to a variable current gain and bandwidth that is undesirable. Among all these
architectures, the simple and straightforward approach is a shunt feedback amplifier, based
on a voltage inverting amplifier with a feedback resistor (R f ), also called the resistive TIA
(R-TIA) [35,42–44] but suffers from a relatively low dynamic range. Here, the R f directly
affects the dynamic range of the TIA, and if it is employed to measure low current, the R f
must be large enough to obtain high gain. Thus, there is a trade-off between achieving high
dynamic range and performing low current measurement, which can be resolved using a
variable R f . In this paper, an I–V converter with a digitally controlled programmable gain is
proposed to obtain different gain settings to vary the transimpedance gain as a function of
the input signal range. The programmable current gain setting enables to achieve a higher
overall input dynamic range. Figure 1 illustrates a conventional R-TIA which consists of an
operational amplifier (op–amp) with a R f . In this configuration, a single R f is connected
between an inverting input and output pin of the op–amp [45].
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The voltage output (Vout) of this configuration can be obtained as

Vout = −
(

Isen × R f

)
+ Vre f (1)

where Isen indicates a sensor current output, Vre f is a reference voltage for biasing the
op–amp, and Vout is voltage obtained at the TIA output. Thus, by measuring the Vout,
the unknown value of Isen can be calculated by Equation (1). It is important to select the
appropriate value of the R f to obtain an accurate sensor output in the R-TIA configuration,
and a digitizing process is essential to process sensor output. If the value of the R f is too
large, the Vout will be clipped due to the op–amp output swing limitation, while if the
value of the R f is too small, the Vout is not sufficiently large enough to be detected by an
Analog-to-Digital Converter (ADC), which is also related to the resolution of the ADC.
For instance, when the R f is fixed to 10 KΩ, to differentiate between 1 µA and 0.91 µA,
the ADC should be able to interpret the 0.9 µV difference based on Equation (1) which is
challengeable. Meanwhile, if the R f is set to 100 KΩ, the op–amp output is clipped when
Isen is 100 µA, due to the op–amp’s output swing limitation. Thus, the R-TIA with digitally
adjustable R f controlled by a Microcontroller Unit (MCU) is developed in this work to
resolve the discussed issues. Based on the Vout range, the R f value will be altered by the
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MCU automatically to avoid the clipping problem and the situation that the Vout difference
is going below the ADC’s detectable voltage.

The readout circuit is designed to accommodate five sensors with a current range
from 0.1 µA to 100 µA in a single platform. The target error rate is less than 1% while
ensuring minimized size and power consumption. The proposed design is implemented
using Magna 0.18 µm CMOS technology to provide an optimal performance between
the power consumption and the speed. The technology uses 3.3 V as a power supply,
provides a resistor with 2% tolerance, and offers a pad with a size of 60 µm × 60 µm for
external connection.

2.1. Design of Digitally Adjustable TIA

A block diagram of the proposed readout circuit is shown in Figure 2, where the
Isen indicates each sensor’s current output. The circuit consists of an analog multiplexer
(AMUX), digitally adjustable TIA, and inverting amplifier. At the input of the circuit, a
5 × 1 AMUX is implemented to interface with five sensors in a single chip. The heart of the
proposed readout circuit is a digitally adjustable R-TIA, which is embarked for accurate
and wide-ranged I–V conversion. It is comprised of an op–amp and a digitally controlled
feedback stage for varying the R f to cover a wide sensor current range. The feedback stage
includes an 8 × 1 AMUX and a resistor array containing eight different resistors. Since the
R-TIA output is inverted, an additional inverting amplifier is embedded at the last stage
to obtain the positive Vout. An external MCU, “FreeSoC2 development board” (Cypress
Semiconductors, San Jose, CA, USA) is utilized to control the selection bits (S0~S5) of the
AMUXs by general purpose input/output (GPIO) pins. The Vout is converted to digital
form using an internal 16-bit sigma-delta ADC integrated into the MCU.
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2.1.1. OP–AMP Design

A two-stage op–amp comprising of a bias stage, differential amplifier stage, and
common source amplifier stage is designed, as shown in Figure 3. The two-stage op–amp
topology usually has the advantage of high gain, high linearity, high output swing, low
noise, and good bandwidth. The differential gain stage is introduced, where M1 forms
differential pair with M2 and a current mirror (M7, M8), as the first stage of the op–amp.
The minimum transistor length used in the design is 1 µm and the differential transistor
pair (M1, M2) width is chosen as 32 µm. A differential input signal applied across the two
input terminals (V−, V+) will be amplified according to the gain of the differential stage.
By utilizing current mirror active load transistors (M7, M8), it can have a very large output
impedance. The second stage is consisted of M5 and M6 transistors with size of 220 µm
and 120 µm, respectively, which is a common source amplifier for high output swing as the
final stage amplifier [42,46]. The transistor pair (M3, M4) is designed as 42 µm and all the



Electronics 2022, 11, 1181 5 of 15

remaining transistor widths are selected as 15 µm. The cascode current source technique
has been implemented to reduce the voltage variations across current source transistors,
thus, it can provide accurate current [47]. The first stage gain of the designed op–amp can
be represented using Equation (2).

A1= −gm1 (r02 ||r07) (2)
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The second stage gain can be expressed as per Equation (3).

A2= −gm6 (r06 ||r05) (3)

By combining Equations (2) and (3), the total gain of the designed op–amp can be
described as

Atotal = A1 × A2 = gm1 gm6(r02||r07)(r06||r05) (4)

Figure 4 shows the op–amp gain and phase plot during the simulation. For biasing
the op–amp, Vre f of 1.65 V is given to M2. The op–amp achieves a 97.5 dB gain and
64.05 degrees phase margin as depicted in Figure 4.

2.1.2. Feedback Stage Design

The feedback stage is made up of an 8 × 1 AMUX and resistor array, which includes
10 KΩ, 50 KΩ, 100 KΩ, 200 KΩ, 400 KΩ, 600 KΩ, 800 KΩ, and 1 MΩ resistors. The AMUX
is connected in a series with the resistor array to vary the R f by controlling the selection
bits of the AMUX, as shown in Figure 5. Each of the Iin in Figure 5 indicates the sensor
output current (Isen) that passed through the R f in the resistor array. Depending on the
current range of the sensor, the R f value will be altered to avoid the op–amp output swing
limitation or accuracy issue due to the ADC resolution. Table 1 shows the sensor current
range and the matched value of R f , as per the AMUX selection bits (S2, S1, S0).
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Table 1. Feedback resistor selection with sensor current range.

S2 S1 S0
Feedback Resistor

Rf (KΩ)
Sensor Current
Range Isen (µA)

0 0 0 10 32~100

0 0 1 50 12~32

0 1 0 100 8~12

0 1 1 200 4~8

1 0 0 400 2.5~4

1 0 1 600 2~2.5

1 1 0 800 1.5~2

1 1 1 1000 0.1~1.5

The AMUX is a combinational logic circuit designed to switch one of the several analog
input lines through to a single common output line and is controlled by the selection bits.
The designed AMUX is composed of: (a) Combinational logic acting as a decoder for the
selection bits; and (b) Transmission Gates (TG) for transferring signal from input to output.
The combinational logic for decoder is realized with NOT gates and three input NAND
gates. The TG, also called as analog switch, can selectively block or pass a signal from its
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input to output. The TG is comprised of a p-channel metal-oxide semiconductor (PMOS)
transistor and a n-channel metal-oxide semiconductor (NMOS) transistor pair. The utilized
gates’ schematics are illustrated in Figure 6. The control gate of TG is biased by the control
signal in a complementary manner, so both transistors are either on or off. The decoder
output (do~d7) is connected to the control signal of the NMOS transistor, and the inverted
decoder output (d0~d7) is connected to the control signal of the PMOS transistor. An output
expression (Out) of the AMUX is represented in Equation (5) and the full schematic of the
AMUX is presented in Figure 7.

Out = Iin0(s2 s1 s0)+Iin1(s2 s1 s02)+Iin2(s2 s1 s0)+Iin3(s2 s1 s0)+

Iin4(s2 s1 s0)+Iin5(s2 s1 s0)+Iin6(s2 s1 s0)+Iin7(s2 s1 s0)
(5)
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3. Results and Discussion
3.1. Simulation Results

The proposed readout circuit shown in Figure 2 is designed in CMOS 0.18 µm technol-
ogy utilizing the “Cadence” tool (Cadence Design Systems, San Jose, CA, USA). Figure 8a
shows the layout of the complete chip, and Figure 8b illustrates the layout of the proposed
architecture, which is the circuit marked as ‘A’ in Figure 8a. The designed circuit occupies
an area of 1030 × 620 µm2, including the pads and 580 × 487 µm2, excluding the pads.
Figure 9 shows the photo of the fabricated chip. In order to verify the proposed circuit,
post simulation of the R-TIA has been conducted. As an example, the simulations were
plotted in Figure 10 where R f is 10 KΩ, 100 KΩ, and 1 MΩ, respectively, which cover the
minimum and the maximum target range. The Y-axis of the graph in Figure 10 indicates
Vout in unit of volts, while the X-axis represents Isen in units of µA. The Isen ranges used for
simulations are selected based on Table 1, which are from 32 µA to 100 µA; 8 µA to 12 µA;
and 0.1 µA to 1.5 µA when R f values are 10 KΩ, 100 KΩ, and 1 MΩ. The results are well
matched with the expected results, which are calculated by Equation (1) and show a linear
response throughout the dynamic range. The result demonstrated that the proposed circuit
could read signals accurately from electrochemical or biosensor where its current output
is within the range 0.1 µA to 100 µA. With the variable R f , the TIA achieved a variable
3 dB bandwidth in the range 3.235 KHz to 225 KHz. Moreover, the TIA exhibits a phase
margin of 134.9◦, 134.8◦, and 126◦, when R f is 1 MΩ, 100 KΩ, and 10 KΩ, respectively.
Thus, the designed TIA shows a phase margin higher than 45◦ with all R f values in Table 1
indicating the stability of the TIA.
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3.2. IC Test Results

The fabricated chip is packaged with a quad flock package in order to test the chip,
and the chip socket is soldered onto an adapter board. The chip is then inserted inside the
socket and tested. Figure 11 illustrates the block diagram of the experimental test setup. An
“Agilent power supply” (Keysight Technologies, Santa Rosa, CA, USA) is connected to the
VDD pin (3.3 V) and the Vre f pin (1.65 V) to power the circuit. To measure the Vout, a 16-bit
sigma-delta ADC embedded in the “FreeSoC2 development board” is utilized. A 16-bit
ADC should be able to differentiate 50 µV difference when VDD is 3.3 V. However, the last
two or three bits are generally not trustable due to the error from non-ideal characteristics
of the ADC, environmental condition, and offset voltage [48]. Thus, a 16-bit ADC can
differentiate 400 µV difference in general. An 8-bit Current Digital to Analog Converter
(IDAC) implemented in the MCU is connected to the input of the chip to generate and
sweep the Isen for testing the chip. The range of the IDAC in the “FreeSoC2 development
board” can be chosen between 2040 µA with an 8 µA resolution and 255 µA with a 1 µA
resolution or 31.873 µA with a 0.125 µA resolution. The target current range of this work is
from 0.1 µA to 100 µA. Thus, IDAC current ranges of 255 µA with a 1 µA resolution and
31.873 µA with a 0.125 µA resolution were selected as Isen for testing purpose.
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In this work, an algorithm has been developed in the MCU firmware, which can
alter the R f automatically, depending on the Isen range. Figure 12 explains the firmware
flowchart of the algorithm. Initially, the R f values are stored in the MCU memory. Once
the MCU is on, it selects the AMUX selection bits (S2, S1, S0) as (1, 1, 1), which indicates
that R f is 1 MΩ and starts to read the ADC voltage. To avoid the clipping issue due to
the op–amp output swing limitations, if the ADC value is larger than 3.2 V, it alters the R f
with a smaller value until the R f reaches 10 KΩ. If not, the MCU calculates the Isen value
using Equation (1). With this developed firmware, the R f of the R-TIA can be changed
automatically depending on the Isen range, so that the proposed circuit can cover a wide
current range of the sensor.

The comparison of the post simulation results and the measurement results during
the IC test experiment are recorded in Figure 13, which shows a linear Vout versus Isen from
0.1 µA to 100 µA for different values of R f . The error in Figure 13 was calculated by below
Equation (6)

Error (%) =
Vmeasured −Vpost simulation

Vpost simulation
× 100 (6)

where the Vmeasured is the measured voltage at the ADC and Vpost simulation is the voltage
obtained from post simulation. Figure 13 demonstrates an adequately similar output with
a slight offset because of the R f error, due to the process resistance tolerance of 2 %, which
is fairly linear and can be corrected using the offset correction in the MCU. Thus, the
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proposed circuit designed in IC is verified that it can cover a wide sensor current range
from 0.1 µA to 100 µA. The error rate comparison between the conventional R-TIA with
the fixed R f and proposed R-TIA with digitally adjustable R f is conducted and presented
in Table 2. For comparison, the R f of the conventional R-TIA is fixed to 10 KΩ, while the
R f in the proposed design is altered based on the Isen range. The measured Isen in Table 2
are extracted from calculation based on Equation (1). In the case where Isen is 100 µA, since
both methods are using the same R f value, they exhibit a similar error rate. However,
when the Isen is getting smaller, the proposed TIA shows a much better error rate than the
conventional R-TIA, as illustrated in the comparison results in Table 2.
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Table 2. Extracted Isen and error rates with the conventional TIA and proposed TIA.

Expected Isen
(A)

Measured Isen with
Conventional TIA (A)

Measured Isen with
Proposed TIA (A)

Error Rate of
Conventional TIA (%)

Error Rate of Proposed
TIA (%)

100 µ 100.48 µ 100.48 µ 0.48 0.48

10 µ 13.32 µ 10.069 µ 33.278 0.698

1 µ 2.253 µ 1.005 µ 125.3 0.5
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A comparison of the proposed readout with existing variable gain TIA architectures is
presented in Table 3. Although a wide dynamic range is achieved by the TIA in several
architectures, these solutions cannot achieve a linear output across the entire dynamic range.
In contrast, the presented TIA showed good linearity throughout the targeted dynamic
range, providing a relatively acceptable range. Furthermore, the proposed readout circuit
is accomplished by a low power consumption of 0.38 mW and a small area of 0.282 mm2,
which are important factors for wearable patch type healthcare devices.

Table 3. Comparison of the proposed readout with existing architectures.

Ref.
Input Current

Range
(A)

Input
Dynamic Range

(dB)

Power
Consumption

(mW)

Transimpedance
Gain Range

(dBΩ)

Supply
Voltage

(V)
Technology Area mm2 Error Rate

(%)

Our work 0.1 µ–100 µ 60 0.38 60–120 3.3 0.18 µm CMOS 0.282 1
[26] 1 µ–2 m 66 21 54–100 3.3 0.18 µm CMOS 0.356 0.40
[31] 100 f–1 µ 140 10.3 N/A 1.8 0.18 µm CMOS 1.015 N/A
[32] N/A 77 2.71 N/A 3.3 0.18 µm CMOS 1.21 N/A
[38] 4.21 p–369 n 98.9 0.5 138–168 1.5 0.35 µm CMOS 0.3 N/A

4. Conclusions

In this work, the readout circuit consisting of a digitally adjustable R-TIA is designed
and fabricated in a 0.18 µm CMOS process for various sensors that have current output.
The proposed readout circuit is designed to adopt multiple electrochemical sensors for
multifunctional wearable healthcare devices. The auto-adjustable R-TIA is developed to
cover a wide range of Isen by algorithm implemented in the MCU, which is altering the
R f value based on the current range. The R-TIA consists of the op–amp and feedback
stage. As the R-TIA internal block, the two-stage op–amp is designed that is comprised of
a bias stage, differential amplifier stage, and common source amplifier stage; it achieved a
97.5 dB gain and 64.05 degrees phase margin. To make the R f adjustable, a resistor array
with an 8 × 1 AMUX is embedded in the R-TIA circuit. The total area of the proposed
readout circuit is 1030 µm × 620 µm, including the pads, and its power consumption is
0.38 mW with a power supply of 3.3 V. The measurement result shows that the proposed
circuit can cover a wide range of sensor current from 0.1 µA to 100 µA and has an error
rate less than 1%.
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