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Abstract: Surface-Enhanced Raman Spectroscopy (SERS) is often used for heavy metal ion detection.
However, large variations in signal strength, spectral profile, and nonlinearity of measurements
often cause problems that produce varying results. It raises concerns about the reproducibility of the
results. Consequently, the manual classification of the SERS spectrum requires carefully controlled
experimentation that further hinders the large-scale adaptation. Recent advances in machine learning
offer decent opportunities to address these issues. However, well-documented procedures for model
development and evaluation, as well as benchmark datasets, are missing. Towards this end, we
provide the SERS spectral benchmark dataset of lead(II) nitride (Pb(NO3)2) for a heavy metal ion
detection task and evaluate the classification performance of several machine learning models. We
also perform a comparative study to find the best combination between the preprocessing methods
and the machine learning models. The proposed model can successfully identify the Pb(NO3)2

molecule from SERS measurements of independent test experiments. In particular, the proposed
model shows an 84.6% balanced accuracy for the cross-batch testing task.

Keywords: surface-enhanced raman spectroscopy (SERS); machine learning; heavy-metal ion; neural
network; SVM; random forest; pattern classification

1. Introduction

The contaminants in water are usually complex mixtures of compounds whose detec-
tion requires analytical chemistry techniques such as sampling, purification, separation,
and quantification using special instruments such as the High-Performance Liquid Chro-
matography (HPLC) and Gas Chromatography (GC). In general, these analytical chemistry
methods exhibit high sensitivity, specificity, and precision, but require expertise because
complex instrumentation and analytical procedures are needed. Therefore, it is not very
feasible to apply these technologies that require low-cost, light-weighted portable appli-
cations operated by non-professionals. To this end, a method for detecting contaminants
using the SERS has been actively proposed recently (see, for instance, Bodelon et al. [1]).

Surface-Enhanced Raman Spectroscopy (SERS) is a commonly used sensing technique
that shares the advantages of conventional Raman spectroscopy, such as easy sample
preparation, molecular fingerprinting, and low signal attenuation by solvents while im-
proving sensitivity. Specifically, the surface of the SERS device is usually coated with metal
nanoparticles, which induces surface plasmon resonance localized on the metal surface
to amplify the Raman scattering signal of the target molecule by up to 108 or more (see,
for instance, Langer et al. [2]). Hence, SERS provides greater system design flexibility
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than Raman spectroscopy, making it suitable for portable applications such as heavy metal
detection in water [3].

Raman spectroscopy is a widely used sensing technique. Numerous applications of
Raman spectroscopy have been reported in the fields of bioanalysis [4], medicine [5], and
materials science [6]. For example, Kuang et al. [7] reported the use of Raman spectroscopy
to investigate the protein dynamics of membrane proteins. Ho et al. [8] reported rapid
identification of pathogenic bacteria using Raman spectroscopy. Calizo et al. [9] utilized
Raman spectroscopy to characterize the temperature dependence of graphene. Despite
success in reported studies, it is well-known that the weak Raman signals of some target
analytes such as bacterial cells and the strong fluctuations in Raman spectroscopy and
SERS make it difficult to design reliable and repeatable sensing techniques [10].

The Raman spectra of the SERS measurements show strong variations in intensity
and spectral profiles due to the interaction between the molecule and the surface of the
SERS device. Therefore, advanced fabrication techniques are required to enhance the
identifiability of the target molecule from the spectral dataset. For example, heavy metal
ion detection using the SERS itself is a challenge since heavy metals generally have small
Raman cross-sectional areas and low adsorption to metal surfaces [11]. Towards this end,
many methods have been proposed for improving the adsorption of heavy metal ions
using carbon nanotubes or for amplifying the Raman scattering signal by creating hot spots
integrated with metal nanoshells [12]. Unfortunately, these complex nanopatterning-based
Raman scattering signal amplification methods inevitably lower the reproducibility of the
SERS measurements and make it difficult to establish standardized protocols. Moreover,
they only guarantee satisfactory performance for specific target molecules, thus, stymieing
the applicability of the device [13].

Machine learning has been effectively used recently for numerous applications, includ-
ing SERS-based molecular detection [14–20]. In fact, applying machine learning techniques
on the spectroscopic dataset is not new. For example, Malitckii et al. [21] applied an
Artificial Neural Network (ANN) on hydrogen Thermal Desorption Spectroscopy (TDS)
data to characterize steels susceptibility to hydrogen embrittlement. Sbirrazzuoli et al. [22]
proposed an ANN model that can identify the structure of an unknown molecule by
infrared spectroscopy. Güven et al. [23] proposed an Support Vector Machine (SVM)
model that can combine functional near-infrared spectroscopy and Electroencephalography
(EEG) measurements signal for the diagnosis of attention-deficit hyperactivity disorder.
Guillén et al. [24] proposed an Radial Basis Function kernel (RBF) neural network using
near-infrared spectroscopy to classify white and Iberian pork. Janani et al. [25] proposed
an Independent Component Analysis (ICA)-based Brain-Computer Interface (BCI) appli-
cation of functional near-infrared spectroscopy signals. Park et al. [26] proposed a neural
network model for detecting R6G molecules. These examples illustrate the successful
implementation of machine learning techniques on the spectroscopy dataset.

Motivated by these successes, we design a machine learning application for heavy
metal ion detection in the SERS dataset. Since the task of heavy metal ion detection is
concerned with the determination of the number of target heavy metal ions subject to a
threshold defined by a regulatory body, the underlying problem can be formulated as a
binary classification problem. Accordingly, supervised binary classification models have
been frequently used for tailored problems using the SERS measurements. Unfortunately,
the performance of supervised binary classification models on the SERS datasets is strongly
affected by the preprocessing and evaluation methods; see, for instance, the review article
on machine learning applications using the SERS measurements [27]. Despite successful
applications of machine learning and deep neural network-based learning in the SERS spec-
trum, an in-depth understanding of the relationship between data collection, preprocessing,
and model evaluation is lacking. This understanding is critical for precisely explaining
the results as most of them are obtained from vague definitions of the independent test
datasets. Towards this end, it is crucial to develop benchmark datasets and performance
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evaluation criteria to guide the development of machine learning-based heavy metal ion
detection in the SERS datasets.

In this article, we propose a machine learning-based heavy metal ion detection model
using the SERS measurements. To train the model, we first design a new benchmark
dataset for heavy metal ion detection tasks in the SERS measurements. We use lead(II)
nitride (Pb(NO3)2) as our target molecule since it is a well-characterized and widely-used
molecule in the SERS-based heavy metal ion detection applications [3]. Then, we conduct
an extensive Explanatory Data Analysis (EDA) on the SERS dataset to provide an insight
into the relationship between different preprocessing techniques and the performance
of various machine learning methods for the SERS-based molecule detection tasks. The
performance of the trained model is evaluated on similarly constructed but independently
measured SERS spectra.

The contents of the article are arranged as follows. The material and method used in
this study are discussed in Section 2, followed by a detailed analysis of the experimental
results in Section 3. Finally, the conclusions are drawn in Section 4.

2. Materials and Methods

In this section, we provide a detailed description of the proposed SERS-based heavy
metal ion detection framework.

2.1. SERS Measurements

In this study, we use lead (II) nitrate (Pb(NO3)2) as the target molecule. The Pb(NO3)2
is purchased from Sigma Aldrich (Yongin, Korea) and the molecule is prepared in deionized
water. We use commercially available SERS substrates (SERSpace, Kwanglim Precision Co.,
Ltd., Daegu, Korea) for the measurements. The wavelength of the Raman spectrometer
(NS200, Nanosystems Co., Ltd., Daejeon, Korea) is 785 nm, and the laser power and
exposure time are fixed at 200 mW and 500 ms, respectively. To acquire the SERS spectra,
we drop a 2.5-uL sample on the SERS substrate and dry it at room temperature (27 ◦C). To
minimize signal degradation, each SERS measurement is taken with 10-s intervals (for each
condition, total acquisition time is 1 h 40 min). Each measurement sample S ∈ R1×2000

(the SERS spectrum) consists of 2000 wave-numbers (attributes). Figure 1 shows the
experimental setup used for the measurement and classification of the (Pb(NO3)2) SERS
dataset.

To ensure reproducibility of results, we performed two consecutive experiments,
named as batch1 and batch2. In each batch, we had 500 negative SN ∈ R500×2000 and 1500
positive SP ∈ R1500×2000 samples. The concentration of ≥ 0.01 µM is used as the threshold
for positive (detection) which is per the World Health Organization (WHO) heavy metals
detection guideline [1]. In particular, we acquired 4 concentrations data. For both batches,
we measured 0.01 µM, 0.1 µM, 10 µM, and 1000 µM. Although the concentrations are the
same in each batch, some minor variations due to manual handling cannot be ruled out. For
each batch and each concentration, the SERS measurements are acquired using a separate
substrate. It ensures that the measurements have both the device and handling variability.
This is important because the task of molecule concentration classification is trivial in single
experiment (batch) (see, Section 3.4). Complete description of the sample distribution is
furnished in Table 1.
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Figure 1. Configuration of the study. (A) Experimental setup of the proposed surface-enhanced Ra-
man spectroscopy-based Pb(NO3)2 molecule detection model. (B) Real image of sample preparation
and acquisition steps. (C) The hypothetical decision boundary learned by the proposed Radial Basis
Function Kernel Support Vector Machine (RBFSVM) model.

Table 1. Sample statistics of Pb(NO3)2.

Negative Positive

Concentration (uM) 0.01 0.1 10 1000

Batch1 500 500 500 500

Batch2 500 500 500 500

2.2. Preprocessing

In machine learning-based model designing, data preprocessing is one of the crucial
steps. In the proposed study, a Baseline Correction (BC) technique is used. Baseline
correction refers to the removal of low-frequency components considered background
noise [28]. In particular, we invoke Iterative Restrictive Least Square (IRLS) based baseline
correction method proposed by [29]. We use the baseline.irls function in the baseline R
package [30]. For comparison of the preprocessing method, we used RAW and normalized
datasets. The normalization is the removal of sources of systematic variation between
sample profiles to ensure that the spectra are comparable across related sample sets [31]. In
particular, we consider Power Spectrum Density Normalization (PSN). The PSN for j-th
wavenumber of i-th sample Si,j is defined as:

Spsni,j =
Si,j

ΣSi,j
,
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where Spsn is the power spectrum normalized signal and ΣSi is the sum of all intensity
values for a sample Si,j. We normalized the preprocessed dataset by the absolute maximum
of each spectrum. Therefore, a preprocessed sample spectrum S

′
i is defined as:

S
′
i,j =

Si,j

max(|Si|)
.

2.3. Model Configuration, Training/Validation, and Test Protocol

To design a machine learning-based heavy-metal ion detector, we utilized the Radial-
Basis-Function (RBF) kernel with the Support Vector Machine (SVM) classifier. The pro-
posed Radial-Basis-Function Kernel support vector machine (RBFSVM) [32]) is trained
using 80% data from a single batch. For data splitting, we used the stratified splitting
method using the train test split function in the scikit-learn [33]) package. After model
training, the remaining 20% is used for validation. Later, the trained model is used for
the performance evaluation on the independent dataset (obtained from a different batch).
We used `2 penalty of C = 1 and consider the kernel coefficient γ = 1/(2000× σ2

si
). Here,

σ2
si

stands for variance of the spectrum. The model is implemented using the scikit-learn
package with default settings on Python 3.

2.4. Performance Evaluation

For performance evaluation of the proposed model, we used the Balanced Accuracy
(BACC) as our primary performance metric supplemented with the other class-specific
metrics such as sensitivity, specificity, F1 score, Matthews Correlation Coefficient (MCC),
and Youden’s index. It is worthwhile mentioning that simple accuracy is not a suitable
metric to quantify the performance due to the imbalanced nature of the dataset.

3. Results and Discussion
3.1. Performance Evaluation of the Proposed Model

For the performance evaluation, the proposed model is trained and tested for cross-
batch datasets. We performed 10 independent trials and reported mean and standard
deviations for each performance metric. Table 2 shows the individual and average results
of different batches. The results are shown for the proposed model that is trained using
RAW, PSN, and BC preprocessing techniques. From the results in Table 2, it is observed
that the proposed method (BC + RBFSVM) has consistent performance for both batches and
it outperforms the RAW and PSN preprocessing techniques. Overall, the proposed method
(BC + RBFSVM) has achieved a 0.769, 0.805, 0.623, 0.846, and 0.692 average accuracy,
F1-Score, MCC, BACC, and Youden’s Index, respectively, which in turn are 0.158, 0.152,
0.292, 0.173, 0.347, and 0.019, −0.052, 0.623, 0.346, 0.692 units higher than the RAW- and
PSN-based implementations, respectively. It is worth noting that the model trained under
PSN conditions only predicts positive classes regardless of the input data sets from both
batches (100% sensitivity, 0% specificity for all cases). Therefore, the use of PSN + RBFSVM
in the Pb(NO3)2 molecule detection task is not appropriate. However, the performance of
PSN + RBFSVM in the same batch showed an average of 0.946 BACC.
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Table 2. Performance summary of the proposed model.

Dataset Train Test Accuracy Sensitivity Specificity F1 MCC BACC Youden’s Index

RAW

Batch1 Batch2 0.501 ± 0.000 0.335 ± 0.000 1.000 ± 0.000 0.501 ± 0.000 0.334 ± 0.000 0.667 ± 0.000 0.335 ± 0.000

Batch2 Batch1 0.721 ± 0.019 0.765 ± 0.011 0.591 ± 0.084 0.805 ± 0.011 0.328 ± 0.069 0.678 ± 0.040 0.356 ± 0.080

Average 0.611 ± 0.114 0.550 ± 0.221 0.796 ± 0.218 0.653 ± 0.156 0.331 ± 0.048 0.673 ± 0.028 0.345 ± 0.056

PSN

Batch1 Batch2 0.750 ± 0.000 1.000 ± 0.000 0.000 ± 0.000 0.857 ± 0.000 0.000 ± 0.000 0.500 ± 0.000 0.000 ± 0.000

Batch2 Batch1 0.750 ± 0.000 1.000 ± 0.000 0.000 ± 0.000 0.857 ± 0.000 0.000 ± 0.000 0.500 ± 0.000 0.000 ± 0.000

Average 0.750 ± 0.000 1.000 ± 0.000 0.000 ± 0.000 0.857 ± 0.000 0.000 ± 0.000 0.500 ± 0.000 0.000 ± 0.000

Proposed (BC+RBFSVM)

Batch1 Batch2 0.637 ± 0.005 0.517 ± 0.007 0.999 ± 0.001 0.681 ± 0.006 0.459 ± 0.004 0.758 ± 0.003 0.516 ± 0.006

Batch2 Batch1 0.901 ± 0.005 0.868 ± 0.006 1.000 ± 0.000 0.929 ± 0.004 0.788 ± 0.008 0.934 ± 0.003 0.868 ± 0.006

Average 0.769 ± 0.135 0.692 ± 0.180 1.000 ± 0.001 0.805 ± 0.127 0.623 ± 0.169 0.846 ± 0.09 0.692 ± 0.180

3.2. Data Exploratory Analysis Using PCA-Aligned Cross-Batch Density-Preserving
Data Visualization

To identify the source of improved performance achieved by the proposed baseline
correction method, we analyze the RAW, PSN, and BC filtered data using the density-
preserving data visualization technique called D-tSNE [34]. Unlike conventional t-SNE [35],
the density preserving t-SNE, (D-tSNE), not only recovers Nearest-Neighborhood (NN)
graph but also the spreading of individual data point using Kernel-Density Estimation
(KDE) [34]. The D-tSNE is learned by minimizing the distance between original to embed-
ding distributions using Kullback-–Leibler (KL) divergence while maximizing the correlation
between original density radius and embedding density radius. In particular, we calculate
the eigenvectors (principal components) first using the training dataset of one batch. The
estimated principal components from one batch are used to project data from both batches
in the common space. To visualize the preprocessed low-dimensional embedding of the
Pb(NO3)2, the dimensions of the SERS measurement vectors S ∈ R4000×2000 are reduced
later on by mapping the PCA-aligned dataset to two-dimensional D-tSNE embedding
Ψ ∈ R4000×2.

Figure 2 shows the D-tSNE embedding of the SERS spectrum for each batch and class
(positive/negative) of the Pb(NO3)2 according to the preprocessing methods. As shown
in Figure 2 A and D, positive and negative samples of batch1 and batch2 respectively, are
clustered in the raw data in a way that they can not be linearly separated in their respective
classes. Therefore, we can not use a single classifier to separate positive and negative
samples of both batches in the given raw data alone. It indicates that there exist some
domain generalization (reputability/data variability) problems that can seriously affect the
performance of the classifier on unseen data/batch.

To handle the aforementioned batch-effect, we investigate two different preprocessing
techniques explained in Section 2. Figure 2B,E, show the PCA embedding of batch1 and
batch2 using PSN. Although the PSN showed better alignment between two batches,
however, it emphasizes the batch-effect. In contrast, the proposed BC shows desired batch-
effect removal in Figure 2C,F, improves the class separability. It is noteworthy to point out
that the PCA-aligned D-tSNE embedding [34] is an unsupervised data analysis method. It
may not represent the actual class separability space (which is explored in the RBFSVM).
However, it indicates the effect of preprocessing techniques and their importance for
designing a reliable prediction model that can work for varying measurement conditions.
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Figure 2. Visualization of the Density preserving t-SNE (D-tSNE) embedding of the Pb(NO3)2 SERS
spectrum for (A,D) RAW, (B,E) Power Spectrum Density Normalization (PSN), and (C,F) Baseline
Correction (BC) methods. The PCA embedding is learned with the 80% training dataset of one batch.
The dataset of the other batch is projected using the learned PCA embedding. The D-tSNE is used as
the dimension reduction technique to reduce the dimension of the projected dataset while keeping
spreading of the data points. Top: Batch1. Bottom: batch2. Left: RAW. Middle: PSN. Right: BC.

3.3. Comparative Analysis

For comparative analysis, we implemented six widely-used machine learning meth-
ods including Logistic Regression (LR) with ridge constraint (with `2 penalty of C = 1),
Gaussian Naive Bayes (NB) [36]) with prior of 0.5 and 0.5, Decision Tree (DT) [37] with
‘Gini’ as a measure of impurity, Random Forest (RF) with 100 estimators, support vector
machine with a linear kernel (LinSVM) [38,39], and Multi-Layer Perceptron (MLP) [40]. We
compare the balanced accuracy of the proposed model with the aforementioned machine
learning models. Table 3 shows the individual and average results of different batches. All
models are implemented using the scikit-learn package [33] on Python 3, and are trained
and tested for cross-batch datasets. The experiments are repeated for 10 independent trials
and average results are reported with their standard deviation.

As shown in Table 3, the NB shows better performance compared to the proposed
model for batch1 training and batch2 testing case. In contrast, the proposed model shows
the best performance among all other models (BACC 0.934) for the batch2 training and
batch1 testing case. Since the proposed model can learn nonlinear classification boundaries
more efficiently than other models, it renders the best performance among all other models.
In a nutshell, the proposed method shows a relatively consistent performance for both
batches compared to all other models and achieves 0.846 BACC that is 0.188, 0.212, 0.057,
0.192, 0.152, and 0.021 units higher than the LR-, LinSVM-, NB-, DT-, RF-, and MLP-based
implementations, respectively.
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Table 3. Performance comparison between the proposed model and six ML models. The proposed
model showed the best independent test balanced accuracy (BACC) results for datasets corresponding
to both batches.

Model
Train/Test

Average
Batch1/Batch2 Batch2/Batch1

LR 0.735 ± 0.005 0.582 ± 0.008 0.658 ± 0.079

LinSVM 0.661 ± 0.042 0.606 ± 0.011 0.634 ± 0.042

NB 0.882 ± 0.002 0.695 ± 0.006 0.789 ± 0.096

DT 0.574 ± 0.031 0.733 ± 0.072 0.654 ± 0.098

RF 0.603 ± 0.006 0.784 ± 0.047 0.694 ± 0.098

MLP 0.754 ± 0.006 0.896 ± 0.030 0.825 ± 0.076

RBFSVM 0.758 ± 0.003 0.934 ± 0.003 0.846 ± 0.090

3.4. Discussion

The detection of the heavy metal ion (such as lead and chrome) by SERS measurements
has been extensively studied [1]. However, the acquired SERS signal is difficult to analyze
due to the inherent variability of each SERS device fabrication method and the nonlinearity
of the signal. Towards this end, many studies have focused on fabricating reproducible
devices to reduce measurement variabilities; see, for instance, Chan et al. [41], Wu et al. [13],
and Cong et al. [42]. Unfortunately, little effort has been devoted to developing methods
based on signal processing and machine learning.

Several applications of machine learning have been reported in the fields of SERS
signal acquisition and data analysis [27,43,44]. However, the performance of the machine
learning models according to the SERS preprocessing methods and the reproducibility
according to the batch-effect has been rarely discussed. Towards this end, different nor-
malization methods such as the PSN and BC were considered in this study to establish
a benchmark for the performance evaluation of various machine learning models. In
addition, two independent experimental batches were constructed to conduct training
and independent evaluation to examine the reproducibility of the trained models. The
combination of optimal model and preprocessing techniques for the Pb(NO3)2 molecule
detection were derived by examining the variations in the model performance between
batches through the independent test set evaluation. For each batch and each concentration,
the SERS measurements were acquired using a separate substrate to ensure both device and
handling variability of the measurements. It is important to note that the task of molecule
concentration classification in a single experiment (batch) is trivial (See Table 4). Therefore
to ensure reproducibility on unseen data, we design a cross-batch evaluation protocol.

Table 4. Ten-folds cross validation performance using same batch datasets.

Dset Train Test Accuracy Sensitivity Specificity F1 MCC BACC Youden’s Index

RAW

Batch1 Batch1 0.999 ± 0.002 0.999 ± 0.003 1.000 ± 0.000 0.999 ± 0.001 0.997 ± 0.006 0.999 ± 0.001 0.999 ± 0.003

Batch2 Batch2 0.922 ± 0.015 0.906 ± 0.020 0.972 ± 0.036 0.946 ± 0.011 0.820 ± 0.034 0.939 ± 0.018 0.878 ± 0.036

Average 0.961 ± 0.041 0.952 ± 0.050 0.986 ± 0.028 0.973 ± 0.028 0.909 ± 0.094 0.969 ± 0.033 0.938 ± 0.067

PSN

Batch1 Batch1 1.000 ± 0.002 0.999 ± 0.002 1.000 ± 0.000 1.000 ± 0.001 0.999 ± 0.004 1.000 ± 0.001 0.999 ± 0.002

Batch2 Batch2 0.900 ± 0.037 0.906 ± 0.033 0.880 ± 0.064 0.931 ± 0.026 0.751 ± 0.089 0.893 ± 0.044 0.786 ± 0.089

Average 0.950 ± 0.057 0.953 ± 0.053 0.940 ± 0.076 0.965 ± 0.040 0.875 ± 0.141 0.946 ± 0.063 0.893 ± 0.125

BC

Batch1 Batch1 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

Batch2 Batch2 0.973 ± 0.012 0.986 ± 0.009 0.934 ± 0.038 0.982 ± 0.008 0.928 ± 0.032 0.960 ± 0.020 0.920 ± 0.039

Average 0.986 ± 0.016 0.993 ± 0.009 0.967 ± 0.043 0.991 ± 0.011 0.964 ± 0.043 0.980 ± 0.025 0.960 ± 0.049
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In particular, we qualitatively evaluate the identification difficulty of the measured
SERS data through cross-batch PCA-aligned density preserving t-SNE (D-tSNE [34]) em-
bedding using different pre-processing techniques in Section 3.2. We also implemented
6 conventional machine learning models, specifically, Naive Bayes (NB), Decision Trees
(DT), ridge Logistic Regression (LR), Random Forest (RF), the SVM with the linear kernel
(LinSVM), and the Multi-Layer Perceptron (MLP). We compared the performance of these
models with the proposed model. We evaluated the performance of these models on the BC
dataset since it provides the best performance for the proposed model. As shown in Table 3,
all models have performed poorly on independent datasets except the proposed model. It
is observed that the MLP shows a relatively better performance than all other models. It
may indicate that while the proposed model and MLP can handle some domain adaptation
problems, all other models did not. The machine learning model implemented in this
study can be considered relatively simple. It is expected that if the model is simple and
works well under certain conditions, it can be the best model for the problem. We tested
several advanced models, such as the DNN model but did not find any advantage over
conventional machine learning models. Here we focus on the characterization of datasets,
benchmarking the performance of several machine learning models, and finding the best
model for a given problem. Since a firm baseline of the problem with the given study is
derived, a more advanced model incorporating batch variation as a learnable parameter
would be interesting and considered in the future.

4. Conclusions

In this study, an optimal preprocessing technique, model training, and evaluation
protocol for the SERS-based Pb(NO3)2 molecule detection were proposed. Moreover, a
benchmark dataset and python code are provided to lay the foundation for advanced
model construction and evaluation. The proposed model showed excellent performance
on the Pb(NO3)2 molecule detection task compared to other machine learning models. We
believe that these results could be used as a benchmark for further development of the
SERS measurements-based advanced heavy metal ion-molecule detection models, such as
end-to-end deep learning models.

Author Contributions: S.P. performed all analysis and manuscript writing, J.L. performed SERS
measurements. S.K. supported data analysis and manuscript writing, A.W. supported manuscript
writing, and M.K. conceptualized, and reviewed experimental setup and manuscript writing. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF), grant
funded by the Korea government (MSIP) (NRF- 2020R1I1A3074098).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The code and dataset utilized in this work are available at the author’s
GitHub (https://github.com/psychemistz/sersml (accessed on 20 November 2021).

Conflicts of Interest: The authors declare that they have no competing interests.

References
1. Bodelón, G.; Pastoriza-Santos, I. Recent progress in surface-enhanced Raman scattering for the detection of chemical contaminants

in water. Front. Chem. 2020, 8, 478. [CrossRef] [PubMed]
2. Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.; Boisen,

A.; Brolo, A.G.; et al. Present and future of surface-enhanced Raman scattering. ACS Nano 2019, 14, 28–117. [CrossRef] [PubMed]
3. Shaban, M.; Galaly, A. Highly sensitive and selective in-situ SERS detection of Pb2+, Hg2+, and Cd2+ using nanoporous

membrane functionalized with CNTs. Sci. Rep. 2016, 6, 25307. [CrossRef]
4. Zong, C.; Xu, M.; Xu, L.J.; Wei, T.; Ma, X.; Zheng, X.S.; Hu, R.; Ren, B. Surface-enhanced Raman spectroscopy for bioanalysis:

Reliability and challenges. Chem. Rev. 2018, 118, 4946–4980. [CrossRef] [PubMed]
5. Xi, X.; Liang, C. Perspective of future SERS clinical application based on current status of Raman spectroscopy clinical trials.

Front. Chem. 2021, 9, 665841. [CrossRef]

https://github.com/psychemistz/sersml
http://doi.org/10.3389/fchem.2020.00478
http://www.ncbi.nlm.nih.gov/pubmed/32582643
http://dx.doi.org/10.1021/acsnano.9b04224
http://www.ncbi.nlm.nih.gov/pubmed/31478375
http://dx.doi.org/10.1038/srep25307
http://dx.doi.org/10.1021/acs.chemrev.7b00668
http://www.ncbi.nlm.nih.gov/pubmed/29638112
http://dx.doi.org/10.3389/fchem.2021.665841


Sensors 2022, 22, 596 10 of 11

6. Orlando, A.; Franceschini, F.; Muscas, C.; Pidkova, S.; Bartoli, M.; Rovere, M.; Tagliaferro, A. A comprehensive review on Raman
spectroscopy applications. Chemosensors 2021, 9, 262. [CrossRef]

7. Kuang, L.; Fernandes, D.A.; O’Halloran, M.; Zheng, W.; Jiang, Y.; Ladizhansky, V.; Brown, L.S.; Liang, H. “Frozen” block
copolymer nanomembranes with light-driven proton pumping performance. ACS Nano 2014, 8, 537–545. [CrossRef]

8. Ho, C.S.; Jean, N.; Hogan, C.A.; Blackmon, L.; Jeffrey, S.S.; Holodniy, M.; Banaei, N.; Saleh, A.A.; Ermon, S.; Dionne, J. Rapid
identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nat. Commun. 2019, 10, 4927. [CrossRef]

9. Calizo, I.; Balandin, A.; Bao, W.; Miao, F.; Lau, C. Temperature dependence of the Raman spectra of graphene and graphene
multilayers. Nano Lett. 2007, 7, 2645–2649. [CrossRef]

10. Dong, D.; Zhao, C. Limitations and challenges of using Raman spectroscopy to detect the abiotic plant stress response. Proc. Natl.
Acad. Sci. USA 2017, 114, E5486–E5487. [CrossRef]

11. Yin, J.; Wu, T.; Song, J.; Zhang, Q.; Liu, S.; Xu, R.; Duan, H. SERS-active nanoparticles for sensitive and selective detection of
cadmium ion (Cd2+). Chem. Mater. 2011, 23, 4756–4764. [CrossRef]

12. Fu, Q.; Zhan, Z.; Dou, J.; Zheng, X.; Xu, R.; Wu, M.; Lei, Y. Highly reproducible and sensitive SERS substrates with Ag inter-
nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique. ACS Appl. Mater. Interfaces 2015, 7, 13322–13328.
[CrossRef]

13. Wu, L.; Wang, W.; Zhang, W.; Su, H.; Liu, Q.; Gu, J.; Deng, T.; Zhang, D. Highly sensitive, reproducible and uniform SERS
substrates with a high density of three-dimensionally distributed hotspots: Gyroid-structured Au periodic metallic materials.
NPG Asia Mater. 2018, 10, e462. [CrossRef]

14. Amjad, A.; Ullah, R.; Khan, S.; Bilal, M.; Khan, A. Raman spectroscopy based analysis of milk using random forest classification.
Vib. Spectrosc. 2018, 99, 124–129. [CrossRef]

15. Ai, Y.j.; Liang, P.; Wu, Y.x.; Dong, Q.m.; Li, J.b.; Bai, Y.; Xu, B.J.; Yu, Z.; Ni, D. Rapid qualitative and quantitative determination of
food colorants by both Raman spectra and Surface-enhanced Raman Scattering (SERS). Food Chem. 2018, 241, 427–433. [CrossRef]

16. Dies, H.; Raveendran, J.; Escobedo, C.; Docoslis, A. Rapid identification and quantification of illicit drugs on nanodendritic
surface-enhanced Raman scattering substrates. Sens. Actuators B Chem. 2018, 257, 382–388. [CrossRef]

17. Doty, K.C.; Lednev, I.K. Differentiation of human blood from animal blood using Raman spectroscopy: A survey of forensically
relevant species. Forensic Sci. Int. 2018, 282, 204–210. [CrossRef]

18. Kim, W.; Lee, S.H.; Kim, J.H.; Ahn, Y.J.; Kim, Y.H.; Yu, J.S.; Choi, S. Based surface-enhanced Raman spectroscopy for diagnosing
prenatal diseases in women. ACS Nano 2018, 12, 7100–7108. [CrossRef] [PubMed]

19. Thrift, W.J.; Cabuslay, A.; Laird, A.B.; Ranjbar, S.; Hochbaum, A.I.; Ragan, R. Surface-enhanced Raman scattering-based odor
compass: Locating multiple chemical sources and pathogens. ACS Sens. 2019, 4, 2311–2319. [CrossRef] [PubMed]

20. Lee, W.; Nanou, A.; Rikkert, L.; Coumans, F.A.; Otto, C.; Terstappen, L.W.; Offerhaus, H.L. Label-free prostate cancer detection by
characterization of extracellular vesicles using raman spectroscopy. Anal. Chem. 2018, 90, 11290–11296. [CrossRef] [PubMed]

21. Malitckii, E.; Fangnon, E.; Vilaça, P. Study of correlation between the steels susceptibility to hydrogen embrittlement and hydrogen
thermal desorption spectroscopy using artificial neural network. Neural Comput. Appl. 2020, 32, 14995–15006. [CrossRef]

22. Sbirrazzuoli, N.; Cachet, C.; Cabrol-Bass, D.; Forrest, T.P. Indices for the evaluation of neural network performance as classifier:
Application to structural elucidation in infrared spectroscopy. Neural Comput. Appl. 1993, 1, 229–239. [CrossRef]
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