
symmetryS S

Article

Asymmetric Design Sensitivity and Isogeometric Shape
Optimization Subject to Deformation-Dependent Loads

Min-Geun Kim 1 , Bonyong Koo 2 , You-Sung Han 3,* and Minho Yoon 4,*

����������
�������

Citation: Kim, M.-G.; Koo, B.; Han,

Y.-S.; Yoon, M. Asymmetric Design

Sensitivity and Isogeometric Shape

Optimization Subject to

Deformation-Dependent Loads.

Symmetry 2021, 13, 2373. https://

doi.org/10.3390/sym13122373

Academic Editors: Chong Wang,

Menghui Xu and Raffaele Barretta

Received: 14 November 2021

Accepted: 6 December 2021

Published: 9 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Korea Institute of Machinery & Materials (KIMM), Daejeon 34103, Korea; mingeunkim@kimm.re.kr
2 Department of Mechanical Engineering, Kunsan National University, Gunsan 54150, Korea;

bykoo@kunsan.ac.kr
3 Department of Mechatronics Engineering, Incheon National University, Incheon 22012, Korea
4 Department of Mechanical Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea
* Correspondence: yshan@inu.ac.kr (Y.-S.H.); mhyoon@kumoh.ac.kr (M.Y.)

Abstract: We present a design sensitivity analysis and isogeometric shape optimization with path-
dependent loads belonging to non-conservative loads under the assumption of elastic bodies. Path-
dependent loads are sometimes expressed as the follower forces, and these loads have characteristics
that depend not only on the design area of the structure but also on the deformation. When such a
deformation-dependent load is considered, an asymmetric load stiffness matrix (tangential operator)
in the response region appears. In this paper, the load stiffness matrix is derived by linearizing the
non-linear non-conservative load, and the geometrical non-linear structure is optimally designed
in the total Lagrangian formulation using the isogeometric framework. In particular, since the
deformation-dependent load changes according to the change and displacement of the design area,
the isogeometric analysis has a significant influence on the accuracy of the sensitivity analysis and
optimization results. Through several numerical examples, the applicability and superiority of
the isogeometric analysis method were verified in optimizing the shape of the problem subject to
deformation-dependent loads.

Keywords: deformation-dependent load; shape sensitivity analysis; isogeometric analysis; geometric
nonlinearity; asymmetric load stiffness

1. Introduction

Special attention is required in the structural analysis of the pressure loading, as
its loading direction could change with the deformation of the structure. Engineering
problems with deformation-dependent loading are frequently encountered, for example,
in the design of dams, tires, airbags, and pressurized vessels. When such a deformation-
dependent load is considered, an asymmetric tangential operator expressed as a load
stiffness matrix appears in the governing equation. Hibbit [1] first mentioned the concept
of load stiffness, and in the case of a surface traction load, the load stiffness is symmetric if it
is applied to the fully enclosed volume. If it is not the case, the equation has an asymmetric
term which is to be solved using the approximation method, assuming it is symmetric
while refining the mesh.

In the previous study from Mok et al. [2], the pressure load was decomposed to
the body-attached pressure load and the space-attached pressure load. They derived the
load stiffness term by linearizing the nonlinear pressure load term. Simo [3] expressed
the pressure-loaded moving boundary in an isoparametric presentation and obtained
the tangent stiffness through linearization of the loading boundary. In addition, the
convergence rate dependent on tangent stiffness was discussed in numerical examples for
an axisymmetric case.

If the pressure loading is considered in the design optimization, it becomes a function
of both the deformation by loading and the design change on boundaries. Many previous
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studies have been conducted for the pressure loading in the design boundaries. Kim
et al. [4] optimized the structure of sheet metal subjected to a pressure load. They per-
formed a design sensitivity analysis by taking variations in the parametric domain with the
employment of the parametric representation method for the pressure load. They presented
the effect of the deformation-dependent loads on the optimization performance. In their
shape sensitivity analysis on the design-dependent loadings, Akbari et al. [5] demonstrated
the equivalence between continuum and discrete derivatives. Hammer and Olhoff [6]
presented the generalization of topology optimization of linear elastic structures for the
problems which involve design-dependent loading. Kiendl et al. [7] studied an isogeomet-
ric optimization for the tube subject to the internal pressure using semi-analytical sensitivity
analysis and sensitivity weighting. Picelli et al. [8] investigated topology optimization for
design-dependent hydrostatic pressure loading via the level-set method.

To consider the deformation and design change in the boundaries correctly, an accu-
rate geometric representation is essential. The isogeometric analysis (IGA) first proposed
by Hughes et al. [9] enables the exact parametrization of loading and design boundaries by
employing the NURBS basis function that is now the standard tool in the computer-aided
design (CAD) industry. First of all, the properties of the NURBS basis function enable a
more accurate geometric representation than the traditional finite element or meshfree
method. The NURBS basis function and the resultant geometric representation allow for
an accurate representation of the analysis model even when using the coarse mesh. In
the formulation of general elasticity problems, as opposed to the finite element method
which approximates the model in a partially linearized way, IGA expresses the geometric
information of the shape with NURBS basis functions and provides the continuous char-
acteristic in the variational formulation. Therefore, it is natural to adopt the isogeometric
framework in the shape optimization [10,11] for the case of a deformation-dependent load.

As opposed to conservative dead loading, follower loading maintains its orientation to
the structure as it deforms. Consider a pressure load that is dependent on the deformation
as shown in Figure 1.

Figure 1. Pressure load: (a) fixed, (b) design-dependent, (c) design- and deformation-dependent.

The fixed load, p0, in Figure 1a is a distributed load defined at initial configuration
without any changes, and the design-dependent load, p(d), in Figure 1b is the pressure
load with the changed loading direction according to perturbed design (d). The symmetric
shape sensitivity analysis for the design-dependent load in Figure 1b with the assumption
of infinitesimal strain was previously derived and utilized in several optimization problems
in the isogeometric framework [12,13].

On the other hand, the design- and deformation-dependent load, p(d, u), in Figure 1c
changes according to the deformation (u) and the variation of design (d), which leads to an
asymmetric load stiffness matrix by linearization in the response and design sensitivity
analysis. In this paper, the isogeometric continuum-based sensitivity analysis suggested
by Cho and Ha [14] is performed for accurate sensitivity analysis of the problems subject
to a design- and deformation-dependent load. The design boundary change expressed
by the NURBS basis function leads to a natural shape change, which leads to accurate
design shape sensitivity. The design sensitivity analysis based on the geometric analysis
method was induced by the design sensitivity theory [15,16], and its accuracy is verified
for the response field. The asymmetric sensitivity equation for the deformation-dependent
loadings is expressed as the dependent term according to the displacement and the design
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change of the structure in Figure 1c, including the geometric higher-order terms such as
normal vector and curvature. Compared to the traditional finite element-based sensitivity
analysis, NURBS-based design sensitivity analysis results in accurate sensitivity values
because the load-stiffness matrix by the deformation- and design-dependent loads, in
general taking an asymmetric form, is incorporated into the sensitivity equation.

The remainder of this paper is organized as follows. Section 2 of this paper briefly
explains the B-spline basis function and provides a brief explanation of the features of the
geometric analysis based on it. We formulate a load representation that describes the char-
acteristics of a pressure load in a continuum form and develop a governing equation and a
weak formulation for a geometric nonlinear structure in a Lagrangian formulation, which
incorporates the asymmetric load stiffness terms. The details on our formulation of the
design sensitivity equations for geometric nonlinear structures subjected to deformation-
dependent pressure loads are also described. In Section 3, numerical examples showing the
accuracy of isogeometric continuum-based sensitivity compared based on the isogeometric
approach to that of finite difference for the structures subjected to deformation-dependent
loads are presented. Through the shape optimization examples, the efficiency and applica-
bility of the proposed method will also be checked. Finally, in Section 4, we summarize the
conclusions, explaining the importance of the isogeometric analysis method in nonlinear
structures subjected to pressure loads.

2. Materials and Methods
2.1. Overview of NURBS Basis Function and Isogeometric Analysis

In isogeometric analysis (IGA), the solution space adopts the same NURBS basis
function to describe the geometry. Over the conventional finite element method, IGA
has several advantages: exact geometry representation and simple refinement process
non-interacting with CAD system due to the use of NURBS basis functions based on
B-splines [9]. With the set of knots ξi in parametric space, a knot vector Ξ is defined in a
one-dimensional space,

Ξ =
{

ξ1, ξ2, · · · , ξn+p+1
}

(1)

where p is the order of the basis function, and n is the number of control points. The
B-spline basis functions are defined, recursively, as

Ni,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1
0 otherwise

, (p = 0) (2)

and

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p−1 − ξi+1
Ni+1,p−1(ξ), (p = 1, 2, 3, . . .) (3)

Using the B-spline basis function Ni,p(ξ) and weight wi, the NURBS basis function
Ri,p(ξ) is defined as

Ri,p(ξ) =
Ni,p(ξ)wi

n
∑

j=1
Nj,p(ξ)wj

(4)

In general, the higher-order basis functions in IGA offer higher regularity than the
conventional finite element approach. The NURBS possesses the following desirable
properties as a basis function.

For the given n pairs of the p-th order NURBS basis function Ri,p(ξ) and the corre-
sponding projected weighted control point Bi ≡ B(xi), a NURBS curve C is obtained by

C(ξ) =
n

∑
i=1

Ri,p(ξ)Bi (5)
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In the same manner, NURBS surface is defined as a product of NURBS basis functions,

S(Ξ) ≡ S(ξ, η) =
l

∑
i=1

m

∑
j=1

Ri,p(ξ)Rj,q(η) Bi,j ≡∑ Wp
I (Ξ)BI (6)

In isogeometric analysis, geometric points and responses are expressed using the
relation (6):

x(Ξ) = ∑ Wp
I (Ξ)BI(x) (7)

and
z(Ξ) = ∑ Wp

I (Ξ)uI (8)

where BI(x) = B(x1, x2, x3) are the control points, and uI = u(x1, x2, x3) are called the
response coefficients at the control points. Note that the NURBS basis functions have a
non-interpolatory property.

2.2. Isogeometric Shape Sensitivity Analysis for Pressure Load
2.2.1. Isogeometric Analysis of Geometrically Nonlinear Structure for Following
Load Problem

The equilibrium of a deformable body at current configuration (n + 1) under deformation-
and design-dependent load can be expressed by using the principle of virtual work in total
Lagrangian formulation as

a
(

n+1z,
¯
z
)
= `

(
n+1z,

¯
z
)

(9)

where the strain energy and load form are defined, respectively, as

a
(

n+1z,
¯
z
)
≡
∫

0Ω
cijklεkl(

n+1z)
_
ε ij

(
n+1z;

¯
z
)

d0Ω (10)

and

`

(
n+1z,

¯
z
)
≡ −

∫
0Γ

zi pF−1
ji

(
n+1z

)
Nj J
(

n+1z
)

d0Γ, (11)

and cijkl , z, z and Z are material response tensor, displacement, virtual displacement, and
variational space, respectively.

Generally, the pressure boundary at the current configuration (n + 1) can be repre-
sented as shown in Figure 2:

ndn+1Γ = F
(

n+1z
)−T
·NJ

(
n+1z

)
d0Γ, (12)

where F and J are deformation gradient and Jacobian, respectively.

Figure 2. Pressure boundary and differential area element.
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The Green–Lagrange and virtual strain tensors are defined by

εij(
n+1z) =

1
2

(
∂n+1z i
∂0x j

+
∂n+1z j

∂0x i
+

∂n+1zm

∂0x i

∂n+1zm

∂0x j

)
(13)

and
_
ε ij

(
n+1z;

¯
z
)
≡ 1

2

(
∂zi

∂0x j
+

∂zj

∂0x i
+

∂zm

∂0x i

∂n+1zm

∂0x j
+

∂n+1zm

∂0x i

∂zm

∂0x j

)
. (14)

Since the strain energy form and load form are nonlinear in their arguments, Equa-
tion (9) cannot be solved directly. To solve a nonlinear system of equations, an incremental-
iterative scheme is adopted. The solution is decomposed into two terms, the solution at
configuration (n) and the increment as

n+1z = nz + ∆z (15)

Using Equation (15), the Green–Lagrange tensor is decomposed into

εij(
n+1z) = εij(

nz) +
_
ε ij(

nz; ∆z) + ηij(∆z), (16)

where
ηij(∆z) ≡ 1

2
∆zk,i∆zk,j, (17)

_
ε ij(

n+1z;
¯
z ) =

_
ε ij(

nz;
¯
z ) +

_
η ij(∆z;

¯
z), (18)

_
η ij

(
∆z;

¯
z
)
≡ 1

2
(zk,i∆zk,j + ∆zk,izk,j). (19)

Additionally, load form can be linearized by taking Taylor expansion with respect to
the structural response and dropping the higher-order terms

`

(
n+1z,

¯
z
)
= `

(
nz,

¯
z
)
+ `sti f f

(
nz; ∆z,

¯
z
)

, (20)

where the load stiffness term is defined as

`sti f f
(

n+1z; ∆z,
¯
z
)
= −

∫
0Γ t

zi
n p ,k∆zk

nF−1
ji Nj Jd0Γ

−
∫

0Γ t
zi

n pnF−1
ji,k∆zk Nj Jd0Γ−

∫
0Γ t

zi
n pnF−1

ji Nj J,k∆zkd0Γ
(21)

Substituting Equations (16), (18), and (20) into Equation (9) and linearizing by neglect-
ing the higher-order terms, Equation (9) can be rewritten, in incremental form, as

a∗∗
(

nz; ∆z,
¯
z
)
≡ a∗

(
nz; ∆z,

¯
z
)
− `sti f f

(
nz; ∆z,

¯
z
)
= `∗∗

(
nz;

¯
z
)

for all
¯
z ∈ Z. (22)

The linearized strain energy form and load linear form at the configuration (n) are
defined as

a∗
(

nz; ∆z,
¯
z
)
≡
∫

0Ω
Sij(

nz)
_
η ij

(
∆z,

¯
z
)

d0Ω +
∫

0Ω
cijkl

_
ε kl(

nz; ∆z)
_
ε ij

(
nz;

¯
z
)

d0Ω (23)

l∗∗
(

nz;
¯
z
)
≡ −

∫
0Γ

zi pF−1
ji (nz)Nj J(nz)d0Γ −

∫
0Ω

sij(
nz)

_
ε ij(

nz;
¯
z )d0Ω. (24)

where the second Piola–Kirchhoff stress tensor Sij is defined as

Sij(
n+1z) = cijklεkl(

n+1z). (25)
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Since the load stiffness in Equation (21) has asymmetric property, the left-hand side
of the final system equation, Equation (22), is also non-symmetric through linearization.
The response solution is obtained by repeating iterative steps in which ∆z is computed in
Equation (25) until updated n+1z is converged within a certain tolerance.

Using the relation (8), the incremental variational Equation (22) can be rewritten as

a∗∗(nu; ∆u,
¯
u) = `∗(nu;

¯
u), for all

¯
z = ∑

J
Wp

J (Ξ)uJ ∈ Z, (26)

where the linearized energy form is discretized as

a∗∗(nu; ∆u,
¯
u) ≡

∫
0Ω

Sij

(
CP

∑
K

Wp
K

nuK

)
ηij

(
CP

∑
I

Wp
I ∆uI ;

CP

∑
J

Wp
J
¯
u J

)
d0Ω

+
∫

0Ω
cijkl

_
ε kl

(
CP

∑
K

Wp
K

nuK;
CP

∑
I

Wp
I ∆uI

)
_
ε ij

(
CP

∑
K

Wp
K

nuK;
CP

∑
J

Wp
J
¯
u J

)
d0Ω

+
∫

0Γ t

(
CP

∑
J

W̃p
J
¯
ui J

)
∇k

n p

(
CP

∑
I

W̃p
I ∆ukI

)
F−1

ji

(
CP

∑
K

W̃p
K

nuK

)
Nj J

(
CP

∑
L

W̃p
L

nuL

)
d0Γ

+
∫

0Γ t

(
CP

∑
J

W̃p
J
¯
ui J

)
n p∇kF−1

ji

(
CP

∑
K

W̃p
K

nuK

)(
CP

∑
I

W̃p
I ∆ukI

)
Nj J

(
CP

∑
L

W̃p
L

nuL

)
d0Γ

+
∫

0Γ t

(
CP

∑
J

W̃p
J
¯
ui J

)
n pF−1

ji

(
CP

∑
K

W̃o
K

nuK

)
Ni∇k J

(
CP

∑
L

W̃p
L

nuL

)(
CP

∑
I

W̃p
I ∆ukI

)
d0Γ

(27)

and the load form as

l∗∗
(

nu;
¯
u
)
≡ −

∫
0Γ t

(
CP

∑
K

W̃p
K

¯
uiK

)
n pF−1

ji

(
CP

∑
I

W̃p
I

nu I

)
Nj J

(
CP

∑
J

W̃p
J

nu J

)
d0Γ

−
∫

0Ω
Sij

(
CP

∑
I

Wp
I

nu I

)
_
ε ij(

CP

∑
J

Wp
J

nu J ;
CP

∑
K

Wp
K

n¯
uK)d0Ω.

(28)

The p, CP, and W̃ denote the order of basis function, the number of control points, and
the NURBS basis function for the boundary integral, respectively. Note that the domain
and boundary in Equations (27) and (28) are maintained exactly with the discretization,
different from the conventional finite element discretization.

2.2.2. Isogeometric Shape Sensitivity Analysis

Taking the material derivative of Equation (9) with respect to the shape design param-
eter τ, the following is obtained:

[a(n+1z,
¯
z)]
′
= a′ex(

n+1z,
¯
z) + a∗

(
n+1z; n+1z

′
,
¯
z
)
+ a

(
n+1z,

¯
z
′
)

(29)

and

[`(n+1z,
¯
z)]
′
= `′ex(

n+1z,
¯
z) + `sti f f

(
n+1z; n+1z

′
,
¯
z
)
+ `

(
n+1z,

¯
z
′
)

, (30)

where a′ex(n+1z,
¯
z) and `′ex(n+1z;

¯
z) denote the explicit variation terms in which the

dependence of their arguments on the shape design parameter is suppressed. Using
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the relation n+1 .
z = n+1z

′
+∇n+1zTV (design velocity V), Equations (29) and (30) are

rewritten as

[a(n+1z,
¯
z)]
′
= a′ex(

n+1z,
¯
z) + a∗(n+1z; n+1 .

z,
¯
z)− a∗(n+1z;∇n+1zTV,

¯
z)

+a(n+1z,
.
¯
z)− a(n+1z,∇¯

z
T

V)

(31)

and

[`(T)]′ = `′ex(
n+1z,

¯
z) + `sti f f

(
n+1z; n+1 .

z,
¯
z
)
− `sti f f

(
n+1z;∇n+1zTV,

¯
z
)

+`

(
n+1z,

.
¯
z

)
− `

(
n+1z,∇¯

z
T

V
)

.
(32)

Additionally, using the fact that
[

a
(

n+1z,
¯
z
)]′

=

[
`

(
n+1z,

¯
z
)]′

for all
¯
z ∈ Z and

a

(
n+1z,

.
¯
z

)
= `

(
n+1z,

.
¯
z

)
for all

.
¯
z ∈ Z, the shape sensitivity equation is finally derived as

a∗∗(n+1z; n+1 .
z,

¯
z ) = `′V(

n+1z,
¯
z)− a′V(n+1z,

¯
z), for all

¯
z ∈ Z, (33)

where

a∗∗
(n+1z; n+1 .

z, z
)

= a∗
(n+1z; n+1 .

z, z
)
− `sti f f (n+1z; n+1 .

z, z
)

=
∫

0Ω Sij
(n+1z

)_
η ij
(n+1 .

z, z
)
d0Ω +

∫
0Ω cijkl

_
ε kl
(n+1z; n+1 .

z
)_

ε ij
(n+1z; z

)
d0Ω

+
∫

0Γt
zi

n+1 p,k
.
zk

n+1F−1
ji Nj

n+1 Jd0Γ +
∫

0Γt
zi

n pn+1F−1
ji,k

.
zk Nj

n+1 Jd0Γ
+
∫

0Γt
zi

n+1 pn+1F−1
ji Nj

n+1 J,k
.
zkd0Γ

(34)

`′V
(n+1z, z

)
= `′ex

(n+1z, z
)
− `sti f f (n+1z;∇n+1zTV, z

)
− `
(n+1z,∇zTV

)
= −

∫
0Γ

(
zi

n+1 pF−1
ji
(n+1z

)
J
(n+1z

))
,i
VmNmd0Γ

+
∫

0Γ Ni

(
zi

n+1 pF−1
ji
(n+1z

)
J
(n+1z

))
,k

Vkd0Γ

(35)

a′V
(n+1z, z

)
= a′ex

(n+1z, z
)
+ a∗

(n+1z;∇n+1zTV, z
)
− a
(n+1z,∇zTV

)
=
∫

0Ω cijklεkl
(n+1z

)_
ε ij
(n+1z; z

)
Vm,md0Ω

−
∫

0Ω cijkl
_
e kl
(n+1z; n+1z, V

)_
ε ij
(n+1z; z

)
d0Ω

−
∫

0Ω cijklekl
(n+1z

)_
e ij
(n+1z; z, V

)
d0Ω

(36)

and

_
e ij

(
n+1z;

¯
z , V

)
=

1
2

(
∂zi
∂xk

∂Vk
∂xj

+
∂zj

∂xk

∂Vk
∂xi

+
∂zm

∂xk

∂Vk
∂xi

∂n+1zm

∂xj
+

∂n+1zm

∂xi

∂zm

∂xk

∂Vk
∂xj

)
(37)

Using the isogeometric discretization, the variational Equation (33) can be rewritten as

a∗∗(n+1u; n+1 .
u,

¯
u) = `′V(

n+1u,
¯
u)− a′V(n+1u,

¯
u), for all,

¯
z = ∑

J
Wp

J (Ξ)uJ ∈ Z, (38)



Symmetry 2021, 13, 2373 8 of 18

where

a∗∗(n+1u;
.
u,

¯
u) ≡

∫
0Ω

Sij

(
CP

∑
K

Wp
K

n+1uK

)
ηij

(
CP

∑
I

Wp
I

.
uI ;

CP

∑
J

Wp
J
¯
u J

)
d0Ω

+
∫

0Ω
cijkl

_
ε kl

(
CP

∑
K

Wp
K

n+1uK;
CP

∑
I

Wp
I

.
uI

)
_
ε ij

(
CP

∑
K

Wp
K

n+1uK;
CP

∑
J

Wp
J
¯
u J

)
d0Ω

+
∫

0Γ t

(
CP

∑
J

W̃p
J
¯
ui J
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Note that the normal vector in the boundary integrals is crucial for an accurate
evaluation of shape sensitivity. Due to the exact consideration of higher-order terms, the
isogeometric DSA gives accurate values over that of the finite element, which eventually
could lead to the precise results of shape design optimization. NURBS basis function
requires a recursive evaluation as opposed to a fixed polynomial function in traditional
FEM, which is a computational burden if a large number of degrees of freedom (DOF)
is used. The asymmetric load stiffness term in Equations (34) and (35) is identified in
the continuum-based shape sensitivity formulation to problems subject to deformation-
dependent loads.

3. Results and Discussion—Numerical Examples

In the shape optimization using the traditional finite element method, design
parametrization and regularity issues occur. In the present study, the shape design method
using the B-spline curve (Bribant and Fluery [17]) and the smoothing gradient method
(Azegami et al. [18]) were utilized to avoid these problems. Note that the free shape and
continuity adjustment of the geometries using the NURBS basis function has an advantage
in shape optimization. Due to the flexible nature of the NURBS basis function, engineering
meaningful solutions can be easily obtained without any modification to the sensitivity.

In this section, the derived shape sensitivity using the isogeometric approach is com-
pared with FEM-based sensitivity and also with the exact analytic solutions for verification.
The obtained isogeometric sensitivity means a gradient of the objective function, which
is utilized as important information in the gradient-based optimization algorithm, the
modified method of feasible direction (MMFD) in this study. MMFD is a gradient-based
optimization solver for constrained problems. The DOT package by Vanderplaats Research
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and Development [19] is used to apply the MMFD algorithm for the optimization problems.
Additionally, the quadratic NURBS basis function is used in all numerical models for both
IGA and FEM.

3.1. Verification of Isogeometric Sensitivity (vs. Finite Difference Sensitivity)

Figure 3 shows the model description and its deformed shape for the structure sub-
jected to pressure load. Pressure intensity (p) is 5.0× 109 N/m2, and the steel material is
used with a Young’s modulus of E = 2.1× 1011 Pa and a Poisson’s ratio of ν = 0.3. The
termination criteria of Newton–Raphson analysis for the nonlinear system is defined by

∑Total DOFs
j

(
∆uj

)2/ ∑Total DOFs
j

(
uj
)2 with the tolerance of 1.0× 10−8. As shown in Figure 3,

the quarter model is used for the investigation with an account of the symmetric boundary
condition. To verify the derived shape sensitivity equation, an irregular shape perturbation
as shown in Figure 3b is considered.

Figure 3. (a) Isogeometric model description; (b) perturbed red-colored shape (scaled by 100).

In Table 1, excellent agreement is observed between the finite difference sensitivity
and the analytical one at sampled points using 0.01% perturbation.

Table 1. Verification of displacement sensitivity coefficient for perturbed shape (variation).

DOF Finite Difference Sensitivity
(A)

Analytical Sensitivity
(B)

(A)/(B)
(%)

1 1.861394 × 10−4 1.860280 × 10−4 100.06
3 1.947662 × 10−4 1.946468 × 10−4 100.06
5 1.631699 × 10−4 1.630562 × 10−4 100.07
7 1.590106 × 10−4 1.589031 × 10−4 100.07
9 1.554591 × 10−4 1.553512 × 10−4 100.07

10 −4.263665 × 10−5 −4.264696 × 10−5 99.98
15 1.477204 × 10−4 1.476201 × 10−4 100.07
16 3.853817E × 10−5 3.851187 × 10−5 100.07
23 7.701421 × 10−5 7.698290 × 10−5 100.04
24 5.757493 × 10−5 5.754889 × 10−5 100.05
42 1.861394 × 10−4 1.860280 × 10−4 100.06
44 1.947662 × 10−4 1.946468 × 10−4 100.06
46 1.631699 × 10−4 1.630562 × 10−4 100.07
48 1.590106 × 10−4 1.589031 × 10−4 100.07

Additionally, the dependency on the magnitude of pressure load and perturbation
amount is investigated. The numerical model with a height of 2 m and a width of 1 m is
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presented as in Figure 4, and pressure loading is applied on the left wall of the simplified
dam. The material property and the tolerance of the iterative solution are the same as in
the previous numerical example in Figure 3.

Figure 4. Dam model: (a) problem description, (b) analysis result, (c) design velocity field.

Considering the geometrical nonlinearity, von Mises stress results and red-colored
design velocity vectors are presented in Figure 4b,c. The performance measure is the
x-directional displacement of the right upper corner of the structure.

Table 2 shows the analytical sensitivity and finite difference sensitivity, and its agree-
ments are presented in Figure 5. It can be noted that the accuracy of shape design sensitivity
decreases as the magnitude of pressure increases, and the accuracy increases as the pertur-
bation amount is further reduced under the same loading.

Table 2. FDM and DDM according to various pressure intensity and perturbation amount.

Force Intensity
1% Perturbation 0.5% Perturbation 0.1% Perturbation

FDM DDM FDM DDM FDM DDM

3.97 × 109 3.685 × 10−3 3.637 × 10−3 1.830 × 10−3 1.818 × 10−3 3.641 × 10−4 3.637 × 10−4

4.00 × 109 3.757 × 10−3 3.707 × 10−3 1.866 × 10−3 1.853 × 10−3 3.712 × 10−4 3.707 × 10−4

4.03 × 109 3.869 × 10−3 3.814 × 10−3 1.921 × 10−3 1.907 × 10−3 3.820 × 10−4 3.814 × 10−4

4.06 × 109 4.094 × 10−3 4.027 × 10−3 2.030 × 10−3 2.014 × 10−3 4.034 × 10−4 4.027 × 10−4

Figure 5. Agreement of FDM and DDM (%) according to various pressure intensity and perturbation
amount.
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3.2. Superior Convergence of Isogeometric Sensitivity (FEM vs. IGA)

A hollow cylinder subjected to inner pressure is considered in Figure 6a. For the
comparison with the exact solution, the linear elastic structure problem is considered. On
the inner boundary, pressure which has 10 N/m2 is applied. The displacement and traction
are free on the outer boundary. The Young’s modulus and Poisson’s ratio are 1.0× 105(MPa)
and 0.3, respectively. Inner and outer radii are set as 1 and 7 m. Results of the quarter
model for both FEM and IGA are shown in Figure 6b,c using 81 elements.

Figure 6. (a) Circular cylinder with internal pressure, (b) FEM result, (c) isogeometric result.

The analytic (exact) solutions to this problem are as follows:

ur(r) =
1
E

PR2
i

R2
0 − R2

i

(
(1− ν)r +

R2
0(1 + ν)

r

)
(42)

The error norm between the numerical results (FEM and IGA) and the analytic solution
is considered to assess the convergence characteristics. The L2 error norm is defined on the
internal domain:

e =
√∫

Γ

∣∣∣uNumerical − uAnalytic

∣∣∣2dΓ (43)

Figure 7 compares the error norm of FEM and IGA with the number of elements.
Because of the exact geometry and higher continuity between elements in IGA, the conver-
gence of the isogeometric method is faster than that of FEM.

Figure 7. Comparison of error displacement according to the number of elements used.
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Next, to investigate the convergence of the isogeometric shape design sensitivity, the
previous example is considered again. The inner radius is chosen as a design variable, and
the analytic exact design sensitivity is derived as follows:

Dur(r)
DRi

=
1
E

2PRiR2
0(

R2
0 − R2

i
)2

(
(1− ν)r +

R2
0(1 + ν)

r

)
+

1
E

PR2
i

R2
0 − R2

i

(
(1− ν)−

R2
0(1 + ν)

r2

)
(44)

The convergence of the two methods is shown in Figure 8, and the isogeometric
approach converges faster than FEM. Such results can be attributed the higher-order
geometric term (normal vector), which can be obtained in the isogeometric method even
with using fewer DOFs.

Figure 8. Comparison of error sensitivity according to the number of elements used.

3.3. Shape Design Optimization of Structures Subject to Pressure Load

Utilizing accurate and efficient design sensitivity, shape optimization is performed
for the various problems. Under the constraint, the objective function such as compliance
is minimized using the MMFD algorithm. For the comparison, FEM, IGA, and linear
elasticity-based optimization results are presented. The material properties of the steel
were the same used in the previous problem.

3.3.1. L-Shape Structure

The shape design optimization to minimize compliance at the (n+1) configuration is
stated as follows:

Minimize C =
∫

Ω
pn+1u i

n+1n idΓ (45)

Subject to V =
∫

Ω
dΩ ≤ 0.5×Vinitial (46)

dlower
i ≤ di ≤ dupper

i (47)

where di is a shape design variable, i.e., control points along the design boundary. The L-
shaped structure with a height of 20 m and thickness of 5 m was selected for the numerical
example as shown in Figure 9a. Pressure is applied on the outer boundary, and the
symmetry condition is imposed, which is represented by the circular shape ‘o’ in Figure 9a.
Design variables are on the inner and outer boundary as blue-colored control points in
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Figure 9b. The material used is steel, which is defined in Section 3.1. The shape sensitivity
of Equations (45) and (46) can be derived using n+1 .

u from Equation (38) as follows:

C′ =
∫

Ω

(
pn+1 .

ui ni + pn+1 .
u i,iVjnj

)
dΩ, (48)

(Vol)′ =
∫

Ω
Vj,jdΩ, (49)

where Vi is a shape design velocity.

Figure 9. (a) Model description, (b) isogeometric model and blue colored control points as shape design variables.

Figure 10 shows the stress distribution of the initial and optimized model. In the initial
model, stress concentration occurs at the inner corner. On the contrary, the optimal shape
has a round one, and therefore uniform stress distribution is observed. The optimization
history of compliance is shown in Figure 11. The compliance is decreased by about 32%
from the initial compliance of 2.011× 108 to 1.368× 108 after 15 design iterations.

Figure 10. Von mises stress: (a) initial model, (b) optimized model.
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Figure 11. Optimization history of L-shaped structure.

3.3.2. Rectangular Plate

In this example, the shape design optimization of a rectangular structure with a width
of 20 m and a height of 10 m considering linear and nonlinear elasticity is performed. The
numerical model and design boundary are described in Figure 12. The pressure loading is
applied on the lower boundary, and both ends are simply supported, which is represented
by the triangle in Figure 12. The material used is steel, which is defined in Section 3.1. The
objective function is compliance, and the allowable volume is 60% of the initial one.

Figure 12. Simply supported rectangular plate and its blue-colored design boundary.

Figure 13 shows the optimal shapes for both problems, which have a round shape
to resist pressure loads. The optimized shape in Figure 13a has a wiggly lower bound-
ary, which is obtained with consideration of a design-dependent load based on a linear
elastic formulation [12,13]. However, the optimized shape considering the design- and
deformation-dependent load in the geometrically nonlinear formulation shows a smoother
lower boundary where the pressure loading is applied. Optimization histories for both
problems are presented in Figure 14. Since the MMFD algorithm meets the constraint first,
it is observed that the objective function goes up first in the second step. From the next
step, 60% volume is maintained, satisfying the constraint. Although only 60% of the initial
mass can be used, it can be seen that it has similar compliance compared to the initial one.
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Figure 13. Optimal shape: (a) linear elastic problem, (b) geometrically nonlinear elasticity.

Figure 14. Optimization history: (a) linear elastic problem, (b) geometrically nonlinear elasticity.

3.3.3. Irregular Shape Plate

In this example, FEM- and IGA-based shape design optimization is performed. A
quarter model of a 5 m × 5 m plate with an irregular inner hole and design boundary is
described in Figure 15. The pressure loading is applied on the irregular boundary, which is
the design boundary, and the roller boundary condition is imposed on the lower and right
sides. The material used is steel, which is defined in Section 3.1. The objective function is
compliance, and the allowable volume is the initial one.
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Figure 15. (a) Irregular shaped boundary, (b) FEM results, (c) IGA results.

As expected, the optimal boundary shape subjected to pressure loading is round, and
Figure 16 shows a round optimal shape in both methods. However, the IGA-based optimal
shape shows a smoother boundary represented by NURBS.

Figure 16. Optimal shape: (a) FEM, (b) IGA.

Optimization histories for both problems are shown in Figure 17. Compliance of the
IGA-based optimal shape is slightly lower compared to that of FEM.

Figure 17. Cont.
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Figure 17. Optimization history: (a) FEM, (b) IGA.

4. Conclusions

In the present study, design sensitivity analysis and shape optimization were per-
formed on nonlinear structures subjected to loads that depend on design change and
structural deformation. General non-conservative loads have path-dependent properties,
and in this paper, the pressure loads are expressed in a total Lagrangian formulation. The
resultant load stiffness matrix is derived by linearization, and a tangential stiffness matrix
with an asymmetric structure is also derived in the present study. The asymmetric load
stiffness term is identified in the continuum-based shape sensitivity formulation to the
problems subject to deformation-dependent loads. In addition, since the total Lagrangian
formulation was used, no additional iterations are required in the design sensitivity analy-
sis using the final tangential stiffness matrix converged in the nonlinear analysis. In terms
of optimization, since normal vectors, which are high-order geometrical terms, can be
accurately obtained based on geometrical geometry, it shows an excellent convergence
rate even for the problem of a structure under pressure loading, which is expressed with
normal vectors of boundaries. Finally, there was no need for design parameterization
and smooth design changes by the design variables, as the NURBS basis function was
used in optimizing geometry. Analyses in the present study suggest the superiority of
the isogeometric optimization technique, which demonstrates the fast convergence with
more accurate calculations of the load stiffness terms as well as the normal vector of the
pressure load.
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