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Simple Summary: As of recently, cancer is considered a major cause of death in developed and
developing countries. Therefore, there is an urgent need for improvements in existing diagnostic
methods for effective early diagnosis. However, cross-contamination of cancer cell lines results in the
development of inappropriate treatments that cannot be administered to patients. To address this
issue, we propose an automatic cancer cell taxonomy with high accuracy using optical images of cells
obtained through low-scale benchtop optical microscopy. Specifically, we built a deep-learning-based
framework to classify cervical, hepatocellular, breast, and lung cancer cells. The experimental results
demonstrated that the proposed deep-learning-based approach facilitates the automatic identification
of cancer cells. Moreover, our findings provide important insights into the design of convolutional
neural networks for various clinical tasks that utilize microscopic images.

Abstract: Microscopic image-based analysis has been intensively performed for pathological stud-
ies and diagnosis of diseases. However, mis-authentication of cell lines due to misjudgments by
pathologists has been recognized as a serious problem. To address this problem, we propose a deep-
learning-based approach for the automatic taxonomy of cancer cell types. A total of 889 bright-field
microscopic images of four cancer cell lines were acquired using a benchtop microscope. Individual
cells were further segmented and augmented to increase the image dataset. Afterward, deep transfer
learning was adopted to accelerate the classification of cancer types. Experiments revealed that the
deep-learning-based methods outperformed traditional machine-learning-based methods. Moreover,
the Wilcoxon signed-rank test showed that deep ensemble approaches outperformed individual
deep-learning-based models (p < 0.001) and were in effect to achieve the classification accuracy up to
97.735%. Additional investigation with the Wilcoxon signed-rank test was conducted to consider
various network design choices, such as the type of optimizer, type of learning rate scheduler, degree
of fine-tuning, and use of data augmentation. Finally, it was found that the using data augmentation
and updating all the weights of a network during fine-tuning improve the overall performance of
individual convolutional neural network models.

Keywords: cancer cell taxonomy; deep learning; convolutional neural network; ensemble approach

1. Introduction

Recently, cancer has begun being considered a major cause of death in developed and
developing countries; thus, the American Cancer Association and GLOBOCAN estimate
the number of new cancer cases and deaths each year and aggregate the most recent
data on population-based cancer incidence [1,2]. According to the report, 1,806,590 new
cancer patients and 606,520 cancer patients were expected to die in the United States by
2020. Specifically, breast cancer is the most common and leading cause of death in women
around the world, and the number of patients increases with age, but early diagnosis can
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increase breast cancer survival by up to 80 percent [3]. Therefore, there is an urgent need
for improvements in existing diagnostic methods for effective early diagnosis.

Typically, to diagnose cancer, a radiologist identifies suspicious locations through
diagnostic equipment such as X-rays, Magnetic Resonance Imaging (MRI), Computed
Tomography (CT), etc., and then conducts a biopsy to check for abnormalities under a
microscope [4–8]. Biopsy during clinical diagnosis is an efficient and accurate diagnostic
method for cancer detection, and plays an important role in breast cancer as well as in other
types of cancer [8,9]. In this approach, a pathologist analyzes a tissue sample of a suspected
cancer cell metastasis under a microscope for the detection and classification of tumors.
While pathologists familiar with clinical tissues can determine two types of lesions, benign
and malignant, manual analysis of microscopic images is a very complex, challenging task,
and sometimes misjudged [10]. Therefore, extensive research on computer-aided diagnosis
has been actively conducted to increase the accuracy of diagnosis [11–15].

For decades, microscopic image analysis methods have been widely used for bio-
logical studies and diagnosis of various diseases, including specific cell counts [16], cell
location [12,13], cell shape [17], and cell categorization [14,15]. In particular, microscopic im-
ages acquired of tissue or cells facilitate the validation of the presence of certain diseases [18],
the categorization of tumor types [19], and the interpretation of cell and molecular genetic
mechanisms [20]. However, mis-authentication of cell lines due to cross-contamination
has been acknowledged as a serious problem over the past 50 years [21,22]. Generally,
cross-contamination of cancer cell lines can be caused by incorrect labeling, cross-use of
pipette tips, and sharing of cell culture media [23,24].

Due to the changed or contaminated cell lines, researchers perform experiments using
inappropriate cells, resulting in the development of treatments that cannot be administered
to patients [25]. Therefore, institutions such as the National Institutes of Health and The
International Cell Line Authentication Committee have required additional tests to authen-
ticate the type of cells they are trying to use before conducting relevant research [26–28].
Various molecular interpretation trials have been used to solve these problems and identify
cell lines, and alternative methods have been actively studied [23,29]. The most widely
used at present is short tandem repeat (STR) analysis, which reveals the number of repeated
DNA traces of particular DNA motifs [30]. Each sample cell is amplified and processed
during STR profiling, and the resulting value is determined to be the same as the stan-
dardized cell line profile with approximately 80% similarity [30]. However, STR profiling
must be implemented by an experienced professional and is not readily available to users
due to its relatively high cost and limited use. In addition, because STR profiling is only
suitable for distinguishing cell lines from a single species, researchers need specialized
knowledge of the biological differences in each cell [31]. However, even with STR analysis,
it was confirmed that 15–20% of the currently used cell lines were incorrectly identified [32].
For example, previous work has confirmed that up to 96 cell lines were misidentified
when 482 different human tumor cell lines were analyzed using STR profiling, thus finding
that STR profiling alone is insufficient [28]. Therefore, we need an alternative approach
for cancer cell line classification that can be easily applied by non-experts in the labora-
tory, and several artificial-intelligence-based taxonomies of cancer cell lines have been
introduced [9,16,17,33].

Recently, convolutional neural networks (CNNs) that can independently extract and
construct discriminative features from the data have garnered widespread interest from
researchers [34–36]. However, in order to utilize images of cells obtained through optical
microscopy in deep learning, researchers use expensive and customized equipment such
as high-scale microscopy [37], high-frequency single-beam acoustic tweezers [38], hyper-
spectral imaging systems [39,40], and time-stretch quantitative phase imaging systems [15].
Furthermore, considerable time and effort are required to prepare images stained in various
colors as training and test data [9,41].

Therefore, in this work, we propose an automatic cancer cell taxonomy using optical
images of cells obtained through low-scale benchtop optical microscopy that is typically
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used in laboratories. For the automatic classification of four cancer cell types, various
deep learning models were trained using a transfer learning approach. We also presented
a pipeline for ensemble approach based on both individual deep learning models and
multiple heterogeneous models. The main contributions of this study are threefold:

1. We proposed a deep-learning-based approach to prevent cross-contamination of
several heterogeneous cancer cell lines.

2. The experimental results showed that the proposed deep-learning-based approach
identifies with an accuracy over 97%, demonstrating that our method can be a promis-
ing alternative approach to STR for the automated cancer cell taxonomy.

3. We presented and discussed the effects of various design choices on the overall perfor-
mance of CNN architectures for various clinical tasks that utilize microscopic images.

The rest of this paper is as follows. Section 2 describes the details of the proposed ap-
proach. Section 3 presents various experimental results, and Section 4 provides discussions
on the experimental results. Finally, we summarize and conclude our work in Section 5.

2. Method

Figure 1 depicts the proposed framework consisting of four phases: image preparation,
image preprocessing, training, and testing of the CNNs. The next subsections describe the
details of each step.

Figure 1. Workflow of the proposed approach.

2.1. Image Preparation

The cancer cell lines were cultured for seven days, and the bright-field images were
acquired every day using an inverted fluorescent microscope (IX73 with DP80, Olympus
Corp., Tokyo, Japan). Four cells were used in the experiment: HeLa (human, cervical cancer
cells), MCF-7 (human, female, 69 years old, Caucasian, breast cancer cells), Huh7 (human,
liver cancer cells), and NCI-H1299 (human, lung cancer cells). All cells were purchased from
Korean Cell Line Bank (Seoul, Korea) and cultured in the following manner. The cell lines
were cultured in a high-glucose Dulbecco’s Modified Eagle Medium containing 10% Fetal
Bovine Serum with 1% penicillin streptomycin. The prepared cells were incubated at 37 ◦C
in a humidified incubator with 5% CO2 [42]. The prepared cells were trypsinized when 80%
confluence was achieved, washed three times with phosphate buffer solution (PBS) [43] to
separate the cells, and prepared with an approximate concentration of 1 × 106 cells/mL. In
total, 889 cell images were collected through the microscope for seven days after starting the
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cell culture: 247 images in HeLa, 281 images in Huh7, 149 images in MCF7, and 212 images
in NCI-H1299.

2.2. Image Preprocessing

To obtain several morphological types of cell images which will be used for training
and testing various CNNs, the acquired images were preprocessed using OpenCV and
scikit-image libraries, which are popular open-source libraries used for computer vision and
image preprocessing tasks, such as scale transformation, denoising, and adaptive thresholds
for Region Of Interest (ROI) of bright field images. The preprocessing steps of the cell
images are summarized in Figure 2. First, the brightfield cell image acquired through the
microscope (Figure 2a) was converted to grayscale (Figure 2b) and then translated into the
binary image using adaptive thresholding. Subsequently, noise removal was performed
using the dilation function with a 2 × 2 kernel (Figure 2c). The processed image allows the
identification of each cell’s contour and the creation of the bounding boxes (Figure 2d). The
size of a bounding box is proportional to the size and number of cells, and uninformative
cells or floating debris (the sum of width and height less than 100 pixels) were excluded.
The final segmented image patches are depicted in Figure 2e. A total of 27,200 samples
were collected by segmenting 889 cell brightfield images. Finally, before feeding the image
patches to the CNNs, we apply a different normalization step designed for each CNN
architecture that will be introduced in the next subsection. Specifically, the normalization
methods include (1) scaling the input pixel values to [0, 1] and then normalizing each
channel with respect to the ImageNet, (2) converting the colorspace from RGB to BGR first
and then zero-centering the pixel values with respect to the ImageNet without scaling, and
(3) scaling the pixel values to [−1, 1] or [0, 1] sample-wise. Therefore, all the images are
normalized differently according to the CNN architecture used. More details of the image
preprocessing step can be found from Table S1 in Supplementary Data.

Figure 2. Image preprocessing step. (a) Captured microscope image, (b) grayscale image, (c) noise
removed image, (d) identified cell contour, (e) segmented image patches.
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2.3. Training CNNs for Cancer Classification

Generally, training CNNs from scratch requires a significant amount of data and re-
sources to achieve high performance. Therefore, for efficient training in various domains,
transfer learning is widely used, where the weights of a model pretrained on a large-scale
dataset are used for solving a new/related task [44]. In this study, we adopted a transfer
learning approach wherein the pretrained models are tuned from the general domain (i.e.,
ImageNet database [45]) to the medical domain (i.e., cancer cell images). Various CNN mod-
els pretrained on ImageNet, such as DenseNet121 [46], MobileNetV2 [47], EfficentNetB2 [48],
InceptionV3 [49], and ResNet-50 [50], were used as our base networks. All models were
trained for 50 epochs using the categorical cross-entropy loss. Moreover, design choices for
various learning strategies, such as data augmentation, degree of fine-tuning, optimizer and
learning rate scheduler, and ensemble configurations, were considered.

2.3.1. Data Augmentation

Data augmentation is considered one of the most promising techniques to improve
the robustness and performance of the CNNs by increasing the amount of data with
various transformations toward the original images. Of the several available augmentation
techniques in the image domain [51], rotation (random rotation between 0–90 degrees),
translation (shifting by 2 pixels), and vertical flip methods were considered to adjust
spatial parameters of the original image. Figure 3 shows a set of examples, where rotation
(Figure 3B), translation (Figure 3C), vertical flip (Figure 3D), and a combination of these
methods are applied (Figure 3E) to the original image (Figure 3A), respectively. During
the experiments, the original images or images augmented with a combination method
(Figure 3E) were used for training CNNs.

Figure 3. Example of data augmentation: (A) original, (B) rotation, (C) translation, (D) vertical flip,
(E) all.

2.3.2. Degree of Fine-Tuning

Generally, training deep learning models from scratch requires a large amount of
high-quality data as well as computing resources to achieve a high performance. Therefore,
transfer learning with fine-tuning has been popular in training deep learning models, as it
can transfer the knowledge learned from a large-scale image dataset to the new/similar
domain/task. Moreover, it can help to build a more accurate model with less time and data
consumed. While adopting a transfer learning method in our pipeline, we considered the
following fine-tuning strategies during the training process: (1) updating all parameters
in the pretrained model, or (2) freezing the first 25% of the layers in the pretrained model
and updating the rest. Figure 4 shows the difference between these strategies. In contrast
to the fine-tuning strategy where all the weights are updated to fit a new domain/task
(Figure 4a), the second strategy (Figure 4b) utilizes the fixed weight of early layers learned
from ImageNet and updates the rest to suit our domain.
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(a) Fine-tuning all weights (b) Freezing the first 25% layers

Figure 4. Degree of fine-tuning.

2.3.3. Optimizer and Learning Rate Scheduler

An optimizer is one of the most important components that can affect the training
speed and accuracy of the CNNs. Of the several available optimizers [52], we selected the
Stochastic Gradient Descent (SGD) optimizer, the most popular gradient-descent-based
method, and the Adaptive Gradient (AdaGrad) optimzer [53], one of the most popular
adaptive methods, as our candidate optimizers. Specifically, the SGD optimizer updates
parameters based on the gradient-descent-based optimization using mini-batch data. On
the other hand, AdaGrad works similarly to SGD but adaptively controls a learning rate
based on the magnitude of previous gradients.

A learning rate is also an important hyper-parameter that determines the extent to
which the parameters should be updated. In this study, we used a fixed learning rate of
0.001 or an exponential decay [53] scheduler that allows adaptive scaling of the learning
rate at each iteration, which is defined as:

η(t) = η(0)× e−t/r (1)

where η(0) is the initial learning rate (0.001), e is the decay rate (0.96), t is the current step,
and r is the decay step (10,000). The use of a learning rate scheduler allows an adaptive
scaling of the learning rate per each training iteration/epoch.

2.4. Ensemble of CNNs

An ensemble approach is a well-known method to improve the performance of a
machine-learning-based system by exploiting multiple classification models. A guiding
principle in designing ensemble methods has been ’many heads are better than one’ [54].
An ensemble approach typically consists of a set of individual models that predict their
own labels for a given sample and therefore can be categorized based on how individual
base classifiers are built. Traditionally, in terms of building multiple classifiers, an ensemble
approach can be classified into bagging-, boosting-, and stacking-based methods [54]. In
bagging, individual base classifiers are trained with a subset of data sampled randomly
with replacement [55]. The final prediction is then made by aggregating the result from
each base classifier. In this aggregation step, various voting approaches can be considered.
Examples of the voting approaches include (1) majority voting (i.e., the predicted target
label of the ensemble is the mode of the distribution of individually predicted labels),
(2) soft voting (i.e., the predicted target label of the ensemble is the class with the largest
sum of probabilities from models), and (3) weighted voting schemes (i.e., the result from
each base model is weighted by the model’s importance). Conversely, in the boosting-based
method, models are trained sequentially, where subsequent models focus on previous
mis-classified samples [56]. Finally, an additional meta-learner can be trained to optimally
combine the predictions made by base models in the stacking-based method [57].

From the perspective of a deep learning pipeline, an ensemble approach also can be
categorized based on if the ensemble is made across multiple models or within a single
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model [54]. In the former case, multiple and often independent deep learning models
with different model architectures, image preprocessing steps, and pretrained weights are
trained and aggregated. Sometimes, each individual model can be trained on a particular
subset of training dataset to increase the model diversity. Conversely, the ensemble within
a single model is generally achieved by implicit ensembles where a set of neurons, layers,
and blocks in the network is deactivated randomly.

In this study, we propose two ensemble pipelines for the classification of cancer cells:
(i) a single-architecture and (ii) a multi-architecture approach. In the single-architecture
approach, a set of the same CNN models trained with different strategies (i.e., different
hyper-parameters) is utilized as illustrated in Figure 5a. For example, the MobileNet-based
ensemble is composed of a set of MobileNet models trained with different hyper-parameters.
Given the test sample, individual MobileNet networks compute their own probabilities for
the test sample, and then a voting step is performed to make the final prediction. The multi-
architecture ensemble approach is similar to the single-architecture ensemble approach,
except that a set of different CNN architectures are included in the ensemble. As depicted
in Figure 5b, the class probabilities from different CNN architectures are aggregated for
voting. The final prediction is made based on soft voting, where the result is computed
by the class probabilities from individual networks. Therefore, our ensemble approach
can be considered a kind of bagging ensemble across multiple independent models with
soft voting. Additionally, various ensemble configurations are considered to determine
the optimal networks to be included in the ensemble. The network selection rule for each
ensemble approach is described below:

- Single-architecture ensemble (single-arch, hereafter): As shown in Table 1, there are 16
available configurations for each CNN architecture. In this approach, we select the top-
4, top-8, and top-16 best-performing configurations in terms of classification accuracy.
Therefore, we can build three ensembles for each model, for a total of 15 single-arch
ensemble prediction pipelines.

- Multi-architecture ensemble (multi-arch, hereafter): In contrast to the single-arch
pipeline, the multi-arch approach is composed of heterogeneous CNN architectures.
To establish this pipeline, we select the top-1, top-2, and top-3 best-performing con-
figurations from each model. Therefore, top-1, top-2, and top-3 multi-arch ensemble
pipelines include 5, 10, and 15 individual classification models from different architec-
tures, respectively.

Table 1. Summary of hyper-parameters.

Parameter Option Note

Data augmentation O Rotation, translation, and vertical flip
X Without any augmentation

Fine-tuning Without freeze All weights are updated
25% freeze Only 75% of weights are updated

Optimizer SGD Stochastic gradient descent
AdaGrad Adaptive gradient-based optimization

Learning rate scheduler O Exponential decay
X Learning rate is fixed to 0.001
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(a) Single-architecture ensemble approach

(b) Multi-architecture ensemble approach

Figure 5. Overview of ensemble approaches.

3. Experimental Results
3.1. Experimental Setup

All the experiments were conducted using a GPU server with two NVIDIA RTX
3090 GPUs, 128 GB RAM, and an Intel i9-10940X CPU. We used Tensorflow framework
with Keras backend for the training and evaluation of the CNNs. The experiments were
conducted using fivefold cross-validation to report precision, recall, accuracy, and F1-score.

3.2. Performance Evaluation

Table 2 summarizes the performance of the classification models in terms of effective-
ness. Note that the reported values are from the best-performing configuration of each
CNN model (Table 3). More details of the performance evaluation of all the configurations
of each model can be found in Table S2 in the Supplementary Data. In addition to CNNs, we
report the performance of traditional machine learning algorithms, such as Support Vector
Machine (SVM), Random Forest (RF), Linear Discriminant Analysis (LDA), and K-Nearest
Neighbor (k-NN). Similar to the methods proposed in previous studies [58,59], traditional
machine learning algorithms used in our experiment were trained with conventional visual
features, such as histograms of gradients (HOG), extracted from each cell image separately.
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The experiments with traditional machine learning algorithms were also conducted using
fivefold cross-validation to report precision, recall, accuracy, and F1-score.

First, the results in Table 2 clearly demonstrate that traditional machine learning ap-
proaches fail to achieve superior performance. Specifically, machine learning methods
showed an average accuracy of 49.39%. Conversely, CNNs achieved significant perfor-
mance gain when compared to the machine learning methods, yielding up to 97.735%
classification accuracy (from multi-arch ensemble with the top-3 configuration). More-
over, it is evident that both the single-arch (avg. 96.868%) and multi-arch (avg. 97.657%)
ensemble approaches outperformed individual CNN models (avg. 96.071%) in terms of
accuracy (p < 0.001, Wilcoxon Signed-rank test). Among the ensemble approaches, multi-
arch approaches performed better than single-arch approaches, with a performance gain of
0.789%p on average. In the case of individual CNN models, DenseNet121 outperformed the
other models with an average performance improvement of 0.844%p in terms of accuracy.
Furthermore, the DenseNet121-based single-arch ensemble approach also produced the best
result with an accuracy of 97.64%, beating other single-arch models. Finally, Figures 6 and 7
represent the classification accuracy and loss per epoch during training and testing, re-
spectively. As shown in the figures, the validation accuracy and loss of DenseNet121
and ResNet50 converged within 20 epochs, yielding stable performances much earlier
than the other networks. The confusion matrices of each individual CNN model with the
best-performing configuration are presented in Figure S1 in the Supplementary Data.

Table 2. Comparison of the model performance (Best scores in each algorithm are marked in bold).

Algorithm Model Accuracy Precision Recall F1-Score

Machine Learning

SVM 58.7 ± 0.74 58.34 ± 0.76 58.7 ± 0.74 58.52 ± 0.75
RF 49.55 ± 0.32 49.01 ± 0.33 49.55 ± 0.32 49.3 ± 0.32

LDA 46.26 ± 0.98 44.81 ± 0.98 45.26 ± 0.98 45.03 ± 0.98
KNN 44.05 ± 0.92 45.86 ± 1.1 44.05 ± 0.92 44.93 ± 0.94

Average 49.39 ± 5.94 49.51 ± 5.52 49.39 ± 5.94 49.44 ± 5.72

Deep Learning

DenseNet121 96.915 ± 0.072 96.916 ± 0.077 96.915 ± 0.072 96.915 ± 0.075
EfficientNetB2 96.195 ± 0.23 96.23 ± 0.272 96.176 ± 0.194 96.203 ± 0.232

ResNet50 96.265 ± 0.138 96.274 ± 0.13 96.265 ± 0.138 96.269 ± 0.134
InceptionV3 95.57 ± 0.322 95.604 ± 0.376 95.556 ± 0.298 95.58 ± 0.336

MobileNetV2 95.412 ± 0.223 95.446 ± 0.229 95.412 ± 0.224 95.429 ± 0.226

Average 96.071 ± 0.584 96.1 ± 0.58 96.06 ± 0.581 96.08 ± 0.58

Ensemble (Single-architecture)

DenseNet121 97.64 ± 0.16 97.643 ± 0.16 97.64 ± 0.16 97.641 ± 0.16
EfficientNetB2 96.757 ± 0.202 96.763 ± 0.294 96.757 ± 0.294 96.76 ± 0.294

ResNet50 97.066 ± 0.148 97.073 ± 0.145 97.066 ± 0.148 96.07 ± 0.147
InceptionV3 96.342 ± 0.196 96.345 ± 0.202 96.342 ± 0.196 96.343 ± 0.199

MobileNetV2 96.533 ± 0.209 96.55 ± 0.226 96.533 ± 0.209 96.541 ± 0.217

Average 96.868 ± 0.5 96.875 ± 0.5 96.868 ± 0.5 96.871 ± 0.5

Ensemble (Multi-architecture)

Top-1 97.563 ± 0.145 97.568 ± 0.145 97.563 ± 0.145 97.565 ± 0.145
Top-2 97.673 ± 0.122 97.677 ± 0.124 97.673 ± 0.122 97.675 ± 0.123
Top-3 97.735 ± 0.132 97.74 ± 0.14 97.74 ± 0.132 97.74 ± 0.134

Average 97.657 ± 0.144 97.661 ± 0.149 97.657 ± 0.144 97.659 ± 0.144
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Table 3. Configuration of the best-performing individual deep learning models.

Algorithm Data
Augmentation

Degree of
Fine-Tuning Optimizer Learning Rate

Scheduler

DenseNet121 O All weights SGD X
EfficientNetB2 O All weights AdaGrad X

ResNet50 O All weights AdaGrad X
InceptionV3 O All weights SGD O

MobileNetV2 O Freeze the early
25% layers SGD O

Figure 6. Classification accuracy per epoch: (A) training accuracy, (B) validation accuracy.

Figure 7. Loss per epoch: (A) training loss, (B) validation loss.

Next, we present the number of trainable parameters for each CNN architecture used
in the experiments. As shown in Table 4, InceptionV3 and ResNet50 are the heaviest ones
with 21–23 M parameters to be updated. In contrast, MobileNetV2 has the smallest number
of trainable parameters (∼2.2 M), while DenseNet121 and EfficientNetB2 have 6.7 M and
7.7 M parameters, respectively. Taking into account the number of trainable parameters
and classification accuracy, it can be inferred that DenseNet121 would be the best choice
for a single CNN model considering that it can provide both moderate model size as well
as high effectiveness.

Table 4. Number of trainable parameters.

Model
Degree of Fine-Tuning

All Weights Freeze the First
25% Layers

DenseNet121 6,957,956 6,716,740

MobileNetV2 2,228,996 2,197,060

EfficientNetB2 7,706,630 7,700,858

InceptionV3 21,776,548 21,348,836

ResNet50 23,542,788 23,315,972
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4. Discussion
4.1. Performance of Deep-Learning-Based Approaches

First, we discuss the effectiveness of each model for automatic cancer cell taxonomy.
As summarized in Table 2, all the traditional machine learning approaches failed to achieve
superior performance in terms of all the metrics. Specifically, the machine learning methods
showed an average accuracy of 49.39%, which is not practical for real-world situations.
The SVM classifier yielded the best accuracy of at most 58.7%, which reveals a significant
gap between the ML approach and deep learning approaches. Considering that traditional
approaches generally utilize a set of classic hand-crafted features, their low performance
implies that they are no longer cost-effective. Table 2 also shows that the introduction of
deep learning approaches resulted in a significant performance improvement compared to
the traditional methods. Moreover, we could observe that the proposed ensemble approach
was more effective than individual CNN models for the classification of cancer cells, which
was statistically significant (p < 0.001). These results imply that CNN models can be
effectively applied to the domain of cancer cell microscopic images and can deliver superior
performance in the classification of cell types.

On the other hand, Tables 2 and 4 suggest interesting points regarding the relationship
between the classification performance and the model size. It is worth noting that the
number of trainable parameters did not significantly affect classification accuracy in the case
of our domain. For example, the performance of MobileNetV2 with 2 M parameters and
InceptionV3 with 21 M parameters did not show a significant difference (i.e., 95.412% from
MobileNetV2 and 95.57% from InceptionV3). Moreover, single-arch ensemble approaches
based on MobileNetV2 and InceptionV3 yielded similar classification accuracies of 96.533%
and 96.342%, respectively.

4.2. Network Design Choice

In this section, we discuss how the different design choices of each hyper-parameter
affect the overall performance in terms of the accuracy of the individual CNN models. The
statistical significance based on Wilcoxon Signed-Rank test for each network design choice
is depicted in Figure 8 with star marks (* (p < 0.05), ** (p < 0.01), and *** (p < 0.001)).

Optimizer: First, the difference in classification accuracy between the model with the
SGD optimizer and the model with the AdaGrad optimizer is presented. As shown in
Figure 8A, an optimal choice that worked best for all networks was non-existent. Regardless
of the optimizer used, DenseNet121 and InceptionV3 performed equivalently. MobileNetV2
performed better with the SGD optimizer, while EfficientNetB2 and ResNet50 benefited
from the use of the AdaGrad optimizer. Therefore, in this domain, an optimizer should be
considered based on the type of CNN architecture.

Data augmentation: Second, the effects of the use of data augmentation on the overall
performance are presented. In contrast to the use of optimizers, the use of data augmenta-
tion significantly affects the overall performance of individual CNN models. As shown in
Figure 8B, it is obvious that applying data augmentation improves the classification accu-
racy of all types of networks (p < 0.001). Specifically, the networks with data augmentation
achieved an average of 2.85%p higher classification accuracy when compared to those
without data augmentation.

Learning rate scheduler: Third, the possible effects of the use of a learning rate
scheduler on the performance are discussed. As presented in Figure 8C, it is clear that
there is no significant difference in performance between the models with and without the
learning rate schedulers. The results indicate that (i) the use of a learning rate scheduler
does not significantly affect the performance and (ii) the default choice (0.001) is adequate
to achieve high performance.
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Figure 8. Network design choices (the statistical significance is represented using * (p < 0.05),
** (p < 0.01), and *** (p < 0.001)): (A) optimizer, (B) data augmentation, (C) learning rate scheduler,
(D) degree of fine-tuning.

Fine-tuning: Next, the performance difference between the models trained by updating
all weights and the models trained by freezing the first 25% layer and updating just the rest
is examined. As shown in Figure 8D, DenseNet121 (p < 0.001), InceptionV3 (p < 0.001), and
ResNet50 (p < 0.05) showed significant differences while the performances of MobileNetV2
and EfficientNetB2 were not affected by the degree of fine-tuning.

Ensemble: Finally, the possible effects of selection criterion of the ensemble pipeline on
the performance of the ensemble prediction are discussed. We first show the difference in
performance of the single-arch ensemble approach according to the ensemble configuration.
As mentioned in Section 2.4, the single-arch ensemble pipeline can be built using the top-4,
top-8, and top-16 models from the same CNN architecture. Figure 9A summarizes the effect
of the ensemble configuration on the classification accuracy of the single-arch approach.
The result implies that the performance degrades when more networks are involved. Every
network showed a similar pattern, where the top-4 or top-8 configuration resulted in the
best performance. Basically, the diversity of each base model is important to establish
a successful ensemble pipeline. In the case of the single-model approach, the diversity
of the base model is relatively low, even though we applied different training strategies,
because the base architecture is the same. Therefore, adding more models in this case just
resulted in the inclusion of poor models (low-ranked ones), thereby adversely affecting
the overall performance. More details on the classification accuracy of each single-arch
ensemble approach are presented in Table S3 in the Supplementary Data. In contrast, the
multi-arch ensemble pipeline can be built using the top-1, top-2, and top-3 configurations
from all types of CNN architectures. Figure 9B shows that the performance of the multi-arch
ensemble approach improves as more networks are included in the ensemble. In contrast
to the single-arch ensemble approach, the diversity of the models included in the multi-
model ensemble is relatively high because their base network architecture and training
strategies are totally different. By adding more models in this case, we can include top-
performing models with different architectures, thereby increasing the model diversities
of the ensemble which can contribute to performance improvement. Finally, Table S4 in
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the Supplementary Data summarizes a fold-wise classification accuracy of the multi-arch
ensemble approach.

4.3. Comparison with Previous Studies

Representative CNN studies related to the classification of cancer cells are summarized
in Table 5, which shows that our proposed method may provide advantages over the above-
mentioned studies. Since the Papanicolaou (Pap) smear test is one of the most essential
screening methods for cervical cancer detection [60], it commonly appeared in datasets in
the related research [58,61–65]. Despite this popularity, the image acquisition procedure
of a Pap smear or a Hematoxylin and Eosin (H&E) stained sample is a labor-intensive
and time-consuming process which relies on expert cytologists [58,59,61–65]. In addition,
expensive and specialized equipment such as low-coherence off-axis holography [33] or
confocal immunofluorescence microscopy [38] is often used to acquire the images, but
there is a lack of sufficient datasets to be faced. On the other hand, the strengths of our
proposed method include the use of bright field images of the cancer cells from cell culture
flasks obtained through the low-scale benchtop optical microscopy that is typically used
in laboratories. The other advantage of our method is that it requires no additional wet
bench work using fluorescent/staining dyes or biochemical markers. Since the annotated
cancer cell lines used in this study were provided directly from cell line provider Korean
Cell Line Bank (Seoul, Korea) and cultured in different flasks for each cell line, the training
dataset for each cell line serves as the ground truth. Finally, a relatively simple and fast
preparation procedure enables researchers to create a large number of datasets for multiple
cancer cell lines in their own use. Quantitatively, among the related studies that used the
specialized imaging systems, Rubin et al. [33] obtained a maximum accuracy of 90–99%
and Oei et al. [38] attained an accuracy of 97.2%. Other studies based on images with
staining [58,61–65] reported accuracies of 82.9–96.73%.

Figure 9. Performance change according to the ensemble configuration: (A) single-arch ensemble,
(B) multi-arch ensemble.

Our proposed method achieved a test accuracy of 97.735%, a precision of 97.74, and
a recall of 97.74. From these comparisons, it can be inferred that our proposed method
outperforms the other classification of cancer cells studies, even though the prepared cancer
cell images used in training and evaluation steps require no additional biochemical staining
process or expensive image acquisition system compared with these previous studies.
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Table 5. Comparison with previous studies (“CNN” denotes “Convolutional Neural Network”, “GAN” denotes “Generative Adversarial Network”, “ML” denotes
“Machine Learning”, “ANN” denotes “Artificial Neural Network”, “GA” denotes “Generic Algorithm”).

Ref. Task Image Acquisition Method Num. of Classes Metric Performance Feature

Rubin et al. [33] Cancer cell classification Low-coherence off-axis
holography without statining GAN-based approach

4 classes (healthy skin, melanoma cells,
colorectal adenocarcinoma colon cells,

metastatic colorectal
adenocarcinoma cells)

Accuracy 90–99% CNN feature

Oei et al. [38] Breast cancer cell detection
Confocal immunofluorescence

microscopy images with
staining

CNN 2 classes (breast normal cells and
cancer cells) Accuracy 97.2% CNN feature

Kumar et al. [59] Cervical cancer cell detection Microscopic biopsy images with
staining

RF, SVM, KNN, fuzzy
KNN 2 classese (noncancerous, cancerous) Accuracy 92.19%

Texture features,
morphology and
shape features,
HOG, wavelet
features, etc.

Shi et al. [61]

Cervical cancer cell classification Microscopic images of Pap
smear slides with staining

Graph neural network

5 types of cervical cancer cells
(superficial–intermediate, parabasal,

koilocytotic, dyskeratotic, and
metaplastic cells)

Accuracy 94.93% CNN feature

Sophea et al. [58] HOG + SVM 2 classes (normal and abnormal) Accuracy 94.7% HOG

Chankong et al. [62] Bayes, LDA, KNN,
ANN, SVM 7 classes (superficial squamous,

intermediate squamous, columnar,
mild dysplasia, moderate dysplasia,

severe dysplasia, and carcinoma
in situ)

Accuracy 93.78%
Hand-crafted

features (area of
cucleus, nucleus-to-

cytoplasm
ratio, etc.)

Sharma et al. [63] KNN Accuracy 82.9%

Gençtav et al. [64] Bayesian, decision tree,
SVM Precision 91.7%

Marinakis et al. [65] GA Accuracy 96.73%

Our proposed
method Cancer cell classification Microscopic images of cell

culture flask without staining CNN ensemble 4 classes of cell culture flask (HeLa,
MCF-7, Huh7, and NCI-H1299) Accuracy 97.735% CNN feature
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5. Conclusions

In this paper, we presented deep-learning-based approaches for the classification
of the type of microscopic cancer cell images. We constructed a framework to exploit
individual and ensemble CNN pipelines to solve a four-class classification task. The
experimental results validated the feasibility of the proposed approach. Specifically, all
the CNN models achieved a high classification accuracy of 96.07 (±0.58)%, outperforming
traditional machine learning classifiers. In particular, the ensemble approach with a multi-
arch strategy achieved the best results, with an accuracy of 97.735%, validating the feasibility
of the proposed framework. Moreover, our experimental results indicate that the network
design choice and ensemble configuration can affect the overall performance. The results
indicated that (i) AdaGrad optimizer is helpful to boost up the performance of EfficientNet-
B2 (p < 0.01) and RestNet-50 (p < 0.01), (ii) data augmentation is always useful for all the
networks (p < 0.001), (iii) the use of a learning rate scheduler does not make a significant
performance difference, and (iv) only DenseNet121 and InceptionV3 benefit from the
fine-tuning of all weights rather than freezing part of a network (p < 0.001). Based on the
experimental results, we believe that the proposed method can reduce the cost of identifying
cancer cells, and even users without expertise can identify cell types. Furthermore, our
approach does not require expensive equipment and can identify cross-infection among
cancer cells using low-scale benchtop microscopy without any additional bench work.

However, additional studies are still required to overcome the limitations of our
current approach.

First, four types of cancer cell lines with high mortality were selected to perform label-
free cell classification in this study. The annotated cancer cell lines used in this study were
provided directly from the official cell line provider, and the same type of cancer cell line
was cultured in the individual flask. In other words, pathologically trained experts are not
required for validating the test dataset and additional wet bench work to classify cell types.
Thus, a relatively simple and fast validation procedure enables us to shorten the preparation
time and provide a cost-effective analysis method. On the contrary, randomly mixed cancer
cell lines in a single flask may be considered a more realistic model, and it increases the role
of the pathologist to validate or identify cell types through fluorescent staining or an H&E
staining procedure. Therefore, we plan to apply the proposed framework to mixed-cell
images obtained from a single culture flask to provide more practical solutions.

Second, more advanced classification and prediction methods will be required to
address various clinical tasks under the aforementioned environments. For example, a
transformer architecture, which was very effective for natural language processing tasks, is
now widely applied to the computer vision tasks due to its robust and scalable learning
capabilities [66–68]. In addition, researchers have recently proposed various applications
based on self-supervised learning techniques in the computer vision domain and demon-
strated effective learning of underlying image representations [69–71]. It is also expected
that adopting the recent advances in deep learning for computer vision tasks will help in
addressing various challenging tasks in the medical domain.

Finally, even though we achieved a higher classification accuracy using ensembles of
multiple deep learning architectures with different training strategies, the computational
and storage cost required for our models could be another kind of burden for practical use.
Therefore, our future work will also focus on improving the computational efficiency as
well as classification accuracy by adopting the recent advances in deep learning techniques,
for example, knowledge distillation [72,73] from multiple teachers.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14092224/s1, Table S1: Pseudo code of the image prepro-
cessing step, Table S2: Fivefold cross-validation accuracy of each CNN model with each network
configuration, Table S3: Classification accuracy of each single-arch ensemble approach, Table S4:
Classification accuracy of the multi-arch ensemble approach, Figure S1: Confusion matrix of each
individual CNN model with the best-performing configuration.

https://www.mdpi.com/article/10.3390/cancers14092224/s1
https://www.mdpi.com/article/10.3390/cancers14092224/s1
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