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Abstract: This paper addresses the problem of real-time model predictive control (MPC) in the
integrated guidance and control (IGC) of missile systems. When the primal-dual interior point
method (PD-IPM), which is a convex optimization method, is used as an optimization solution
for the MPC, the real-time performance of PD-IPM degenerates due to the elevated computation
time in checking the Karush–Kuhn–Tucker (KKT) conditions in PD-IPM. This paper proposes a
graphics processing unit (GPU)-based method to parallelize and accelerate PD-IPM for real-time
MPC. The real-time performance of the proposed method was tested and analyzed on a widely-
used embedded system. The comparison results with the conventional PD-IPM and other methods
showed that the proposed method improved the real-time performance by reducing the computation
time significantly.

Keywords: graphics processing unit; primal-dual interior point method; model predictive control;
real-time systems; integrated missile guidance and control

1. Introduction

When evaluating the performance of a missile system, its guidance and control sys-
tem is the main factor to be considered. Traditional guidance laws, such as proportional
navigation guidance law, generate acceleration commands under the given target-missile
kinematics. The commands are followed by an autopilot system that generates actuator
commands to achieve the desired acceleration. In general, guidance and control are de-
signed separately without considering interactions between the two systems. Although
a separated design principle has proven to be reliable and effective over the decades, the
method shows degradation in combined response compared to the separated conditions.
This is because traditional guidance laws cannot guarantee optimal characteristics under
autopilot lags and dynamic constraints. In [1], for example, the circular navigation guidance
law that theoretically promises zero miss-distance was proposed. Although their method
showed a robust performance even under uncertain autopilot models, its performance has
been inevitably constrained by autopilot and dynamic response.

Integrated guidance and control (IGC) design concept has been considered as an
alternative to solve the afore-mentioned issues. An IGC design is a single system that
performs the role of both guidance and control, generating fin commands based on mis-
sile and target states. Since control commands are designed considering the interaction
between guidance and control loop, IGC has the potential to enhance missile performance.
Additionally, it is helpful to reduce the number of iterations and costs for the entire design
process. To perform IGC, various control techniques are introduced. From classical control
techniques to various nonlinear control techniques, including feedback linearization [2],
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sliding mode control [3,4], backstepping control [5], dynamic surface technique [6–8], and
optimization-based methods [9] have been applied to solve the problem. Shima et al. [3]
proposed a sliding mode control (SMC)-based IGC, enhancing the robustness of overall
systems. Shtessel and Tournes [4] extended the research to a higher-order SMC to attenuate
the chattering problem for dual control missiles. In [6], Hou and Duan utilized dynamic
surface control (DSC) for the IGC problem under unmatched uncertainties. The DSC-based
IGC technique is expanded by Liang et al. [7], with the additional consideration of input
saturation. Kim et al. [9] proposed an explicit solution of finite time-varying state feedback
control with a feedforward term.

Of many optimization-based methods, the Model Predictive Control (MPC) technique
has been thought to be a powerful solution for IGC [10–15]. Compared to the other control
techniques utilized in the previous research [2–9], online MPC provides the optimal solution
within certain state constraints. MPC produces a control input that minimizes the objective
function specified on the receding prediction horizon. The technique repeatedly solves
the finite horizon open-loop optimal control problem and implements it in the form of
closed-loop control. It can be applied not only to linear time-invariant systems, but also
to multivariable, time-varying nonlinear systems [16]. In general, the optimal control
problem is a quadratic programming (QP) problem. As it is an explicit solution to the
time-varying state feedback form, it is easy to be adopted on-board. Additionally, MPC has
the advantage of being able to set state and output constraints. Especially for the missile
terminal guidance phase, the acceleration limit and seeker field-of-view (FOV) are crucial
constraints caused by the finite maneuver capacity and seeker’s image plane. It is essential
to consider these limits as inequality constraints in the optimization problem. Considering
the advantages, MPC is a suitable control technique for terminal homing guidance.

Despite its outstanding performance, applications of online MPC have been limited
to slow dynamic systems because of computational bottlenecks. The issue is mainly
caused by the optimization process that requires excessive computational capacities. To
ease the problem, various studies on optimization algorithms and acceleration methods
are conducted. In particular, convex optimization algorithms have been considered as
a conductive solution for their computational efficiency and parallelizable characteristic.
Gradient-based convex optimization techniques, such as the alternating direction method
of multipliers (ADMM) [17–19], primal-dual interior point method (PD-IPM), parallel
quadratic programming (PQP) [20,21], and active set method (ASM) [22–24], are employed.
In this work, PD-IPM [24,25], which is the most commonly used technique for convex
optimization, is applied. PD-IPM is developed using the Newton direction of the optimality
conditions for the logarithmic barrier problem. The method simultaneously updates primal
and dual variables by setting a residual function. Compared to ASM and PQP, PD-IPM
requires a smaller number of iterations to reach the desired convergence level [26,27].
Additionally, the PD-IPM technique satisfies strict interior point feasibility by adopting a
backtracking line search. This eases the constraint that the initial point must be feasible.

However, despite the high efficiency of PD-IPM, MPC for the IGC problem needs
further improvements for real-time implementation. As the dynamics of the missile and
target show fast responses, the update rate-of-control command should be large enough
for stability and to yield a smaller miss distance [28]. Furthermore, the large size of the
prediction horizon is required for precise interception performance. Consequentially, the
optimization process in MPC for IGC demands frequent operations of multiplication and
inversion for large-sized matrix. For this reason, we adopt the parallel design for real-time
GPU implementation. Research on accelerating the PD-IPM is conducted, as shown in
Table 1. Even though there is limited research [29–36] that deals with the real-time problem
of PD-IPM, it focuses on the acceleration of the linear equation solver part of PD-IPM.
However, except for the linear equation solver part, we found that the KKT condition
construction part also requires considerable computation time. Moreover, there is no
related work that applies the PD-IPM to IGC systems.
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Table 1. Works related to the acceleration of PD-IPM.

Related works Target Device MPC Parallelization Part IGC Application

[29] GPU # Linear equation solver ×
[30–34] GPU × Linear equation solver ×

[35] GPU × None ×
[36] FPGA # Linear equation solver ×

In this paper, we propose a GPU-accelerated PD-IPM method, which is conducted
in MPC for real-time IGC systems, which parallelizes the KKT condition construction
part to reduce the computation time of the PD-IPM. A series of complex matrix opera-
tions are performed on the KKT condition construction. The proposed method transforms
these complex matrix operations into easier forms in the context of parallelization. Then,
the transformed matrices are reformed to sparse matrices. Finally, parallelization is con-
ducted with the sparse matrices through both built-in and customized CUDA kernels. The
contributions of this paper are as follows.

• This is the first approach to accelerate missile MPC on GPU.
• The problem of considerable computation time in the KKT condition construction part

of PD-IPM is firstly addressed and analyzed.
• A new parallelization method is developed for the KKT condition construction part

of PD-IPM.
• The computation time for PD-IPM is significantly reduced, even considering the

overhead time for the CUDA (Compute Unified Device Architecture) initialization on
a widely-used embedded system.

The remainder of this paper is organized as follows. Section 2 describes the opti-
mization problem of the IGC system and MPC with PD-IPM to solve it. Additionally,
the real-time problem of PD-IPM is addressed. In Section 3, after computation times for
PD-IPM are profiled in a block-wise manner, a new parallelization method for the KKT
condition construction part of PD-IPM is proposed. In Section 4, the evaluation results of
the proposed method are shown and quantitatively compared with other methods on a
widely-used embedded system. Finally, Section 5 presents the conclusions.

2. Problem Description

For the IGC problem, we considered missile terminal homing phase geometry in a
two-dimensional plane. Figure 1a depicts planar homing engagement geometry, where
the subscripts m and t denote the missile and target. Reference coordinate system X–Z
is centered at the missile’s center of gravity; initial target position T0 and deviated target
position T1 are defined on the reference coordinate. Initial line-of-sight (LOS) angle λ0,
LOS angle displacement from initial LOS frame λ, and range-to-go R are also represented.
Missile acceleration, velocity, and flight-path angle are denoted by am, vm, γ, respectively.
Relative displacement zm is defined as a normal distance between the target position and
initial LOS. In Figure 1b, the seeker look angle σm, angle of attack αm, and body-fixed
coordinate system xb are denoted. Reference coordinate frame XL0–ZL0 is the initial LOS
frame whose origin is also located at the missile’s center of gravity. It is assumed that, in
the terminal homing phase, the distance between the missile and target is small enough so
that linearization can be performed on the initial LOS frame. Additionally, missile velocity
is assumed to be constant.

The main objective of terminal homing is actuating the missile to intercept the target
under the finite maneuver capacity and seeker look-angle limit. In addition, based on the
previous study [13], the look-angle rate is limited in bound to prevent image distortion and
signal intensity reduction problems. With the acceleration limit amax, look-angle limit σmax,
and look-angle rate limit

.
σmax, the constraints can be expressed as follows:

−amax ≤ am ≤ amax,−σmax ≤ σm ≤ σmax,− .
σmax ≤

.
σm ≤

.
σmax (1)
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Figure 1. Missile terminal homing phase geometry in a two-dimensional plane (a) Planar engage-
ment geometry; (b) engagement geometry defined on initial LOS frame. 
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Figure 1. Missile terminal homing phase geometry in a two-dimensional plane (a) Planar engagement
geometry; (b) engagement geometry defined on initial LOS frame.

2.1. Augmented Model for Integrated Guidance and Control

Considering the missile short-period dynamics, kinematics, and actuator dynamics,
augmented continuous equations for IGC are given by [9,12,13]

.
δm.
αm.
qm.
γm.
zm


︸ ︷︷ ︸

.
x

=


−ωa 0 0 0 0
Zδ Zα 1 0 0
Mδ Mα Mq 0 0
−Zδ −Zα 0 0 0

0 0 0 υm 0


︸ ︷︷ ︸

A


δm
αm
qm
γm
zm


︸ ︷︷ ︸

x

+


ωa
0
0
0
0


︸ ︷︷ ︸

B

δc︸︷︷︸
u

(2)

where qm is pitch rate, δc is control fin command, and δm is actuator response. Zδ, Zα, Mδ,
Mα, Mq, Zδ and Zα are aerodynamic dimensional derivatives. The actuator dynamics are
modeled as a 1st-order lag system with time constant 1/ωa.

Equation (2) is characterized by its input and state variables. Compared to conven-
tional guidance and control design, augmented equations for IGC simultaneously consider
target-missile kinematics and dynamics. For simplicity, state variable vector and input
are represented as x, u. System and input matrices are denoted as A ∈ R5×5, B ∈ R5×1.
Equation (2) is discretized with sampling interval ∆t.

xk+1 = Axk + Buk (3)

System and input matrices of the discretized equation are A = e∆tA, B =
(∫ ∆t

0 eτAdτ
)

B,
respectively. The notation k represents sampling time step.

As mentioned above, control input u should be generated within the extent that it does
not violate the restrictions. Inequality constraints defined in Equation (1) are linearized and
expressed in matrix form [12,13]. As shown below, linearized matrix Ck is time-varying. Rk
is range-to-go in kth time step.

vmZδ vmZα 0 0 0
−vmZδ −vmZα 0 0 0

0 −1 0 −1 1/Rk
0 1 0 1 −1/Rk
0 0 −1 −vm/Rk −(vm + vt)/R2

k
0 0 0 vm/Rk (vm + vt)/R2

k


︸ ︷︷ ︸

Ck


δm
αm
qm
γm
zm


︸ ︷︷ ︸

x

≤



amax
amax
σmax
σmax.
σmax.
σmax


︸ ︷︷ ︸

d

(4)

Rk = R0 − k(vm + vt)∆t (5)
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Overall, the optimization problem for MPC-based IGC is formulated as follows:

minimize u0, · · · , uN−1 ∑N−1
k=0

(
xT

k Qkxk + uT
k Rkuk

)
+ xT

NQN xN

subject to xk+1 = Axk + Buk + b

Ckxk ≤ d

(6)

where N =
(

t f − t0

)
/∆t is the size of finite horizon, and Qk ∈ R5×5 and Rk ∈ R are

weightings for state variable and input. As all the equations of dynamics and constraints
in Equations (3) and (4) are linear, a basic linear MPC framework is adopted. Equation (4)
can be transferred into a single-term quadratic problem by introducing new variable
y =

[
uT

0 , xT
1 , uT

1 , xT
2 , · · · , uT

N−1, xT
N
]
.

minimize y yTΨy

subject to Ãy = B̃, C̃y ≤ D̃
(7)

Ψ =


R0

Q1
. . .

RN−1
QN

, Ã =


B −I

A B −I
. . .

A B −I



C̃ =


0 C1

. . .
0 CN−1

0 CN

, B̃ =


−Ax0

0
...
0

, D̃ =


d
d
...
d


(8)

2.2. The Problem of PD-IPM for Real-Time MPC

MPC relies on the real-time solution of a convex optimization problem. The optimiza-
tion problem in Equation (8) should be defined and computed at every calculation time. To
solve the problem, the Primal-Dual Interior Point Method (PD-IPM) was applied, as shown
in Algorithm 1. According to the expressions defined in Equations (7) and (8), Algorithm 1
presents a flow chart of PD-IPM for solving a given optimization problem. PD-IPM is one
of the most famous algorithm to solve the convex optimization problem. The algorithm
alleviates inequality constraints using barrier function and minimize residuals based on
perturbed KKT conditions. It attains Newton step computations in every iteration.

In the whole IGC process, the PD-IPM in MPC requires the most computation time
because the PD-IPM repeatedly conducts matrix operations until the cost converges. There-
fore, the PD-IPM needs to be highly accelerated to be applied to real-time MPC in the
IGC process.

Algorithm 1. Primal-Dual Interior Point Method [24].

Choose µ ∈ (0, 1), α ∈ (0, 1), y0 > 0, u0 > 0, v0 > 0, ε > 0
K: maximum iteration, f0(y) = yTΨy

while − f
(

yk
)T

uk > ε or
(
‖rprim‖2

2 + ‖rdual‖2
2

)1/2
> ε

// Find update direction by solving Newton Step

compute f
(

yk
)
= C̃yk − D̃

solve

∇
2 f0(y) + ∑

i=1
ui∇2 fi(y) ∇ f (y) ÃT

−diag(u)∇ f (y)T −diag( f (y)) 0
Ã 0 0


∆yk

∆uk

∆υk

 = −

rdual
rcent
rprim
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Algorithm 1. Cont.

θ = min
(

1, min
(
−ui

k/∆ui
k : ∆ui

k < 0
))

// Backtracking Line Search to find θ

while ‖r
(
y+, u+, v+

)
‖ > (1− αθ)‖r(y, u, v)‖

y+ = yk + θ∆yk, u+ = uk + θ∆uk, v+ = vk + θ∆vk

compute f+ = C̃y+ − D̃, r+dual , r+prim, r+cent
θ = αθ

// Primal-Dual Update(
yk+1, uk+1, vk+1

)
:=
(

yk + θ∆yk, uk + θ∆uk, vk + θ∆vk
)

3. Proposed Method
3.1. Overview of the Proposed Method

As shown in Figure 2, the PD-IPM algorithm applied to this application is divided
into four parts: (1) calculate residues, (2) construct modified KKT matrix, (3) calculate
search direction, and (4) backtracking line search. To improve the computation speed of the
algorithm, we measured the computation time for each part of PD-IPM and proposed a
method of partially accelerating the parts that required improvements.
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3.2. Computation-Time Profiling

Computation-time measurements for each part were performed in Nvidia Jetson
Xavier NX (20W 6CORE mode), and the results are summarized in Table 2, showing that
the construct modified KKT condition and calculate search direction parts take more time
than the other two parts. In addition, detailed computation times for these two parts were
measured, and the results are shown in Tables 3 and 4, respectively.

Table 2. The computation time for each part of PD-IPM.

Part Computation Time (ms)

Calculate residue 287.285
Construct modified KKT condition 1202.956

Calculate search direction 1612.328
Backtracking line search 352.767

Table 3. The computation time for each process of construct modified KKT condition.

Part Computation Time (ms)

Convert dense matrix to sparse matrix 78.513
Sparse matrix multiplication 695.494

Construct modified KKT matrix 321.575
etc. 108.922

Table 4. The computation time for each process of calculate search direction.

Part Computation Time (ms)

Convert dense matrix to sparse matrix 187.086
Solve linear equation 1425.109

First, Table 3 shows that the sparse matrix multiplication process and construct modi-
fied KKT matrix process take a lot of time in the construct modified KKT condition part.
Therefore, we set these two parts as parallelization sections and accelerated them to im-
prove the performance. Next, Table 4 shows that the solve linear equation process takes
a lot of time in the calculate search direction part. This process is implemented with the
SparseLU class in the Eigen library to solve a linear equation using Sparse LU (Lower–
Upper) Decomposition. We simply replaced this process with the CUDA cusolver library.

3.3. Parallelization Based on CSR and CSC

The modified KKT matrix is obtained through the following matrix operation:

S =
1
2

([
2P− ATB CT

C 0

]
+

[
2P− ATB CT

C 0

]T
)

(9)

where S is the modified KKT matrix, P is the covariance matrix, A is the inequality constraint,
C is the equality constraint matrix, and B is the matrix calculated from the penalty function
and equality constraint matrix. To make it easier to compute in parallel, Equation (9) can
be simplified as follows.

S =

[
P + PT − 1

2
(

ATB
)
− 1

2
(

ATB
)T CT

C 0

]
(10)

Then, we divide the top-left sub-matrix of matrix S into Equations (11) and (12).

D = −1
2

(
ATB

)
(11)
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M = P + PT + D + DT (12)

Matrices A and B are large matrices of sizes of about 600 × 600. The multiplication of
such a large matrix takes a long time to complete. However, if the matrix contains many
zero elements, it can be converted to a sparse matrix to reduce unnecessary operations and
the computation time. The Compressed Sparse Row (CSR) and Compressed Sparse Column
(CSC) are commonly used formats for sparse matrices, and the conversion exam-ples are
shown in Figure 3, respectively. For the CSR format, the accumulated number of non-zero
data per row is stored in the ptr array, the column index of non-zero data is stored in the
index array, and the element is stored in the data array. As a result, three one-dimensional
arrays are created. The CSC format is converted similarly to the CSR format, except that the
row changes into a column. As the conversion example shows, the CSR format uses row-
wise indexing, whereas the CSC format uses column-wise indexing. Additionally, in matrix
multiplication, since the left and right matrices are accessed row-wise and column-wise,
respectively, we applied CSR and CSC formats to the left and right matrices, respectively,
to increase the matrix access speed. In addition, for a faster operation, sparse matrices A
and B are sorted, and matrix A is transposed in advance for the convenience of calculation.
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The parallelization algorithm of Equation (11) is shown in Algorithm 2. Ad is the
non-zero element of matrix A, Ai is the column index for non-zero elements of matrix A,
and Ap is the cumulative number of non-zero elements for each row of matrix A. Bd is a
non-zero element of matrix B, Bi is the row index for non-zero elements of matrix B, and Bp
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is the cumulative number of non-zero elements for each column of matrix B. Additionally,
the result matrix D is stored as a dense matrix.

The parallel sparse matrix multiplication algorithm shown in Algorithm 2 works as
follows. First, a two-dimensional thread is created equal to the size of matrix D, and the
algorithm is executed in parallel (Line 1). The non-zero elements of row r of matrix A
are compared with the non-zero elements of column c of matrix B, and multiplication
is performed when the column index of matrix A is equal to the row index of matrix B
(Lines 7–8). If the row index of matrix B is greater than the column index of matrix A, it
means that there is no element with the same index because the matrix is sorted, so the
loop is terminated (Lines 5–6). After all the loops are finished, the sum variable, in which
the multiplication of the (r, c) element is stored, is calculated to satisfy Equation (11), and
finally stored in D (Line 12).

The parallelization algorithm of Equation (12) is shown in Algorithm 3, and the matrix
M is calculated using the covariance matrices P and D, which is calculated in the parallel
sparse matrix multiplication algorithm. The parallel construct modified KKT matrix (top-
left sub-matrix) algorithm shown in Algorithm 3 works by adding elements of matrices P
and D, and their transpose matrices in parallel (Line 2).

Algorithm 2. Parallel Sparse-Matrix Multiplication

Input
* CSR format matrix A(data: Ad, col index: Ai, row ptr: Ap)
* CSC format matrix B(data: Bd, row index: Bi, col ptr: Bp)
* Sparse matrices A, B must be sorted.

Output Dense matrix D(D)
1. all D(r, c) do, in parallel:
2. sum ← 0
3. for i← Ap(r) to Ap(r + 1) do:
4. for j← Bp(c) to Bp(c + 1) do:
5. if Ai(i) < Bi(j) then:
6. break
7. else if Ai(i) = Bi(j) then:
8. sum ← sum+Ad(i) ∗ Bd(j)
9. end if
10. end for
11. end for
12. D(r, c)← −sum/2
13. end

Algorithm 3. Parallel Construct Modified KKT Matrix (top-left sub-matrix)

Input Dense matrix P(P), dense matrix D(D)
Output dense matrix M(M)
1. all M(r, c) do in parallel:
2. M(r, c)← P(r, c) + P(c, r) + D(r, c) + D(c, r)
3. end

4. Results
4.1. Simulation Results

Numerical simulation was performed to compare the computation time. For compari-
son, terminal homing engagement was assumed. The size of the finite horizon was 1 s, with
a sampling time of 0.01 s. Aerodynamic coefficients of missile were set as Zδ = −0.2105,
Zα = −3.1316/s, Mδ = 160/s2, Mα = −234/s2, Mq = −5/s. The constant velocities of
missile and target were υm = 380 m/s and υT = 380 m/s. Fin actuator response was
modeled with ωa = 100/s. The initial-state variable of the missile was set to γm0 = 2
deg, zm0 = 20 m. Inequality constraint parameters were amax = 10 G, σmax = 5 deg, and
.
σmax = 20 deg/s.
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Figure 4 shows the single-step simulation results obtained under given design param-
eters. The optimization problem in Equations (7) and (8) were solved using PD-IPM. The
red dotted line on the graph represents the given constraints of acceleration, seeker look
angle, and look-angle rate. It is shown that the target was successfully intercepted within
the given limitations.
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4.2. Results of Algorithm Acceleration with GPU

The test was conducted in Nvidia Jetson Xavier NX (20W 6CORE mode), and par-
allelization was implemented through CUDA 10.2. We compared the following four
implementations: (1) CPU only; (2) CUDA dense: The matrix multiplication section was
implemented and parallelized as dense-matrix multiplication; (3) CUDA SpMM: the matrix
multiplication section was implemented and parallelized as sparse-matrix multiplication
using the csrgemm (CSR × CSR) function in CUDA cusparse library, and (4) ours.

Figure 5, Table 5 show the computation time comparison results for the construct
modified KKT condition part, and Figure 6, Table 6 show the computation time comparison
results for the entire application. In the solve linear equation part, the CPU only was
applied with the Eigen library, and the other three methods were improved using the
cusolverSpcsrlsvluHost function of the CUDA cusolver library. The CUDA initialization
delay is a delay that occurs when calling the CUDA API and initializing the GPU. Therefore,
it occurs only once during the entire application runtime and is not directly related to
the algorithm.

4.3. Analysis

First, Figure 5 and Table 5 show that the CUDA dense and CPU only have almost the
same performance. This indicates that parallelizing dense-matrix multiplication makes no
sense, since the matrices are very sparse. The CUDA SpMM using the unsorted CSR × CSR
multiplication showed about twice the performance compared to the CPU only. However,
due to the use of a heavy library, cusparse, there was a long delay problem of the CUDA
initialization. On the other hand, our proposed method, Ours, uses CSR × CSC multipli-
cation to improve row and column access speed. Additionally, the CUDA initialization
delay is less than the CUDA SpMM because it does not use any additional libraries. As a
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result, the performance was about 4 times faster than the CPU only, and even including the
CUDA initialization delay, the performance was about 3 times faster.
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Table 6. The computation time comparison results of the entire application.

Part
Computation Time (ms)

CPU only CUDA Dense CUDA SpMM Ours

CUDA initialization delay - 1234.11 2580.534 1213.339
Others 673.505 714.613 701.644 687.447

Solve linear equation 1612.328 332.588 325.038 325.44
Construct modified KKT condition 1202.956 1141.699 473.369 293.119

Total 3488.789 3423.01 4080.585 2519.345
without CUDA initialization delay 3488.789 2188.9 1500.051 1306.006

Next, Figure 6 and Table 6 show that the performance of the solve linear equation part
in the CUDA dense, CUDA SpMM, and Ours was improved by using the CUDA cusolver
library function. However, since the cusolver library is heavy, the CUDA initialization delay
increased accordingly. Compared to the CUDA only, the proposed method performed
about 2.7 times faster and about 1.4 times faster when the CUDA initialization delay
was included.

4.4. Discussion

In this paper, we focused on the parallelization of construct modified KKT condi-tion
part in a PD-IPM solver. As shown in Table 2, the construct modified KKT condition part
is not the most time-consuming part of the entire computation process. However, it is
the part where the efficiency of the parallel operation can be maximized because most
of the operations that the construct modified KKT condition part contains are fixed-size
sparse-matrix operations.

According to the first result, as shown in Figure 5, our method is more efficient for
embedded systems. In general, the CUDA initialization delay does not occupy a large part
of the computation time in the desktop environment. However, in an embedded device
with a relatively low performance, this delay may take more time than the computation
time of the algorithm. In fact, the CUDA SpMM method presented this problem. Our
method is suitable not only for desktops, but also for embedded devices because of the short
delay. The second result, as shown in Figure 6, indicates that the need for the acceleration
of the construct modified KKT condition part as well as the solve linear equation part,
and demonstrates that our method works effectively. Because the solve linear equation
part takes the most time, other studies have concentrated on that part and improved its
performance. However, in an extensive matrix system, such as the IGC, the construct
modified KKT condition part also takes a lot of computation time. Therefore, we focused
on the acceleration of the construct modified KKT condition part and attained a significant
performance improvement.

By adopting CSC and CSR parallelization methods, the computation time of the entire
optimization process was significantly reduced. Considering that the CUDA initialization
delay occurred just one time, the reduced amount was about 62.5% for the whole flight. This
improvement in the context of computation time is highly promising to apply the real-time
missile control system. Additionally, since the CUDA used in the proposed method is a
widely-used libray for algorithm acceleration, the accomplishment of this paper can be
applied to other research areas, such as robotics [37–39].

5. Conclusions

This paper dealt with the problem of real-time model predictive control (MPC) in inte-
grated guidance and control (IGC) of missile systems. The problem of much computation
time in the KKT condition construction part of PD-IPM was firstly addressed and analyzed.
A new GPU-based parallelization method was proposed for the KKT condition construction
part of PD-IPM. The computation time for PD-IPM was significantly reduced, even consid-
ering the overhead time for the CUDA initialization on a widely-used embedded system.
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The comparison results with the conventional PD-IPM and other methods showed that
the proposed method improved the real-time performance by reducing the computation
time significantly. In future studies, algorithm acceleration using other hardware, such as
FPGA, will be conducted. Additionally, the proposed method will be extended to more
algorithms with closed-loop performances, and the stability of a given MPC approach will
be evaluated.
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