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Abstract: Breast cancer is the most common type of cancer and it is treated with surgical intervention,
radiotherapy, chemotherapy, or a combination of these regimens. Despite chemotherapy’s ample use,
it has limitations such as bioavailability, adverse side effects, high-dose requirements, low therapeutic
indices, multiple drug resistance development, and non-specific targeting. Drug delivery vehicles
or carriers, of which nanocarriers are prominent, have been introduced to overcome chemotherapy
limitations. Nanocarriers have been preferentially used in breast cancer chemotherapy because of their
role in protecting therapeutic agents from degradation, enabling efficient drug concentration in target
cells or tissues, overcoming drug resistance, and their relatively small size. However, nanocarriers
are affected by physiological barriers, bioavailability of transported drugs, and other factors. To
resolve these issues, the use of external stimuli has been introduced, such as ultrasound, infrared
light, thermal stimulation, microwaves, and X-rays. Recently, ultrasound-responsive nanocarriers
have become popular because they are cost-effective, non-invasive, specific, tissue-penetrating, and
deliver high drug concentrations to their target. In this paper, we review recent developments in
ultrasound-guided nanocarriers for breast cancer chemotherapy, discuss the relevant challenges, and
provide insights into future directions.

Keywords: ultrasound; nanocarriers; micro-/nano-bubbles; breast cancer; chemotherapy

1. Introduction

Breast cancer surpassed lung cancer as the most common cancer (in terms of new
incidence of cancer). In 2020 alone, there were 2.26 million new cases and 685,000 deaths
from breast cancer worldwide [1]. Early diagnosis and better treatment have been shown
to reduce the mortality rate by 1%, each year from 2013 to 2018 [2]. There are three main
treatment methods for breast cancer: surgical intervention, whereby the tumor tissue
is removed before it metastasizes to other locations; radiation therapy, whereby high-
energy waves are utilized to destroy cancer cells; and chemotherapy, whereby therapeutic
agents are used to destroy cancer cells or shrink tumors [3]. These treatment methods can
sometimes be used in combination [3].

Chemotherapy (chemo), a cancer treatment method that uses anti-cancer drugs
(chemotherapeutic agents), is the most widely used systemic breast cancer treatment
for suppressing cancer cell proliferation and for its ability to move all around the body
and destroy a wide range of cancers [4]. However, chemotherapy has limitations. Most
chemotherapeutic agents exert their effects by halting mitosis (cell division), targeting the
fast dividing (proliferating) cells, and causing damage to cells (cytotoxic effect) [5]. The
cytotoxic effects of chemotherapeutic agents are not only limited to cancer cells. They
also destroy normal cells, leading to adverse side effects such as immunosuppression,
myelosuppression, neutropenic enterocolitis, gastrointestinal distress, anemia, nausea and
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vomiting, hair loss, secondary neoplasm, infertility, teratogenicity, peripheral neuropathy,
cognitive impairment, tumor lysis syndrome, and organ damage among others [6]. More-
over, the bioavailability of therapeutic agents to tumor tissues is low, which warrants a
higher number of drugs than needed, resulting in increased toxicity in normal cells and a
high rate of multiple drug resistance [7]. Therefore, targeted drug delivery (TDD) enables
effective delivery of therapeutic agents that increase the presence of drugs in a particular
part of the body relative to others. TDD compensates for the limitations of conventional
chemotherapy [7,8] and has been achieved using a drug carrier.

Drug carriers or vehicles are substrates used in chemotherapy to improve the speci-
ficity, bioavailability, and safety of anti-cancer drugs [9]. Drug carriers are important for
regulating the release of therapeutic agents into the body [10]. They can act through dif-
fusion, in which a slow release of a therapeutic agent occurs over a long period of time,
or through a triggered release at the agent’s target with the help of external stimuli, such
as changes in pH, heat, and light [10]. Nanoparticle (NP) drug carriers or nanocarriers
have many advantages and, thus, have been widely used as drug carriers for breast cancer
chemotherapy. Their efficient pharmacokinetics, precise targeting of tumor cells, and re-
duced side effects make nanoparticles the best therapeutic agent carriers in breast cancer
chemotherapy [6]. Furthermore, nanoparticles have merits, such as passive targeting and
distant circulation [11]. Unfortunately, nanoparticles are also affected by physiological
barriers and partially by the bioavailability of therapeutic agents [12]. Moreover, nanoparti-
cles have limitations regarding lack of biodegradation and potential toxicity in the case of
long-term administration [13].

To address these challenges, approaches involving external stimulation with light,
ultrasound, heat, microwaves, and X-rays have been explored [14–16]. In particular, studies
on ultrasound-based targeted drug delivery for breast cancer chemotherapy have attracted
considerable attention in the past few years. This could be due to ultrasound’s properties
such as cost-effectiveness, non-invasiveness, specificity, tissue penetration, and achieving
high drug concentrations at their target [17–19]. This review discusses recent developments
in ultrasound-stimulated nanocarriers for breast cancer chemotherapy. Furthermore, the
current challenges and future directions are sought. There are a few reviews on the issue
of ultrasound-based targeted drug delivery for cancer treatment in general. In contrast
to that, we focused on ultrasound-guided nanoparticle drug carriers for breast cancer
chemotherapy. We summarize the overall concept of ultrasound-responsive nanocarrier-
based breast cancer therapy in Figure 1.
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2. Nanocarriers for Breast Cancer Chemotherapy

Nanoparticles designed for either targeted or non-targeted drug delivery have a small
diameter (1–100 nm) and possess a large surface area to volume ratio [20]. These prop-
erties allow them to bind, absorb, and carry therapeutic agents with high efficiency [21].
Nanocarriers for breast cancer chemotherapy are broadly divided into two types: organic
and inorganic (Figure 2) [22]. Inorganic nanocarriers include quantum dots (QD), meso-
porous silica nanoparticles (MSN), layered double hydroxide (LDH) nanoparticles, carbon
nanotubes, and magnetic nanoparticles. Inorganic nanocarriers are preferred for their better
anti-cancer agent-loading capacity, large surface area, reduced side effects, bioavailability,
well-regulated drug release, and—most importantly—for their organic solvent tolerance.
Organic nanocarriers, on the other hand, include polymeric nanoparticles, liposomes, mi-
celles, protein nanoparticles, and dendrites. Organic nanocarriers are preferred for their
easy synthesis and modification, enabling improved drug-loading efficacy, biodistribution,
and therapeutic efficacy. Moreover, organic nanoparticles allow sustained drug release
over a period of time and the use of organic solvents [9].
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The most commonly used nanocarriers in breast cancer chemotherapy include li-
posomes, dendrimers, micelles, carbon nanotubes, polymeric nanoparticles, solid lipid
nanoparticles (SLNs), and nanostructured lipid carriers (NLCs) [12]. Liposomes are used
for various purposes to increase drug-loading capacity while suppressing unnecessary
drug effects. In contrast, lipids cause toxicity, and nanocarriers are quickly destroyed by
phagocytes. Dendrimers have been commended for their higher loading capacity and
bioavailability. However, dendrimers suffer from rapid clearance, organ accumulation, and
synthesis variability. Micelles reduce toxicity and other side effects, but are used only for
limited drugs and exhibit low drug-loading capacity [11]. Carbon nanotubes are capable of
penetrating and localizing at the cellular level, but as a material, they can be potentially
toxic. Polymeric nanoparticles are biocompatible, degradable, non-toxic; however, they are
less effective and susceptible to carrier degradation. SLNs have the advantage of being
soluble and better controlled for drug release, despite their low drug-loading capacity and
containing other complex structures [23]. NLCs have multiple advantages compared to
others, and their limitations include gelation of lipid dispersion and polymorphic transition.
In general, nanocarriers for breast chemotherapy have their advantages and shortcomings.
To improve their shortcomings while increasing treatment efficacy, different stimuli are
utilized, which are designed to make the nanocarriers responsive.

3. Stimuli-Responsive Nanocarriers for Breast Cancer Chemotherapy

The application of stimuli to improve the efficacy of therapeutic agents delivered
by nanocarriers has received considerable attention in recent years. Stimuli-responsive
nanocarriers have been developed to compensate for the shortcomings of conventional
nanocarrier-based chemotherapy [8]. The delivery of therapeutic agents responsive to
stimuli is based on both internal (endogenous) and external (exogenous) stimuli (Figure 3).
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3.1. Internal Stimuli

Various internal stimuli are used for nanocarrier-based anti-cancer agent delivery
to increase therapeutic efficacy and suppress adverse effects. Internal stimuli used with
nanocarriers in breast cancer chemotherapy include pH, redox, and enzymatic stimuli [15].
pH-responsive nanocarriers are internalized and dissociate, causing protonation and ex-
tracellular drug release. Subsequently, the nanoparticle is detached, which promotes
endocytosis of nanocarriers and release of the drug [24]. The redox-responsive nanocarrier
system is the S–S bond that is chemically cross-linked as a gating or capping molecule on the
surface of the nanoparticle and is cleaved upon the addition of agents, causing rapid drug
release to the tumor cells [25]. Drug release from NPs in an enzyme-responsive manner
originates from specific enzyme-catalyzed chemical reactions that lead to the degradation,
dissociation, or morphological transitions of the parent NPs [14].

3.2. External Stimuli

External stimuli originate from outside of the body to initiate anti-cancer agent delivery.
External stimuli used in breast cancer chemotherapy include magnetic fields, ultrasound,
and light [26]. In contrast to the internal stimuli, the external stimuli would introduce
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contrast agents to the image—that of nanoparticles located in the target tissues, cells, or
organelles. This further triggers nanocarriers from outside the body through particular
stimuli at a specific time. Magnetic systems are widely utilized for targeting and imag-
ing [27]. As magnetic-responsive nanotherapeutics are non-invasive signals, an externally
applied magnetic field can damage the moving particles and increase the accumulation of
therapeutic agents in tumors. A magnetic field could be employed for in vivo applications,
and could have greater advantages for targeted cancer therapy as compared with intrinsic
stimuli-responsive nanotherapeutics. Ultrasound is one of the most commonly used exoge-
nous stimuli in cancer therapy [28]. The unique advantages of ultrasound responsiveness
include safety, non-invasiveness, and deeper penetration into the tissue. Many exogenous
stimuli are used for drug delivery systems, among which temperature-responsive drug
delivery systems offer potential advantages compared to other counterparts. This is due
to their flexible design, regulation of phase transition temperatures, and passive targeting
capability. The localized hyperthermia from 42.5 to 43.5 ◦C helps to evade cancer cells by
inducing high temperatures in tumor tissues. However, these hyperthermic stimuli would
enlarge the blood vessels and modify the perforation of tumor cell membranes, thereby
enhancing anti-tumor drug delivery [29].

3.3. Internal vs. External Stimuli

Both internal and external stimuli have their own advantages and disadvantages,
as presented in Table 1. Internal stimuli are safe and provide efficient and controllable
drug release without compromising cell and site specificity. Internal stimuli have the
disadvantage of not being controlled manually. External stimuli have the advantage of
being manually controlled and modulated based on individual requirement making it vital
in personalized treatment. They also provide upgraded site-specific drug delivery and
enable regulated and payload release. However, external stimuli need more sophisticated
equipment and normal cell injury may happen. Nevertheless, compared to internal stimuli,
external stimuli are preferred for nanocarrier based chemotherapy.

Table 1. Advantages and disadvantages of internal and external stimuli.

Stimuli Advantages Disadvantages

Internal

Safe and efficient Cannot be manually controlled

Controllable release

Protect cells and hinders cellular apoptosis

Efficient drug release without
compromising specificity

External

Can be manually controlled and modulated
based on individual requirements

Several types of specialized
equipment and techniques needed

Provide upgraded site-specific drug delivery Normal cell injury

Constant and rapid payload release

4. Biological Effects of Ultrasound

The effect of ultrasound waves on tissues or cells is significant for breast cancer
treatment [30]. There are two broad categories of ultrasound effects on tissues or cells in
therapeutic applications. The first is the thermal effect, whereby a continuous application
of ultrasound on a target tissue or cell increases the temperature of the tissue or cell. Ultra-
sound can be applied to create a low- or high-temperature depending on the therapeutic
application. The second is mechanical, whereby high-energy ultrasound affects cells or
tissues mechanically; for example, causing them to vibrate. The ultrasound-induced biolog-
ical effects (either by thermal or mechanical means) can be categorized into four primary
mechanisms: thermal, cavitation, acoustic streaming, and bilayer sonophore effects.
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4.1. Thermal Effect

The thermal effect of ultrasound is primarily an increase in the temperature of the
medium owing to the absorption of energy from ultrasound waves. The rate of heat
generated by ultrasound waves is directly proportional to the frequency of the waves and
exposure time and is inversely proportional to the specific absorption coefficient of the
targeted tissue. Consequently, the higher the absorption coefficient of the medium, the
more significant the increase in temperature and—in turn—the thermal effect experienced
by the tissue. The thermal dose delivered to a cell or tissue quantifies the magnitude and
duration of the temperature change. Ultrasound energy can result in local hypothermia
(creating either a low-level thermal rise over several minutes or hours) [3] or, conversely,
can result in thermal ablation (a short duration highly localized high temperature rise that
destroys the tissue via protein denaturation).

4.2. Cavitation Effect

The application of ultrasound waves in the tissue environment causes a pressure
change, resulting in the formation of bubbles in a phenomenon called cavitation [31,32].
The cavitation effect induced by ultrasound includes the formation, growth, oscillation, and
collapse of cavities in the tissue environment stream owing to pressure changes following
the induced ultrasound wave [33]. Cavitation can occur in both endogenous and exogenous
gas bubbles. Endogenous gas microbubbles are naturally occurring cavities in the cell
cytoplasm, whereas exogenous gas vesicles comprise synthetic gas vesicles or microbubbles
introduced into the cellular microenvironment from the outside [34]. They consist of
spherical cavities filled with gas and/or saturated carbon and are typically stabilized by
an encapsulated surfactant, phospholipids, and a synthetic polymer or denatured human
serum albumin. The inner and outer microbubbles can increase the permeability of cell
membranes through pore formation on the membrane. This leads to acoustophoresis and
is considered to be a cavitation induced by sonoporation [35]. Microbubbles can cause
sonoporation when the cavitation thresholds are reached. When ultrasound is applied to
microbubbles, it absorbs ultrasonic energy and causes high-frequency oscillations. As a
result, a liquid jet or shock wave is formed, leading to disruption of the cell membrane
structures. The oscillation and expansion of microbubbles exert shear pressure on the cell
membrane, which also increases the permeability of the cell membrane; hence, this process
makes cells more accessible to nanoparticles [36].

The two types of cavitation that exist, as shown in Figure 4, depend on how bub-
bles collapse when subjected to ultrasound: stable and inertial cavitation [37,38]. Stable
cavitation is a non-linear, perennial, periodic bubble expansion and contraction. In stable
cavitation, the gas pockets present in the liquid oscillate around an equilibrium radius
and can persist for a long period of time. This can cause gas microbubbles to shrink and
expand under the influence of ultrasound for a long period. The microbubble oscillation
period lasts until the gas content of the microbubble dissolves in the blood, and then it is
rapidly cleared through exhalation from the lungs. Inertial cavitation, on the other hand,
is characterized by a violent collapse of bubbles whereby the collapse of bubbles occurs
instantly with the applied ultrasound wave [39]. Inertial cavitation induces larger pore
sizes than stable cavitation does.

4.3. Acoustic Streaming Effect

When ultrasound waves with high amplitudes are applied to a medium, the transfer of
momentum from the ultrasound wave to the medium may lead to the generation of unidi-
rectional flow of currents in the fluid, a phenomenon known as acoustic streaming [40]. The
velocity of the stream is directly proportional to the attenuation coefficient of the medium,
ultrasound intensity, and surface area of the transducer and is inversely proportional to
the speed of sound in the medium in question and the bulk viscosity. The leading cause
of acoustic streaming is the ultrasound reflection and other distortions that occur during
wave propagation [41]. To date, the clinical value of acoustic streaming has only been
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minimally explored. In general, acoustic streaming is produced by a non-linear acoustic
wave with a finite amplitude propagating in a fluid. The molecules are forced to oscillate
at the same frequency as the acoustic waves to which they are exposed. As a result of the
non-linearity of the acoustic wave, wave propagation results in a time-independent flow
velocity on top of the regular oscillatory motion. Therefore, the fluid moves in a particular
direction that depends on the structure of the system and its boundary conditions as well
as the parameters of the applied ultrasound wave. The smaller acoustic streams in a fluid
is referred to as microstreaming [42]. When associated with acoustic cavitation, which
refers to the activities of microbubbles in a general sense, it is referred to as cavitation
microstreaming [43].
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4.4. Bilayer Sonophore Effect

In ultrasound-responsive therapy, nanocarriers containing bubbles filled with gas are
injected into the bloodstream. The interaction of ultrasound waves with the bubbles result
in a temporary increase in the permeability of the bilayer membranes. Once the ultrasound
wave reaches the target region of interest, it activates the bubble within the bloodstream
at the target location. The ultrasound waves interact with the bubble, which absorbs
acoustic energy, causing it to expand and contract within the capillaries. This phenomenon
is called the bilayer sonophore effect, which results in the stretching and compression
of the capillary walls [44]. The protein complexes are mechanically separated, and the
tight junctions on the membranes become unlocked. As the permeability of the bilayer
membrane increases, the therapeutic agent begins to exit the capillaries and enter the tumor
tissue. The duration of the sonophore effect is very short, lasting only one or two minutes.
The barrier remains permeable for only a few hours after the sonophore effect stops [45],
widening intracellular spaces and facilitating paracellular transport. Transcellular transport
can also increase as endothelial cells shuttle drugs out of the vessel lumen. This drug is now
able to reach its therapeutic target. As the procedure resolves, bubbles disappear from the
circulation within minutes. In 24 h or less after the sonophore effect, the junction proteins
re-associate, the endothelial cells are restored to their original state, and the barrier fully
regains its protective function. Through this effect, a variety of drugs can gain access to
the target tumor for treatment, while minimizing the area and duration of the enhanced
tumor-blood permeability.

5. Mechanism of Ultrasound-Responsive Nanocarriers in Breast Cancer Chemotherapy
5.1. Ultrasound-Responsive Nanocarrier Structure

Ultrasound-responsive nanocarriers function via a phenomenon called micro-/nano-
bubbles, which are filled with gas. The bubble structure used in the ultrasound-responsive
nanocarrier mechanism is composed of four main parts: the shell, core, cargo, and surface
modification ligands (see Figure 5) [36].
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For drug delivery applications, therapeutic drug-carrying microbubbles can be fabri-
cated by incorporating the drug into or on bubbles. There are various ways in which drugs
can be incorporated into acoustic carriers, ranging from association with the membrane
to the development of gas- or drug-filled microspheres. The gas in drug delivery vehicles
helps to create acoustic activity, which lowers the threshold for cavitation, making the drug
carriers more sensitive to ultrasound for local activation, drug release, and drug delivery.

5.2. Ultrasound-Responsive Stimuli Nanocarriers Based Therapeutic Agent Delivery Phenomenon

Ultrasound-responsive nanocarrier-based therapeutic agent delivery is mostly achieved
by a phenomenon called microbubbles, which consist of a gas core covered by a stabilizing
shell of nanocarriers, as shown in Figure 6 [46]. Microbubbles facilitate the targeting of
therapeutic agents through their unique interaction with ultrasound stimuli [47]. With
the application of ultrasound stimuli, microbubbles injected intravenously expand and
contract, leading to a phenomenon called cavitation, which occurs due to the acoustic
impedance difference between the blood and the gas core [28].
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Depending on the applied ultrasound stimuli, microbubbles behave in three ways
during breast cancer chemotherapy [48]. First, for a low mechanical index (MI) of less
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than 0.2, the ultrasound stimuli cause bubbles to vibrate, resulting in small ruptures in
cell membranes at the target, enhancing therapeutic agent delivery locally. Second, for a
moderate increase in MI between 0.2 and 0.8, larger ruptures in capillaries result in the
escape of blood, pooling, and increase in drug uptake caused by changes in vasculature
permeability occurs in a phenomenon called sonoporation. Third, a further increase in MI
greater than 0.8 leads to a disruption of microbubbles, resulting in the excitation of shock
waves from microbubbles in a phenomenon called cavitation.

5.3. Therapeutic Agent Delivery Mechanism via Ultrasound-Responsive Nanocarriers

The nanocarriers’ primary job is to deliver therapeutic agents to the desired location.
A variety of mechanisms—including passive diffusion, particle phagocytosis, pinocyto-
sis, and receptor-mediated endocytosis—are frequently used in the transport of drugs to
cells [49]. This is achieved through either active targeting or passive targeting [50,51]. In
passive targeting, the transport of the drug-loaded nanocarriers into the tumors is facil-
itated by passively targeting, which takes advantage of the increased endothelial blood
microvasculature permeability in tumors caused by the bigger interstitial gaps between the
neighboring cells [52]. Due to limited removal in the tumor, this increased penetration and
retention (EPR) effect permits larger drug accumulation as well as longer drug exposure du-
ration [29]. To target particular cancer cells, active targeting systems use the EPR effect and
targeting ligands that are covalently bound to the surface of nanocarriers [21,52,53]. These
targeting ligands are particular to a certain cell surface biomarker or receptor molecules
that are overexpressed in malignant cells [54]. Vitamin receptors, αvβ3 integrin receptor,
PSMA (prostate-specific membrane antigen) receptor, growth factor receptor, insulin and
insulin-like receptors, choosing protein molecules, and transferrin are among of the typical
surface indicators that are overexpressed in malignancies and inflammatory illnesses. Folic
acid (FA, vitamin B9) receptors (FAR-, FAR-), riboflavin (vitamin B2) receptors, and biotin
receptors go under the category of vitamins, whereas fibroblast growth factor receptors
(FGFR) and epidermal growth factor receptors (EGFR) are under the category of growth
factors. Since the process for endocytic uptake of these targeted carriers needs the combined
occurrences of several contemporaneous contacts at the contact point of numerous pairs of
surface receptor and ligand, the targeting ligand is often linked to the nanocarrier surface in
multiple copies. The tight adhesion between the nanocarriers and the targeted cell surface
is attained during the receptor-mediated absorption of the nanocarriers by the targeted cell
as a result of the multivalent binding mechanism.

There are three mechanisms by which ultrasound is utilized to enhance the delivery
of therapeutic agents for breast cancer chemotherapy via nanocarriers: triggering drug
release from nanocarriers, uptake and accumulation, and penetration of nanocarriers [55].
In the case of triggering drug release, ultrasound disrupts nanocarriers (Figure 7) via
two effects: thermal and non-thermal effects [56]. In this mechanism, nanocarriers are
made to respond to the mechanical effects of ultrasound waves, the thermal effect of
ultrasound waves, or both effects together. Thus, ultrasound facilitates the local release of
drugs from nanocarriers at the tumor site. The use of ultrasound helps minimize the dosage
and suppress side effects on healthy cells. In the case of the uptake and accumulation
mechanism, upon ultrasound stimuli, the microbubbles are injected into the bloodstream
and induce mechanical forces against the blood vessel wall, leading to the diffusion of
nanocarriers and drugs towards the tumor extracellular matrix. This resolves the problem
of low and proportional uptake of nanoparticles in the tumor tissue. Finally, in the case of
nanocarrier penetration, ultrasound stimuli solve the problem of drug penetration in solid
tumors by pushing the nanoparticles into the tumor area, thereby improving accumulation
and deeper penetration. This resolves the current limitations of chemotherapy, such as low
drug concentration, toxicity to healthy cells, and other side effects.
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6. Ultrasound-Responsive Nanocarriers for Breast Cancer Treatment

A few studies have applied ultrasound-responsive nanocarriers in breast cancer
chemotherapy to improve treatment. Table 2 summarizes some studies related to ultrasound-
responsive nanocarriers for breast cancer treatment. Wu et al. [29] developed Pluronic
P123/F127 polymeric micelles encapsulating curcumin, which were stimulated by focused
ultrasound to trigger drug release. They achieved longer circulation and increased up-
take with the application of ultrasound. Jablonowski et al. [57] combined surface tumor
necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) expression and doxoru-
bicin co-encapsulation in the form of ultrasound-responsive microbubbles to improve the
treatment effects in breast cancer cell lines. They reported that ultrasound resulted in
the greatest reduction in cancer cell survival, while shielding the destruction of healthy
MCF-12A cells. Eisenbrey et al. [58] utilized localized microbubbles to suppress hypoxia
prior to breast cancer therapy. In their study, surfactant-shelled oxygen microbubbles were
fabricated and injected intravenously to locally elevate tumor oxygen levels when trig-
gered by non-invasive ultrasound in mice with human breast cancer tumors. Furthermore,
Soyemi et al. [59], Wang et al. [60], Dobruch-Sobczak et al. [61], Rix et al. [62], and Yang
et al. [56] demonstrated the application of ultrasound along with contrast agents in breast
cancer chemotherapy to improve patients undergoing neoadjuvant chemotherapy. These
studies found that an ultrasound-based approach enabled the accurate identification of re-
sponding and non-responding tumors. Amioka et al. [63] proposed ultrasound-responsive
chemotherapy for neoadjuvant breast cancer, and concluded that ultrasound-responsive
methods might serve as a new approach for planning therapeutic strategies for patients
with breast cancer after neoadjuvant chemotherapy. Baghbani et al. [37] loaded alginate-
stabilized nanodroplets with doxorubicin for ultrasonic theranostics. They reported that
their proposed approach possessed highly enhanced anti-cancer effects under ultrasound
and displayed long-lasting, strong ultrasound contrast. Bush et al. [64] also studied the
therapeutic efficacy of ultrasound-responsive nanocarriers with liposomal doxorubicin.
They observed improved treatment efficacy with acoustic cluster therapy. Delaney et al. [65]
investigated whether ultrasound-induced rupture of microbubbles improves breast cancer
metastasis and reported that adding ultrasound-ruptured microbubbles to radiation ther-
apy delays tumor progression and enhances the survival rates of patients with metastatic
breast cancer. Nie et al. [66] employed a multimodal approach for targeted breast cancer
imaging, in which a tumor was subjected to a strong echo signal via ultrasound. They
were able to see an improved performance when using the multimodal approach. Sheng
et al. [67] proposed ultrasound-guided breast therapy using nanodroplets and reported
that nanodroplets with tunable properties enable efficient site-specific drug delivery and
exhibit their potency in cancer theranostics. Song et al. [68] proposed ultrasound-responsive
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delivery to control cell proliferation. They reported a positive effect of using ultrasound
and microbubbles for breast cancer, and that their approach could be translated to other
types of cancer treatment.

Table 2. Studies related to ultrasound responsive nanocarriers for breast cancer treatment.

Nanocarrier Platform Outcome Drug Reference

Micelles Pluronic P123/F127 Longer circulating time and increased
cellular uptake Curcumin [29]

Polymeric
micelle

Polyethylene glycol
(PEG)-polylactic

acid (PLA)

Increased cell death, minimal effect on
normal cells, greater surface area, and larger
number of particles generated by ultrasound

Doxorubicin [57]

Oxygen
SE61 microbubbles

recharged with oxygen
or nitrogen

Increase breast tumor oxygenation levels,
enabling oxygen delivery to avascular

regions of the tumor, improvements in tumor
growth and animal survival

Radiation [58]

Liposome SonoVue and saline Ultrasound enabled to see accurately how a
tumor responds to therapy

Docetaxel, epirubicin,
cyclophosphamide [59–61,63]

Carbon Perfluorocarbon
nanoemulsions

Excellent anti-cancer effects characterized by
tumor regression, and displayed

long-lasting, strong ultrasound contrast
Doxorubicin [37]

Liposome Sonazoid and perfluo-
romethylcylopentan

Acoustic cluster therapy induces a strong
increase in the therapeutic efficacy Doxorubicin [64]

Oxygen Span 60 and water-soluble
vitamin E

Rapid tumor growth after treatment,
increase in volume, delay tumor progression,
and improve survival in a murine model of

metastatic breast cancer

Radiation [65]

Magnetic Polylactic-co-glycolic
acid (PLGA)

Excellent imaging performance and
good biocompatibility - [66]

Liposome Perfluoropentan
Adequate drug release, deep tumor

penetration, well-controlled release of drug,
and elevated antitumor efficacy

Doxorubicin [67]

7. Therapeutic Agents in Ultrasound-Responsive Breast Cancer Treatment

Therapeutic agents are chemical substances that are delivered to the body for the
treatment or mitigation of disease conditions or ailments. These substances can be drugs,
proteins, genes, compounds, or other pharmaceutically active ingredients. As the human
genome has been sequenced and genetic technology has advanced, there is a growing body
of knowledge on genetic changes, initiation and proliferation, therapeutic mechanisms,
and novel treatment targets for cancer therapy. Understanding the pathophysiology of the
disease, human gene sequences, and discovery of novel molecular targets is the core of
modern medicine to conquer cancer therapy. Numerous noteworthy advances have been
made in the development of targeted therapy. These targeted therapies are designed to
attack cancer cells while causing less damage to normal healthy cells. Targeted therapies
are drugs or other substances that block the growth and spread of cancer by interfering
with specific molecules or targets that are involved in the growth, spread, and progression
of cancer. Targeted therapies are currently at the center of anti-cancer drug development;
hence, they are the cornerstone of precision medicine. Similarly, in breast cancer, many
drugs are being developed and integrated with nanocarriers. Table 3 lists some of the drugs
used in breast cancer treatment along with nanocarriers responsive to ultrasound.
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Table 3. Drugs used in ultrasound-responsive nanocarrier breast cancer treatment.

Drug Product/Platform Type of Nanocarrier Reference

Doxorubicin Perfluoropropane Liposome [69,70]

Doxorubicin Polyethylene glycol Liposome [71]

Doxorubicin Polyethylene glycol Liposome [72]

Cisplatin

Soy phosphatidyl choline (SPC-3), cholesterol, dipalmitoyl
phos-phatidyl glycerol (DPPG), and methoxy-polyethylene

glycol-distearoyl phosphatidylethanolamine
(mPEG 2000-DSPE)

Liposome [73]

EndoTAG-1 and paclitaxel Cationic Liposome [74]

Paclitaxel 1,2-dioleoyl-sn-glycero-3-phosphocholine Liposome [75]

Resveratrol Chloroform solutions of cadmium oxide and sucrose laurate Liposome [76]

Cisplatin Distearoyl phosphoethanolamine-polyethylene glycol and
phosphatidylcholine Liposome [77]

Paclitaxel Polyethyleneglycol (PEG)-phosphatidylethanolamine
(PE) (PEG-PE) Liposome [78]

Doxorubicin and
silymarin

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) Liposome [79]

Epirubicin-hydrochloride Phosphatidylcholines with thin film hydration using egg yolk Liposome [80]

Curcumin Polyethylene glycol (PEG) Liposome [81]

A7R-cysteine peptide Distearoylphosphosphatidyl-ethanolamine
(DSPE-PEG2000) Liposome [82]

Raloxifene Methanol-ethyl acetate Liposome [83]

Artemisinin Polyethylene glycol 2000 (PEG 2000) Liposome [84]

Thymoquinone
Thymoquinone (2-isopropyl-5-methyl-1,4-benzoquinone) and

Triton X-100; 1,2-dipalmitoyl-sn-glycero-3-phospho-
choline (DPPC)

Liposome [85]

Doxorubicin Lipoic acid, hyaluronic acid, L-lysine methyl ester Polymer nanoparticles [86]

Doxorubicin Chitosan and pluronic F127 Polymer nanoparticles [87]

Cisplatin Luteinizing hormone-releasing hormone (LHRH)-
modified dextran Polymer nanoparticles [88]

Tamoxifen citrate Polylactide-co-glycolide Polymer nanoparticles [89]

Paclitaxel Albumin nanoparticle Polymer nanoparticles [90]

Paclitaxel Folic acid Polylactic-co-glycolic acid, polyethylene
glycol succinate Polymer nanoparticles [91]

Paclitaxel Montmorillonite and Poly(D, L-lactide-co-glycolide) Polymer nanoparticles [92]

Paclitaxel and ceramide Poly(beta-amino ester) and poly(D,L-lactide-co-glycolide) Polymer nanoparticles [93]

Docetaxel Albumin nanoparticle Polymer nanoparticles [94]

Quercetin Polylactic-co-glycolic acid, polyethylene glycol 1000 succinate Polymer nanoparticles [95]

Doxorubicin and
Salinomycin Polyacrylic acid and Polyethylene glycol Micellar nanoparticle [96]

Paclitaxel Polyethylene glycol succinimidyl succinate Micellar nanoparticle [25]

Doxorubicin and
Paclitaxel Lauryl carbamate derivative of plant-based polymer inulin Micellar nanoparticle [97]

Paclitaxel Polyethylene glycol-b-polylactide Micellar nanoparticle [24]

Fisetin Pluronic127 folic acid Micellar nanoparticle [98]

Paclitaxel Dextran-g-indomethacin Micellar nanoparticle [99]
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Table 3. Cont.

Drug Product/Platform Type of Nanocarrier Reference

Aminoflavone Anti-epidermal growth factor receptor Micellar nanoparticle [100]

Paclitaxel PEG-block-poly[(1,4-butanediol)-diacrylate-β-5-amino-
1-pentanol] polyethyleneimine-block-PDHA Micellar nanoparticle [101]

Aminoflavone Poly(amidoamine) dendrimer, polyethylene glycol derivatives Micellar nanoparticle [102]

Doxorubicin Pluronic copolymer P123 polyethylene glycol-block-poly
(di-isopropanolamino ethyl methacrylate) diblock copolymer Micellar nanoparticle [103]

Paclitaxel Methoxy polyethylene glycol-polylactide (mPEG-PLA) Micellar nanoparticle [104]

Paclitaxel polyethylene glycol (PEG)-polyacrylic acid (PAA) (PEG-PAA) Micellar nanoparticle [105]

8. Design Considerations for Ultrasound Responsive Drug Carriers

Ultrasound-responsive nanocarrier design should consider a variety of design con-
straints, which can be broadly categorized as microbubble design considerations, ultra-
sound parameters, and cellular characteristics.

8.1. Microbubble

There are three main design considerations for achieving the preferred microbub-
ble mechanism: bubble size and concentration, bubble-to-cell distance, and bubble shell
material [106].

8.1.1. Microbubble Size and Concentration

Ultrasound-responsive nanocarrier-based therapy has been shown to be successful
in in vitro experiments [107]. However, under in vivo conditions, various physiological
barriers should be overcome so that there is no hurdle for injected drugs in reaching their
target sites [26]. In particular, therapeutic agents should first travel across blood vessels and
then pass through the extravascular compartment prior to arriving at the target cells, which
must then incorporate them [57]. To pass through these barriers, diffusion and convection
are insufficient as the only driving forces, and sufficiently high driving forces are required.
Cavitation plays an important role in this process [69]. The cavitation phenomenon in
ultrasound-responsive nanocarrier-based therapy can not only create pathways through
pore creation, but also enable therapeutic agents to travel within the target tissue with
adequate momentum [43]. Two types of cavitation facilitate this process: stable and iner-
tial [39]. In stable cavitation, the size of the gaps between endothelial cells is increased by
mechanically pushing the walls of the blood vessels using microbubbles, thereby enabling
drugs to enter the target tissue. Furthermore, stable cavitation enables the opening of
particles, such as liposomal vesicles, which are employed in drug delivery [38]. Inertial
cavitation, on the other hand, applies aggressive mechanical forces such as jetting and
shockwaves that result from the disintegration of microbubbles. Thus, inertial cavitation
enables the entrance of high levels of drugs into tumor tissues. It is a well-established
fact that the cavitation characteristics of microbubbles are highly dependent on their size
as higher dynamic responses can be stimulated around their resonant radius [108]. In
conventional medical ultrasound cases with a frequency between 0.5 and 5 MHz, larger
bubbles create stronger acoustic responses and increased membrane permeability than that
by smaller bubbles [109]. However, it is sometimes challenging for microbubbles to pass
through endothelial gaps in the range of 380–780 nm within tumor blood vessels [110]. In
such cases, nanobubbles with a size range of 300–700 nm are used in place of microbubbles
to achieve an enhanced permeability and retention (EPR) effect in tumors.

The number of bubbles around the target cell affects the extent of cavitation [111].
Experiments involving single cells undergoing cavitation have shown that the extent of
cavitation tends to be less predictable if it is created by large bubbles (diameter greater
than 5.5 µm) that exhibit translational movement over large distances. The number of
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bubbles around a cell is also positively proportional to the extent of cavitation, particularly
for smaller bubbles (with diameters smaller than 5.5 µm) [112]. Furthermore, cavitation
stimulated by the localized destruction of fewer than three bubbles is generally reversible,
while those stimulated by the cavitation of four or more bubbles tend to be irreversible. In
summary, experiments have shown that an increase in microbubble concentration decreases
the microbubble cavitation threshold and improves treatment efficiency, with the tradeoff
that cell viability would be compromised. Therefore, the concentration of microbubbles
around the target cell must be carefully considered.

8.1.2. Bubble-to-Cell Distance

The second important phenomenon that must be considered is microbubble dynamics
with respect to different environments [113]. Subject to different environments, cavitation
behaviors change substantially, which in turn drastically affects therapy efficacy [114]. The
distance between two microbubbles and the distance between microbubbles and the bound-
ary have a significant impact on cavitation [115]. Boundaries around microbubbles limit
microbubble growth when confined, thus suppressing cavitation effects [17,115]. Microbub-
ble cavitation triggered by ultrasound applies forces on tissue boundaries, thereby affecting
microbubble behavior. Particularly, deformable environments closer to each other—such as
micro-vessels—affect microbubble interactions, resulting in the reduction in microbubble
expansion, restriction of fragmentation or jets during cavitation, and deformation of vessel
walls, where the deformation is directly proportional to the microbubble size [115]. The
interaction of microbubbles with each other following their administration into blood ves-
sels can affect their cavitation, sonoporation, and overall therapeutic efficacy. Studies have
reported that decreasing the inter-microbubble distance can also increase the microbubble
lifetime [111]. Reducing the microbubble concentration also decreases the microbubble
size and increases cavitation lifetime [111]. Furthermore, two or more microbubbles can
be merged into a single microbubble by using high-pressure ultrasound energy [116]. The
merging of microbubbles creates a large mechanical force that enables the creation of larger
pores, but there is a possibility that it may result in tissue damage. However, microbubble
fusion without the presence of ultrasound suffers from the issue of reduced microbubble
circulation time. This challenge has been resolved using a phenomenon called PEGylation,
whereby polyethylene glycol groups are added to prevent aggregation [117].

8.1.3. Bubble Shell Material

In ultrasound-responsive nanocarrier-based therapy, the microbubble shell material is
an important design constraint to consider [118]. Few studies have compared the therapeu-
tic efficiency of various microbubbles covered with different types of shells [119]. Generally,
lipid-shelled microbubbles yield a higher therapeutic ratio than that by protein-shelled
microbubbles. A few studies have been carried out to design improved microbubble
shells, thereby enhancing therapeutic efficacy [120]. These include biodegradable micro-
capsules and integrating nanoparticles with microbubbles [121]. Furthermore, studies in-
volving the properties of microbubbles—such as stiffness, scattering, and thermal effects—
have been conducted with respect to the application of different shell materials. Peng
et al. [122] showed that it is possible to produce caged microbubbles with varying shell
elasticity and porosity so that it will be possible to adjust resonance frequency and regulate
cavitation modes.

8.2. Ultrasound Parameters

Ultrasound-responsive nanocarrier-based therapy design should also consider ultra-
sound parameters—such as frequency, intensity, mechanical index (MI), and exposure
time—as they are high determinants of treatment efficacy [46].
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8.2.1. Frequency

The cavitation behavior of microbubbles at a given frequency is strongly dependent
on their size because the response of the microbubbles is much larger around their reso-
nance radius [36]. As such, a drive frequency of 1 MHz was used, as this frequency is in
principle closer to the resonant frequency of commercially available microbubbles, which
typically range in diameter from 1 to 3 µm [55]. However, for microbubble solutions with
a relatively wide size distribution, the sonoporation efficiency increases at lower drive
frequencies. Generally, for therapeutic applications, the frequency of ultrasound is lower
than that used for diagnostic purposes. A lower ultrasonic frequency ensures deeper tissue
penetration owing to reduced attenuation, leading to optimal therapeutic outcomes [123].
The ultrasonic frequency used also depends on the type of microbubbles used as the use of
an ultrasonic frequency near or similar to the resonant frequency of the microbubbles pro-
motes stable microbubble cavitation [124]. However, in the case of higher sound pressures
causing inertial cavitation, the frequency used becomes a less important consideration, as
microbubbles collapse under high ultrasound pressure.

8.2.2. Intensity

As high-intensity ultrasound can potentially cause tissue alterations due to ultrasound-
associated heating effects, the Food and Drug Administration (FDA) has set the intensity at a
level that causes less than a 1 ◦C rise in temperature [125]. Typically, the ultrasonic intensity
range for delivery applications is 0.3–3 W/cm2. However, higher-intensity ultrasound
can be used when the pulse length (pulse period/ultrasound frequency) and/or pulse
repetition frequency (pulses/s) are reduced, resulting in a low duty cycle (pulse length ×
pulse repetition frequency); therefore, the time-averaged intensity (duty cycle × ultrasonic
intensity) decreases [46,55].

8.2.3. Mechanical Index (MI)

The MI of ultrasound is a measure of the peak negative pressure (MPa) per square
root of the center frequency (MHz). MI is a common alternative to ultrasound intensity
because it measures the acoustic pressure applied to the tissue [32]. The MI provides
a direct measure of the amount of cavitation that occurs. Higher MI values result in
higher cavitation activity [48]. To avoid any unwanted thermal effects during therapy, MI
usually ranges from 0.2 to 1. The FDA has set the maximum intensity level (MI) for clinical
ultrasound applications at 1.9 to minimize direct tissue damage [126].

8.2.4. Exposure Duration

The exposure duration is another important factor that may affect the extent of sono-
poration because the accumulated acoustic energy delivered to cells is equal to the product
of the acoustic intensity and the total exposure duration. Shorter pulse lengths are often
suggested as a way to reduce the cavitation-induced shear stress responsible for membrane
pore generation [127]. In the case of single-pulse ultrasound exposure, the pulse length is
the same as the exposure time, which has been shown to be proportional to treatment effi-
ciency and negatively proportional to cell viability [128]. Cavitation can also be effectively
achieved with very short pulses if high ultrasound pressure is applied [129]. The duration
of therapy for ultrasound-responsive nanocarrier-based treatment should be guided by
the time required for ultrasound to induce inertial or stable cavitation and sonoporation
while avoiding unwanted thermal effects [130]. In addition, the duration of the ultrasound
application depends on the type and location of the tissue to be treated, and the type of
microbubble used in the applied ultrasound intensity. Under high pressure, immediate
inertial cavitation, multiple or continuous injections of microbubbles, and prolonged treat-
ment time can improve the efficiency [131]. Similarly, the time needed for the optimized
movement of microbubbles also needs to be considered because prolonged treatment times
at low pressures might also result in heating effects [132].



Micromachines 2022, 13, 1508 16 of 25

8.3. Cellular Characteristics

Nanocarrier-based therapy occurs in living cells, and it is clear that therapy efficiency
is dependent on cellular properties. Cellular properties—such as cell density, cell types,
and different cell cycle phases—affect different phenomena that occur in nanocarrier-based
therapy, including cavitation and sonoporation.

8.3.1. Cell Type Variations

Different cell types are known to exhibit different responses to cavitation; varying
levels of treatment efficacy and cell viability responses have been recorded while using
different cancer cell lines in experiments involving the efficacy of ultrasound-responsive
nanocarrier-based treatment [133]. For example, variations in bioeffects have been observed
across different cancer cell types, including breast, liver, ovarian, and thyroid cancer cells.
Cell types have also been shown to affect the duration of cavitation, as varying times
have been recorded for different cell types [134]. Therefore, cell type variation should be
considered when designing nanocarriers for breast cancer therapy.

8.3.2. Cell Cycle Dependence

Cells that undergo cavitation in the G2 (growth and preparation for mitosis) and M
(mitosis) phases have been observed to have higher treatment efficiency than cells in the G0
(resting), G1 (growth), or S (DNA synthesis) phases [135,136]. Another study showed that
S-phase cells that undergo deoxyribonucleic acid (DNA) synthesis exhibit higher levels of
drug uptake in direct response to cavitation [137]. This warrants a thorough examination
of the cell cycle when designing ultrasound-responsive nanocarrier-based treatments.

8.3.3. Biochemical Effects

The extracellular fluid affects how a cell responds to a sonoporation episode. For
example, extracellular calcium (Ca2+) is known to be important in the repair of cavitation
sites, since the absence of this ion in the extracellular space critically prevents the cavitation
site from initiating repair [48]. In contrast, the addition of synthetic nanoparticles to the
extracellular space can modulate the efficiency of gene transfection [130]. Specifically, it
has been shown that the addition of polyethylene amine (PEI) to the extracellular fluid
can effectively prolong gene expression, thereby enhancing treatment efficiency. In stud-
ies involving cell culture, cavitation may be affected by the culture environment [138].
To better reproduce the biological effects of cavitation activity, studies were performed
within the entire volume of medium mixed with cells in suspension. However, stronger
targeted microbubble attachment and more vigorous bubble oscillation were observed
for cells cultured on rigid substrates, and higher pressures may be required to generate
cavitation in the cell membranes cultured on soft substrates. Attempts have also been
made to study the results of cavitation using monolayer cell samples to simulate the in vivo
tissue environment.

9. Challenges and Future Directions
9.1. Challenges

Combining ultrasound with nanoparticles has been shown to increase the treatment
efficacy in breast cancer chemotherapy. Ultrasound-mediated therapeutic agent delivery
leverages the enhanced permeability of cell membrane through the sonoporation. Increased
permeability allows more effective delivery of therapeutic agents through solid tumors
and other physiological barriers. There are a few FDA approved treatment methods
utilizing ultrasound responsive nanocarriers for breast cancer. Moreover, there are many
clinical trials being carried out that apply ultrasound responsive nanocarriers for breast
cancer treatment. Nevertheless, there are concerns regarding the utilization of ultrasound
based nanocarriers for breast cancer treatment. Ultrasound energies surpassing certain
amount can disrupt the cell membrane. Uncontrolled usage of ultrasound may result in
damage to nanocarriers and the therapeutic agent as well as other side effects to the normal
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cells. Furthermore, ultrasound is not effective for use in all environments, therefore it
needs optimization depending on the presence of gas within tissues acting as obstacle for
propagation of ultrasound waves.

Breast tumors possess biological characteristics which are divergent from normal
cells/tissues. The tumors and tumor micro-environment may possess physically compro-
mised vasculature, unusual extracellular matrix, and high interstitial fluid pressure that are
all challenges that must be overcame by nanocarriers for therapy efficacy. Nanocarriers
must penetrate the extracellular matrix of the tumors given the challenges of abnormal
blood flow, impaired venous and lymphatic drainage, and irregularity of vasculature all
affecting the effective diffusion of therapeutic agents to target tumor. Liposomes are the
widely used nanocarriers in breast chemotherapy due to their biodegradability, biocom-
patibility, and their physical properties. Even though liposomes suppress internal toxicity,
they could not improve efficacy. Liposomes are still struggling to balance between drug
bioavailability and prolonged stability. Dendrimers on the other hand allow for more flexi-
ble design and adaptation, but dendrimers have a drawback of cytotoxicity. Micelles pose
challenges with toxicity, instability, and chronic inflammation, but preferred for specific
targeted therapy. The more relevant challenge involving micelles in ultrasound responsive
nanocarrier application is poor tissue penetration capability.

9.2. Future Directions

In ultrasound responsive nanocarrier based therapy, it is important to consider safety.
Ultrasound parameters should be optimized. Currently, there are some thresholds used
based on FDA standard, but more studies considering ultrasound parameters are needed
to be set, which are application or disease specific. Furthermore, nanocarrier design should
consider more degradable materials while increasing efficacy. For instance, improvements
in mapping out, synthesizing, and amending biodegradable polymers should be the work to
focus on in the future to improve therapy efficacy and minimize adverse effects. Regarding
dendrimers, the work to follow will be to amend the shell with low toxicity materials to
adjust them to physiological factors.

Generally, future studies should focus on the way to provide a safer therapeutic
method while having a localized control of the drug effect. Moreover, current studies
are limited to in-vitro and animal model-based in-vivo studies. These studies should be
translated to clinical studies.

10. Other Breast Cancer Treatment Applications of Nanocarriers

Nanocarriers are not only used in breast chemotherapy, but also in radiotherapy, pho-
tothermal and photodynamic therapy, and surgical interventions (cryosurgery) [139,140].

Radiotherapy utilizes ionizing radiation produced by rays to treat tumor by killing lo-
cal cells [141]. It involves the precise application of high intensity ionizing radiations to the
tumor tissue leading to the death of tumor cells, as shown in Figure 8. Radiotherapy is pri-
marily used to treat primary and metastatic solid tumors [142]. However, radiation therapy
has limitations [143,144]. First, there is the possibility of harm to the surrounding healthy
tissue [139]. Second, tumor cells at distant from the radiation site are subjected to low
intensity radiation, which affects the efficacy of treatment [143]. Thirdly, tumor cells some-
times develop resistance to the ionizing radiation due to which increased dosage is utilized
resulting in the death of surrounding normal tissue [139,140,143,144]. Though an important
milestone has been achieved in better focusing and more regulated dosage of ionizing
radiation, radiation resistance and inherent flaws of therapeutics remain a challenge [139].
Studies suggested different approaches, including enhancing radio sensitization of tumor
tissue, enhancing radio resistance of healthy tissue, and reversal of radiation resistance
in tumor tissue; all of which were made possible via nanocarriers [144,145]. Nanoparticle
materials used in radiotherapy include precious metals, iron oxides, and semiconduc-
tors [146]. Precious metals nanocarriers are high atomic number metals, including gold,
silver, gadolinium, hafnium, platinum, and bismuth. Gold nanocarriers are popular due
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to their chemical stability, biocompatibility, and strong photoelectric absorption coeffi-
cient. Iron oxide nanocarriers have been shown to improve image-guided radiotherapy
by enhancing radiotherapy dose [147]. Likewise, semiconductor nanoparticles—especially
mesoporous silica—have been shown to enhance radiotherapy by producing fine hydroxyl
radicals that kill tumor cells effectively [148,149].
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Phototherapy is a type of medical treatment where light is utilized to treat conditions
including cancer and peripheral infections [150]. The two types of phototherapy now
employed for the treatment of diseases are photothermal therapy (PTT) and photodynamic
therapy (PDT) [151]. In PDT, the treatment is carried out through a sequence of photochem-
ical reactions triggered by photoactivated molecules or materials known as photosensitizer
(PS) medications. In PTT, a photothermal (PT) agent is used for the selective local heating
for repairing aberrant cells or tissues. Currently, PDT and PTT based on nanoparticles
(NPs) have demonstrated significant efficacy, modest invasion, and few side effects during
tumor treatment [139,140,150]. Using a novel class of light-to-heat conversion nanomateri-
als, cancer cells can be killed by converting light energy into heat energy. This has many
advantages compared to the conventional photothermal conversion materials [139]. The
first advantage is that—through particle surface modification—nanoparticles can produce
the impact of tumor-targeted aggregation, which increases the target tumor’s capacity
for enrichment. Secondly, the use of nanoparticles enables better imaging capability than
conventional photothermal materials. Thirdly, reversion of multidrug resistance can be
achieved by nanoparticle mediated phototherapy. Additionally, by compromising the
integrity of tumor cell membranes, nanoparticle-mediated PTT can improve the efficacy
of therapy.

In cryosurgery procedure, abnormal tissue is frozen and destroyed by using an instru-
ment called cryoprobe or an extremely cold liquid [152], as seen in Figure 9. Cryosurgery
has advantages, such as low invasiveness, less bleeding, less postoperative complications,
and low cost [153]. However, cryosurgery has limitations, including inadequate freezing
effectiveness and freezing injury to neighboring tissues [139]. As nanotechnology advanced,
the idea of nano-cryosurgery was put out. Nanoparticles (NPs) having particular physical
or chemical properties are introduced into tumor tissues as the core working principle of
nano-cryosurgery [154]. Not only can the efficiency and efficacy of freezing be increased by
making use of nanocarriers’ unique qualities, but also the direction of ice ball production
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and range adjustment. Breast tumor cryotherapy may be a practical way to get rid of
malignant breast tumors [152]. Due to the superficial localization of the glands, which
makes them accessible for both cryo-probes and imaging tools such as ultrasound (US), as
well as the lack of intervening vital organs that could be damaged during the procedure and
cause serious complications, the removal of breast tumors through cryoablations appears
to be feasible [152,154,155].
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