
Citation: Shahi, S.; Lee, H.

Autonomous Rear Parking via

Rapidly Exploring Random-Tree-

Based Reinforcement Learning.

Sensors 2022, 22, 6655. https://

doi.org/10.3390/s22176655

Academic Editor: Hyun Myung

Received: 4 August 2022

Accepted: 30 August 2022

Published: 2 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Autonomous Rear Parking via Rapidly Exploring
Random-Tree-Based Reinforcement Learning
Saugat Shahi and Heoncheol Lee *

Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea
* Correspondence: hclee@kumoh.ac.kr; Tel.: +82-54-478-7476

Abstract: This study addresses the problem of autonomous rear parking (ARP) for car-like nonholo-
nomic vehicles. ARP includes path planning to generate an efficient collision-free path from the
start point to the target parking slot and path following to produce control inputs to stably follow
the generated path. This paper proposes an efficient ARP method that consists of the following five
components: (1) OpenAI Gym environment for training the reinforcement learning agent, (2) path
planning based on rapidly exploring random trees, (3) path following based on model predictive
control, (4) reinforcement learning based on the Markov decision process, and (5) travel length esti-
mation between the start and the goal points. The evaluation results in OpenAI Gym show that the
proposed ARP method can successfully be used by minimizing the difference between the reference
points and trajectories produced by the proposed method.

Keywords: autonomous rear parking; OpenAI Gym; path planning; path following; model predictive
control; reinforcement learning

1. Introduction

The tremendous increase in the number of vehicles has influenced traffic and mobility.
Autonomous vehicles (AVs) have proven to be a solution for overcoming traffic problems [1].
In terms of the path planning and movement of AVs, significant achievements have been
made. However, autonomous parking remains a concern in terms of smooth path planning,
parking slot management, control gain, and motion planning. At the same time, the
reverse movement of an AV is a relatively challenging task because of the changes in the
control mode. Therefore, an efficient autonomous rear parking (ARP) method is required
to fully implement self-controlled AV systems. Several methods have been developed to
implement ARP or similar fields in AVs, which are briefly introduced in the next section.
This study focuses on the application of reinforcement learning (RL), which has been
recently highlighted, to ARP systems.

RL techniques are widely used for intelligent systems because of their learning
paradigm and potential to train the agent to act or adapt to the environment. Owing
to the extensive development of sensing and computing technologies over time, research in
AVs has significantly progressed [2]. In the mid-1990s, INRIA created one of the world’s first
experimental prototypes of an automatically parallel-parking electric car called Ligier [3].
In the early 2000s, smart parking sensor technology started to gain popularity, particularly
in malls and retail centers [4]. Based on recent statistics, the United States has almost 6000
parking spaces and 25 major automated parking systems (APSs). Simultaneously, Japan is
sustaining an estimated 1.6 million APSs [5].

The concept of the ARP system used in this study is illustrated in Figure 1. This
involves two steps: path planning to generate a reference path and path following to move
along the reference path. The AV acts as an agent for RL, and our path-planning method
based on rapidly exploring random trees (RRTs) is employed to generate a reference path
used as an expert demonstration to the agent for training purposes. The AV achieves its

Sensors 2022, 22, 6655. https://doi.org/10.3390/s22176655 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22176655
https://doi.org/10.3390/s22176655
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2962-3474
https://doi.org/10.3390/s22176655
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22176655?type=check_update&version=2

Sensors 2022, 22, 6655 2 of 15

path-following ability by using our path-following method based on model predictive
control (MPC), which determines the motion, position, and speed of the vehicle. RL is used
to evaluate the path-planning and path-following abilities of the AV based on the optimal
value- and optimal policy-based learning method, which generates a set of rewards and a
set of actions for the learning behavior of the reinforcement agent.

Sensors 2022, 22, 6655 2 of 15

used as an expert demonstration to the agent for training purposes. The AV achieves its

path-following ability by using our path-following method based on model predictive

control (MPC), which determines the motion, position, and speed of the vehicle. RL is

used to evaluate the path-planning and path-following abilities of the AV based on the

optimal value- and optimal policy-based learning method, which generates a set of re-

wards and a set of actions for the learning behavior of the reinforcement agent.

Figure 1. Concept of autonomous rear parking (ARP). The area surrounded by the yellow lines rep-

resents the target parking slot. The dotted green and red lines represent the reference path by path

planning and the actual path by path following, respectively.

The major contributions of this study are summarized as follows: (1) We created a

custom OpenAI Gym environment to train the RL agent. (2) We designed an RRT-based

path-planning method to create a waypoint for the target parking slot. The primary ap-

plication of this method is to generate an optimal reference path for the RL agent. (3) We

applied MPC to enable an AV to achieve path-following and to calculate the distance,

acceleration, and position of the vehicle. (4) We created a Markov decision process (MDP)-

based RL method to calculate the value and action required to evaluate the rear parking

ability of an AV. Value- and policy-based RL was applied to generate an optimal reward

and an optimal action for the agent.

The remainder of this paper is organized as follows. In Section 2, we introduce related

studies with a brief comparison and describe the problem of ARP. Section 3 describes the

proposed ARP method, which consists of RRT-based path planning, MPC-based path fol-

lowing, MDP-based RL, and distance estimation. Section 4 presents the simulation and

evaluation results. Finally, Section 5 presents the conclusions of the study.

2. Problem Description

2.1. Related Studies

In this section, we highlight some related studies on the ARP of AVs. This review

focuses on current research on autonomous parking and the methods implemented to

solve this problem, summarized in Table 1. Deep-RL-based trajectory planners for APSs

[6] have been developed using neural network architectures and considering the effi-

ciency of human demonstration. However, the efficient and highly precise training of the

agent remains an issue. MPC for path following in AVs focuses on control maneuver ap-

proaches in dynamic systems [7]. However, vehicle stability and the tracing of the desired

trajectory remain challenging. Additionally, a robust controller is required to maintain the

speed and position of the AV. The path-planning approach for automatic parking [8] high-

lights the local and global path-planner framework via multiple methods; however, it is

impossible to discuss the motion controller efficiency of the path created by the approach.

Figure 1. Concept of autonomous rear parking (ARP). The area surrounded by the yellow lines
represents the target parking slot. The dotted green and red lines represent the reference path by path
planning and the actual path by path following, respectively.

The major contributions of this study are summarized as follows: (1) We created
a custom OpenAI Gym environment to train the RL agent. (2) We designed an RRT-
based path-planning method to create a waypoint for the target parking slot. The primary
application of this method is to generate an optimal reference path for the RL agent. (3)
We applied MPC to enable an AV to achieve path-following and to calculate the distance,
acceleration, and position of the vehicle. (4) We created a Markov decision process (MDP)-
based RL method to calculate the value and action required to evaluate the rear parking
ability of an AV. Value- and policy-based RL was applied to generate an optimal reward
and an optimal action for the agent.

The remainder of this paper is organized as follows. In Section 2, we introduce related
studies with a brief comparison and describe the problem of ARP. Section 3 describes
the proposed ARP method, which consists of RRT-based path planning, MPC-based path
following, MDP-based RL, and distance estimation. Section 4 presents the simulation and
evaluation results. Finally, Section 5 presents the conclusions of the study.

2. Problem Description
2.1. Related Studies

In this section, we highlight some related studies on the ARP of AVs. This review
focuses on current research on autonomous parking and the methods implemented to
solve this problem, summarized in Table 1. Deep-RL-based trajectory planners for APSs [6]
have been developed using neural network architectures and considering the efficiency
of human demonstration. However, the efficient and highly precise training of the agent
remains an issue. MPC for path following in AVs focuses on control maneuver approaches
in dynamic systems [7]. However, vehicle stability and the tracing of the desired trajectory
remain challenging. Additionally, a robust controller is required to maintain the speed and
position of the AV. The path-planning approach for automatic parking [8] highlights the
local and global path-planner framework via multiple methods; however, it is impossible
to discuss the motion controller efficiency of the path created by the approach. The MDP
framework was introduced to learn proposed driving strategies [9] that evaluate the
automatic adaptation to the environment and learning the optimal strategy; however, to

Sensors 2022, 22, 6655 3 of 15

determine the strategies, a stochastic model of values or rewards should be defined. In
addition, it is quite difficult to examine the learning process without expert demonstration
and comparison with reference data.

Table 1. Related studies on autonomous rear parking.

Related
Studies

Objectives and Description
Methods

(#: Partially Used, •: Fully Used)

RRT MPC MDP-Based RL OpenAI Gym

[8,10] Local path planning •
[11,12] Path following and motion controller • #

[9,13] Mathematical model for decision making • # •

[6,14] Training the agent to adapt to the environment based on
human or expert demonstration • • #

[7,15] Sensitivity-based path-following approach • • #

[16,17] Actor–critic-based Q-learning with deep neural network • • •
Proposed
method

ARP based on path planning, predictive control, robust
decision making, and training of the agent • • • •

To resolve the problem of APSs, actor–critic-based RL [16] was introduced with Q-
learning with a deep neural network. It achieved better parking slot detection but failed to
resolve the path-tracking errors. Path-following control algorithms based on MPC [11] use
control techniques for AVs with rear-wheel steering; however, the overall path following is
based only on steering control, which requires the precise use of longitudinal and lateral
actuators. Deep inverse RL (IRL) [14] was used for the advance planning of an AV using
MaxEnt deep IRL. Although the desired driving behavior could be achieved, defining the
optimal strategy and policies for AVs is challenging. These expert-like driving behaviors
are difficult to achieve owing to the higher computational efficiency required.

A policy-based accelerated deep RL [17] algorithm was proposed for the analysis of
policy iterations to optimize the learning rate and accelerate the learning adaptability in
both discrete as well as continuous actions. In addition to its practical application in real
scenarios, the proposed algorithm is not robust. A model- and neural-controller-based
approach [15] was used to highlight the control actions based on sensors and dynamic
neural-based processes that optimize the ad hoc performance functions. The resulting
model was used to generate the control actions; however, the stability of the AV and robust
APS system delivered a poor approach. The sensitivity-based path-following algorithm [18],
an approach developed based on MPC, was aimed at improving scenario decomposition
for multiple stages. A large-scale optimization problem could be decomposed; however,
the uncertain parameters led to errors in non-linear programming.

2.2. Autonomous Rear Parking Problem

In the context of AVs, ARP is a concern because AVs are influenced by certain factors,
such as the environment, vehicle dynamics, controls, sensors, and decision making. In
this case, the forward movement of an AV is dependable and easy to achieve. However,
the backward (rear) movement of an AV is challenging. This study focused on resolving
the problem of rear parking of AVs. The actual problem with ARP is locating the target
parking slot (destination) and defining a path or trajectory, as the path should be smooth
and collision-free. Similarly, path navigation is also worth addressing. An OpenAI Gym
custom environment was created to depict the ARP problem. The scenario was customized
based on the vehicle model, dimensions of the original position of the vehicle, and target
parking slot. In addition, a control action was defined to generate a robust controller.

Sensors 2022, 22, 6655 4 of 15

The kinematics of a four-wheeled vehicle was provided by de Lope and Maravall [19],
as shown in Figure 2, illustrating the concept of the vehicle model, where (x, y) are the center
points of the rear axle; ρ is the radius of the circle; L is the distance between the front and
rear axles; and φ and θ are the steering angle and direction of vehicle heading, respectively.

Sensors 2022, 22, 6655 4 of 15

based on the vehicle model, dimensions of the original position of the vehicle, and target

parking slot. In addition, a control action was defined to generate a robust controller.

The kinematics of a four-wheeled vehicle was provided by de Lope and Maravall

[19], as shown in Figure 2, illustrating the concept of the vehicle model, where (x, y) are

the center points of the rear axle; 𝜌 is the radius of the circle; L is the distance between

the front and rear axles; and 𝜙 and 𝜃 are the steering angle and direction of vehicle head-

ing, respectively.

Figure 2. Schematic of the kinematics of car-like four-wheeled vehicles along with their parameters.

Several parameters linked with the car-like four-wheeled vehicle are shown in Figure

2. q = (x, y, 𝜃) denotes a configuration. The origin of the car is in the middle of the rear

axle, and the x-axis runs parallel to the primary axis of the car. The steering angle is de-

noted as 𝜙; L denotes the distance between the front and rear axles. The car moves in a

circular motion if the steering angle is set to 𝜙 and the radius of the circle is 𝜌. Factors

such as vehicle dynamics, steering angle, and angle of the vehicle with its position must

be precise for the control action to generate a motion controller.

3. Proposed Method

Figure 3 shows the workflow of the proposed method for ARP. It also shows the

process conducted using the proposed method as the AV routes toward the target parking

slot. In the proposed method for ARP, MPC-based path following is used as an expert

demonstration for the RL agent (AV). Based on the reference path created by the RRT and

expert demonstrations, the agent is trained in an OpenAI Gym environment based on op-

timal value- and policy-based learning.

Figure 2. Schematic of the kinematics of car-like four-wheeled vehicles along with their parameters.

Several parameters linked with the car-like four-wheeled vehicle are shown in Figure 2.
q = (x, y, θ) denotes a configuration. The origin of the car is in the middle of the rear axle,
and the x-axis runs parallel to the primary axis of the car. The steering angle is denoted
as φ; L denotes the distance between the front and rear axles. The car moves in a circular
motion if the steering angle is set to φ and the radius of the circle is ρ. Factors such as
vehicle dynamics, steering angle, and angle of the vehicle with its position must be precise
for the control action to generate a motion controller.

3. Proposed Method

Figure 3 shows the workflow of the proposed method for ARP. It also shows the
process conducted using the proposed method as the AV routes toward the target parking
slot. In the proposed method for ARP, MPC-based path following is used as an expert
demonstration for the RL agent (AV). Based on the reference path created by the RRT and
expert demonstrations, the agent is trained in an OpenAI Gym environment based on
optimal value- and policy-based learning.

Sensors 2022, 22, 6655 5 of 15
Sensors 2022, 22, 6655 5 of 15

Figure 3. Flowchart of the proposed method, describing the workflow for path planning, path fol-

lowing, and travel length estimation.

3.1. OpenAI Gym

OpenAI Gym is an interface used to implement reinforcement learning benchmarks

[20]. It provides a suitable environment to develop and test learning agents and offers a

wide range to create a customized environment according to our requirements. In the

proposed method, OpenAI Gym was used as a toolkit to create a custom ARP environ-

ment. The environment was defined using a matrix of [100 × 100], and we created a grid

graph to define the coordinates of the starting position of the AVs and the target parking

slot. The created environment assisted in efficiently implementing the proposed method

by enabling the training of the agent with respect to the state and policies derived from

RL.

3.2. RRT-Based Path Planning

The RRT is an efficient method used to meet the requirements of automatic rear-

parking path planning. This is a sampling-based method that creates a search tree from

the start point to the destination. In this study, we implemented an RRT to determine the

shortest collision-free path from the AV to the target parking slot. First, RRT aims to de-

termine the goal point (target slot) and, second, to draw waypoints. The positions of the

vehicle and the parking slot are defined by the array matrix. RRT-based path planning

[10] improves the efficiency of identifying the goal point and the path for ARP. As shown

in Figure 4, the path created by the RRT is used as a reference path by the RL agent (AV)

to train the agent for path following.

Figure 3. Flowchart of the proposed method, describing the workflow for path planning, path
following, and travel length estimation.

3.1. OpenAI Gym

OpenAI Gym is an interface used to implement reinforcement learning benchmarks [20].
It provides a suitable environment to develop and test learning agents and offers a wide
range to create a customized environment according to our requirements. In the proposed
method, OpenAI Gym was used as a toolkit to create a custom ARP environment. The
environment was defined using a matrix of [100 × 100], and we created a grid graph to
define the coordinates of the starting position of the AVs and the target parking slot. The
created environment assisted in efficiently implementing the proposed method by enabling
the training of the agent with respect to the state and policies derived from RL.

3.2. RRT-Based Path Planning

The RRT is an efficient method used to meet the requirements of automatic rear-
parking path planning. This is a sampling-based method that creates a search tree from
the start point to the destination. In this study, we implemented an RRT to determine
the shortest collision-free path from the AV to the target parking slot. First, RRT aims to
determine the goal point (target slot) and, second, to draw waypoints. The positions of the
vehicle and the parking slot are defined by the array matrix. RRT-based path planning [10]
improves the efficiency of identifying the goal point and the path for ARP. As shown in
Figure 4, the path created by the RRT is used as a reference path by the RL agent (AV) to
train the agent for path following.

Sensors 2022, 22, 6655 6 of 15
Sensors 2022, 22, 6655 6 of 15

Figure 4. RRT-based path planning to create an optimal reference path. The shortest and best colli-

sion-free path is created.

3.3. MPC-Based Path Following

In this section, we focus on the path following of an AV. This is an online control

method used to predict and optimize control actions. This technique defines the path-

following controller for an AV [12]. The MPC controller controls vehicle speed and steer-

ing, and the AV is directed through the path. As the reference path is generated, the MPC

tracks down the path, and the AV navigates to the assigned target parking slot. The posi-

tion, acceleration, steering, and other factors of an AV are controlled using an MPC path-

following controller. MPC is used to improve path following, control gain, vehicle steer-

ing, and position of the AV [21]. Two main classes of MPCs exist as shown in Table 2.

Table 2. Classification of linear and non-linear MPC.

Linear MPC Non-linear MPC

1. Uses a linear model:
𝑥 = 𝐴𝑥 + 𝐵𝑢

2. Quadratic cost function:
𝐹 = 𝑥𝑇 + 𝑄𝑥 + 𝑢𝑇𝑅𝑢

3. Linear constraints:
𝐻𝑥 + 𝐺𝑢 < 0

4. Quadratic program.

1. Non-linear model:
𝑥 = 𝑓(𝑥, 𝑢)

2. Cost function can be nonquadratic:
𝐹 = (𝑥, 𝑢)

3. Non-linear constraints:
ℎ(𝑥, 𝑢) < 0

4. Non-linear program

The concepts of linear and non-linear MPC in the proposed method are shown in

Figure 5. Quadratic and nonquadratic functions are defined to generate a stable controller

for motion control and path following, respectively.

Figure 4. RRT-based path planning to create an optimal reference path. The shortest and best
collision-free path is created.

3.3. MPC-Based Path Following

In this section, we focus on the path following of an AV. This is an online control
method used to predict and optimize control actions. This technique defines the path-
following controller for an AV [12]. The MPC controller controls vehicle speed and steering,
and the AV is directed through the path. As the reference path is generated, the MPC
tracks down the path, and the AV navigates to the assigned target parking slot. The
position, acceleration, steering, and other factors of an AV are controlled using an MPC
path-following controller. MPC is used to improve path following, control gain, vehicle
steering, and position of the AV [21]. Two main classes of MPCs exist as shown in Table 2.

Table 2. Classification of linear and non-linear MPC.

Linear MPC Non-linear MPC

1. Uses a linear model:

x = Ax + Bu

2. Quadratic cost function:

F = xT + Qx + uT Ru

3. Linear constraints:

Hx + Gu < 0

4. Quadratic program.

1. Non-linear model:

x = f (x, u)

2. Cost function can be nonquadratic:

F = (x, u)

3. Non-linear constraints:

h(x, u) < 0

4. Non-linear program

The concepts of linear and non-linear MPC in the proposed method are shown in
Figure 5. Quadratic and nonquadratic functions are defined to generate a stable controller
for motion control and path following, respectively.

Sensors 2022, 22, 6655 7 of 15
Sensors 2022, 22, 6655 7 of 15

Figure 5. Combined linear and non-linear MPCs. Both techniques are applied in the proposed

method.

3.4. MDP-Based Reinforcement Learning

The Markov decision process is a mathematical framework in RL. The agent interacts

with the ARP environment and collects information about the agent’s state, which gener-

ates a value-based reward and a policy-based action [13]. The primary application of MDP

is the evaluation of path following via RL. As the agent drives through the path to adapt

to the environment, a certain condition or reward is defined. To make a correct decision

during path following, a set of policies is defined. In the proposed method, two MDP

methods, value- and policy-based learning, were used.

To evaluate the MDP, we implemented Bellman’s equation based on the value and

policy iterations. Value, policy, and combined iterations are computed as follows:

𝑣𝑖+1
∗ (𝑠) ← max 𝑎 ∑ 𝑇(𝑠, 𝑎, 𝑠′)[𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑣𝑖

∗(𝑠′)] (1)

𝑣𝑖+1
∗ (𝑠) ← s′ ∑ 𝑇(𝑠, 𝜋(𝑠), 𝑠′)[𝑅(𝑠, 𝜋(𝑠), 𝑠′) + 𝛾𝑣𝑖

𝜋(𝑠′)] (2)

𝑣𝜋(𝑠) ← s′ ∑ 𝑇(𝑠, 𝜋(𝑠), 𝑠′)[𝑅(𝑠, 𝜋(𝑠), 𝑠′) + 𝛾𝑣𝑖
𝜋(𝑠′)] (3)

Using Equation (3), we can iterate or train the agent with optimal rewards and poli-

cies, which is the main application of the MDP in the proposed method.

3.5. Estimation of Travel Length

Although path planning and path following are completed, the calculation of the dis-

tance or accumulation of waypoints by AVs remains a concern. The interpolation method

is an effective approach to overcome this issue. Interpolation typically means the optimal

or the best approach. Because the reference and actual paths of the AV slightly diverge, a

linear interpolation method is introduced to estimate the travel length from the start point

to the target parking slot [22]. In addition, when AVs navigate toward the target parking

slot, there are multiple curves; thus, the interpolation method is primarily applied for path

smoothing.

The total travel length of the AV is calculated using the Euclidean distance as follows:

𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 (4)

where (𝑥1, 𝑦1) and (𝑥2, 𝑦2) are the coordinates of the first and second points, respectively.

Figure 5. Combined linear and non-linear MPCs. Both techniques are applied in the proposed method.

3.4. MDP-Based Reinforcement Learning

The Markov decision process is a mathematical framework in RL. The agent interacts
with the ARP environment and collects information about the agent’s state, which generates
a value-based reward and a policy-based action [13]. The primary application of MDP is
the evaluation of path following via RL. As the agent drives through the path to adapt
to the environment, a certain condition or reward is defined. To make a correct decision
during path following, a set of policies is defined. In the proposed method, two MDP
methods, value- and policy-based learning, were used.

To evaluate the MDP, we implemented Bellman’s equation based on the value and
policy iterations. Value, policy, and combined iterations are computed as follows:

v∗i+1(s)← max a ∑ T
(
s, a, s′

)
[R
(
s, a, s′

)
+ γv∗i

(
s′
)
] (1)

v∗i+1(s)← s′∑ T
(
s, π(s), s′

)
[R
(
s, π(s), s′

)
+ γvπ

i
(
s′
)
] (2)

vπ(s)← s′∑ T
(
s, π(s), s′

)
[R
(
s, π(s), s′

)
+ γvπ

i
(
s′
)
] (3)

Using Equation (3), we can iterate or train the agent with optimal rewards and policies,
which is the main application of the MDP in the proposed method.

3.5. Estimation of Travel Length

Although path planning and path following are completed, the calculation of the
distance or accumulation of waypoints by AVs remains a concern. The interpolation method
is an effective approach to overcome this issue. Interpolation typically means the optimal
or the best approach. Because the reference and actual paths of the AV slightly diverge,
a linear interpolation method is introduced to estimate the travel length from the start
point to the target parking slot [22]. In addition, when AVs navigate toward the target
parking slot, there are multiple curves; thus, the interpolation method is primarily applied
for path smoothing.

The total travel length of the AV is calculated using the Euclidean distance as follows:

d =

√
(x2 − x1)

2 + (y2 − y1)
2 (4)

where (x1, y1) and (x2, y2) are the coordinates of the first and second points, respectively.

Sensors 2022, 22, 6655 8 of 15

After calculating the distance, the midpoint between each point is calculated to enable
navigation of the AV through the desired points that match the reference path. As shown
in Figure 6, each midpoint is used by the AV to traverse the path; the midpoints behave as
an initial goal point and a start point for the next step. Calculation of the midpoint eases
the movement of the AV from one position to another.

m =

[
x1 + x2

2
,

y1 + y2

2

]
(5)

Sensors 2022, 22, 6655 8 of 15

After calculating the distance, the midpoint between each point is calculated to ena-

ble navigation of the AV through the desired points that match the reference path. As

shown in Figure 6, each midpoint is used by the AV to traverse the path; the midpoints

behave as an initial goal point and a start point for the next step. Calculation of the mid-

point eases the movement of the AV from one position to another.

𝑚 = [
𝑥1 + 𝑥2

2
,
𝑦1 + 𝑦2

2
] (5)

Figure 6. Travel length estimation. Midpoints are used as the checkpoints for the navigation of AVs.

4. Evaluation Results

This section describes the experimental process conducted using the proposed

method. It includes the training of agents based on RL, as shown in Figure 7. Value- and

policy-based learning, simulation-based experimental results, and the real vehicle test

setup are discussed.

The simulations and experimental settings were carried out in the OpenAI gym

framework using python 3.7.0, where RL acted as a backbone for training the agent. The

basic parameters for experimental vehicle and the environment are shown in Table 3. The

environment was represented in the form of a graph using coordinate geometry, where

(x, y) = (100, 100). The starting position of AV, the parking and target parking slot, and the

path were represented using the coordinate of the graph. The starting position of the AV

was constant in all scenarios, i.e., (x, y) = (0, 90), while the position of the target parking

slot was manually input to compare the proposed method in different scenarios and con-

ditions. The starting angle of the AV was parallel to the x-axis, i.e., 180 degrees. We exper-

imented in six different cases, as shown in Figure 8 i.e., Case 1, Case 2, Case 3, Case 4, Case

5, and Case 6 respectively.

Figure 6. Travel length estimation. Midpoints are used as the checkpoints for the navigation of AVs.

4. Evaluation Results

This section describes the experimental process conducted using the proposed method.
It includes the training of agents based on RL, as shown in Figure 7. Value- and policy-
based learning, simulation-based experimental results, and the real vehicle test setup
are discussed.

The simulations and experimental settings were carried out in the OpenAI gym
framework using python 3.7.0, where RL acted as a backbone for training the agent. The
basic parameters for experimental vehicle and the environment are shown in Table 3. The
environment was represented in the form of a graph using coordinate geometry, where (x,
y) = (100, 100). The starting position of AV, the parking and target parking slot, and the
path were represented using the coordinate of the graph. The starting position of the AV
was constant in all scenarios, i.e., (x, y) = (0, 90), while the position of the target parking slot
was manually input to compare the proposed method in different scenarios and conditions.
The starting angle of the AV was parallel to the x-axis, i.e., 180 degrees. We experimented
in six different cases, as shown in Figure 8 i.e., Case 1, Case 2, Case 3, Case 4, Case 5, and
Case 6 respectively.

Sensors 2022, 22, 6655 9 of 15

Table 3. Parameters for experimental vehicle and environment.

Component Parameter

Vehicle parameters

Width 18.2 cm

Wheelbase 19.8 cm

Length 28.9 cm

Distance between front and rear wheel axles 2.6 cm

Minimum turning radius 34.02 cm

Environment parameters

Number of parking slots 4

Number of available parking slots 1

Environment boundary (x, y) = (100, 100)

4.1. Value- and Policy-Based Training

RL was applied to train the agent to adapt to the environment. A typical environmental
scenario is shown in Figure 1. RRT-based path-planning methods generate a reference path
that acts as an expert path or waypoint for the agent. RL was introduced to evaluate the
path-following ability based on MPC.

The value- and policy-based learning techniques based on RL are shown in Figure 7.
This indicates that the training process achieved better results. MDP-based RL aims to
optimize the learning ability to adapt the reference or expert path by generating the optimal
reward function for each state, i.e., the state–reward pair. The chart in Figure 7 shows the
reward (value-based) in each state of the reference path as the agent navigates toward the
target parking slot.

Sensors 2022, 22, 6655 9 of 15

Table 3. Parameters for experimental vehicle and environment.

 Component Parameter

Vehicle parameters

Width 18.2 cm

Wheelbase 19.8 cm

Length 28.9 cm

Distance between front and rear wheel axles 2.6 cm

Minimum turning radius 34.02 cm

Environment parameters

Number of parking slots 4

Number of available parking slots 1

Environment boundary (x, y) = (100, 100)

4.1. Value- and Policy-Based Training

RL was applied to train the agent to adapt to the environment. A typical environ-

mental scenario is shown in Figure 1. RRT-based path-planning methods generate a ref-

erence path that acts as an expert path or waypoint for the agent. RL was introduced to

evaluate the path-following ability based on MPC.

The value- and policy-based learning techniques based on RL are shown in Figure 7.

This indicates that the training process achieved better results. MDP-based RL aims to

optimize the learning ability to adapt the reference or expert path by generating the opti-

mal reward function for each state, i.e., the state–reward pair. The chart in Figure 7 shows

the reward (value-based) in each state of the reference path as the agent navigates toward

the target parking slot.

Figure 7. Training process of an agent via RL. The training success rate of the agent is validated

based on value and policy.

Policy-based RL determines the optimal policy for each state, i.e., the state–action

pair, as shown in Figure 7. This method optimizes the learning behavior of the agent by

producing a set of actions (policy-based) in terms of L, R, U, D, and X (left, right, up, down,

and exit, respectively).

Figure 7. Training process of an agent via RL. The training success rate of the agent is validated based
on value and policy.

Policy-based RL determines the optimal policy for each state, i.e., the state–action
pair, as shown in Figure 7. This method optimizes the learning behavior of the agent by
producing a set of actions (policy-based) in terms of L, R, U, D, and X (left, right, up, down,
and exit, respectively).

Sensors 2022, 22, 6655 10 of 15Sensors 2022, 22, 6655 10 of 15

(a)

(b)

(c) (d)

Figure 8. Cont.

Sensors 2022, 22, 6655 11 of 15Sensors 2022, 22, 6655 11 of 15

(e) (f)

Figure 8. Comparison of path-following techniques with respect to the reference path. For each case,

the MPC method was compared with the proposed method. (a) Case 1. (b) Case 2. (c) Case 3. (d)

Case 4. (e) Case 5. (f) Case 6.

4.2. ARP Results

The environment setup was established in the OpenAI Gym based on the array ma-

trix, where the position of the AV parking slot and target parking slot were defined as a

matrix. The simulation results provided a better approach for automatic rear parking than

the other approaches discussed in Section 2.1, as shown in six different environment set-

tings in Figure 9 The errors in the proposed method for the reference path were smaller

than those in the MPC-based method.

The quantitative analysis was conducted as follows: According to the path following

based on MPC and the proposed method, we calculated the perfection and errors by com-

paring the reference and actual paths of AVs. Cases 1, 2, 3, 4, 5, and 6 were environments

with different parameters. The position of the target parking slot was changed in each

case. However, the starting position remained the same for all cases. A comparison be-

tween the MPC and the proposed method showed that the proposed method has higher

accuracy.

Table 4 shows the quantitative analysis we used to calculate the accuracy using only

the MPC method. We used a distance formula based on coordinates to calculate the error

distance estimation and calculate the accuracy and error percentage. Table 5 is the analysis

of the proposed method used to calculate the accuracy of ARP. We analyzed the calcula-

tion in all six cases with different parameters to compare the accuracy of the proposed

method versus the MPC-based method. The average accuracy of the proposed method

was 94.50%, as shown in Table 5, which was higher than that of the MPC-based method.

Moreover, the average error percentage was reduced almost by half to 5.50%. Tables 4 and

5 show the overall calculation and comparison between the MPC-based method and the

proposed method across six different environment settings with different parameters.

Figure 8. Comparison of path-following techniques with respect to the reference path. For each
case, the MPC method was compared with the proposed method. (a) Case 1. (b) Case 2. (c) Case 3.
(d) Case 4. (e) Case 5. (f) Case 6.

4.2. ARP Results

The environment setup was established in the OpenAI Gym based on the array matrix,
where the position of the AV parking slot and target parking slot were defined as a matrix.
The simulation results provided a better approach for automatic rear parking than the
other approaches discussed in Section 2.1, as shown in six different environment settings in
Figure 9. The errors in the proposed method for the reference path were smaller than those
in the MPC-based method.

The quantitative analysis was conducted as follows: According to the path following
based on MPC and the proposed method, we calculated the perfection and errors by
comparing the reference and actual paths of AVs. Cases 1, 2, 3, 4, 5, and 6 were environments
with different parameters. The position of the target parking slot was changed in each case.
However, the starting position remained the same for all cases. A comparison between the
MPC and the proposed method showed that the proposed method has higher accuracy.

Table 4 shows the quantitative analysis we used to calculate the accuracy using only
the MPC method. We used a distance formula based on coordinates to calculate the error
distance estimation and calculate the accuracy and error percentage. Table 5 is the analysis
of the proposed method used to calculate the accuracy of ARP. We analyzed the calculation
in all six cases with different parameters to compare the accuracy of the proposed method
versus the MPC-based method. The average accuracy of the proposed method was 94.50%,
as shown in Table 5, which was higher than that of the MPC-based method. Moreover, the
average error percentage was reduced almost by half to 5.50%. Tables 4 and 5 show the
overall calculation and comparison between the MPC-based method and the proposed
method across six different environment settings with different parameters.

Sensors 2022, 22, 6655 12 of 15

Table 4. Quantitative analysis used to calculate the accuracy using only MPC.

Scenario Total Error Count Total Error Distance Estimation
(Error =

√
(x2−a2)2 + (y2−b2)2)

Error %
Error % = Total Error Distance
Estimation/Total Error Count

Accuracy (%)

Case 1 8 1.24 15.5% 84.5%

Case 2 14 1.19 8.5% 91.5%

Case 3 13 1.09 8.38% 91.62%

Case 4 14 1.02 7.28% 92.72%

Case 4 15 1.01 6.7% 93.3%

Case-6 11 1.12 10.18% 89.82%

Average 9.42% 90.58%

Table 5. Quantitative analysis used to calculate the accuracy using the proposed method (RL).

Scenario Total Error Count Total Error Distance Estimation
(Error =

√
(x2−a2)2 + (y2−b2)2)

Error %
Error % = Total Error Distance
Estimation/Total Error Count

Accuracy (%)

Case 1 6 0.26 4.33% 95.67%

Case 2 11 0.7 6.33% 93.67%

Case 3 10 0.64 6.4% 93.6%

Case 4 9 0.38 4.22% 95.78%

Case 4 11 0.79 7.18% 92.82%

Case 6 9 0.41 4.55% 95.45%

Average 5.50% 94.50%

The comparison, as shown in Table 6, demonstrates that the proposed method is
efficient and has great potential to solve the ARP problem compared with the existing
traditional approaches.

Table 6. Comparison of experimental results between proposed ARP system and existing approaches.

References Methods Computational Time (s) Error (%) Accuracy (%)

Zhang et al. [23] A*, optimization-based collision avoidance 13.86 s 15.80% 84.20%

Zhang et al. [24] Breadth-first, Bellman–Ford algorithm 12.72 s 13.30% 86.70%

Table 3 MPC 10.99 s 9.42% 90.58%
Table 4 Proposed method 4.33 s 5.50% 94.50%

Figure 9 shows the actual simulation results for the six different scenarios, which are
the cases depicted in Figure 8. The locations and orientations of the vehicle are represented
by a graphical car model. As shown in the figure, all the results with the proposed ARP
system were successful.

Sensors 2022, 22, 6655 13 of 15Sensors 2022, 22, 6655 13 of 15

(a) (b)

(c) (d)

(e) (f)

Figure 9. Simulation results in six different scenarios illustrating the proposed ARP system. (a)
Case 1. (b) Case 2. (c) Case 3. (d) Case 4. (e) Case 5. (f) Case 6.

5. Conclusions

Figure 9. Simulation results in six different scenarios illustrating the proposed ARP system. (a) Case 1.
(b) Case 2. (c) Case 3. (d) Case 4. (e) Case 5. (f) Case 6.

Sensors 2022, 22, 6655 14 of 15

5. Conclusions

In this study, we developed a combinational approach based on RL to solve the
problem of ARP. The proposed method includes RRT-based path planning, MPC-based path
following, MDP, and RL. The overall ARP results and quantitative analysis demonstrated
that the proposed method was successful. In addition, the comparison results showed
that the proposed method could reduce the errors in path following in ARP. The proposed
method can be applied in real scenarios and to develop a model to optimize ARP systems
for AVs. Similarly, the proposed method can provide a reference for future extensive
research such as forward parking and parallel parking, and can be implemented in the
navigation of mobile robots in crowded and cluttered environments.

Author Contributions: All authors contributed the present paper with the same effort in finding
available literature and writing the paper. S.S. designed and implemented the proposed method. H.L.
described the system and problems. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Acknowledgments: This work was supported in part by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIT) (No. 2021R1F1A1064358), and in part by
Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded
by the Korea government (MSIT) (No. 2021-0-02087, Application Techniques of the 3D Semantic
Scene Reconfiguration for Social Interaction-based Multi-Robot Autonomous Navigation).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gora, P.; Rüb, I. Traffic Models for Self-driving Connected Cars. Transp. Res. Procedia 2016, 14, 2207–2216. [CrossRef]
2. Campbell, S.; O’Mahony, N.; Krpalcova, L.; Riordan, D.; Walsh, J.; Murphy, A.; Ryan, C. Sensor Technology in Autonomous

Vehicles: A review. In Proceedings of the 2018 29th Irish Signals and Systems Conference (ISSC), Belfast, UK, 21–22 June 2018;
pp. 1–4.

3. Wikipedia, Automatic Parking. Available online: https://en.wikipedia.org/wiki/Automatic_parking (accessed on 1 March 2022).
4. Cleverciti, the History of Smart Parking. Available online: https://www.cleverciti.com/en/resources/blog/history-of-smart-

parking (accessed on 1 March 2022).
5. Get My Parking, History of Automated Parking System. Available online: https://blog.getmyparking.com/2017/07/12/history-

of-automated-parking-system/ (accessed on 1 March 2022).
6. Gao, J.; Ye, W.; Guo, J.; Li, Z. Deep Reinforcement Learning for Indoor Mobile Robot Path Planning. Sensors 2020, 20, 5943.

[CrossRef] [PubMed]
7. Alessandretti, A.; Aguiar, A.P.; Jones, C.N. Trajectory-tracking and path-following controllers for constrained underactuated

vehicles using Model Predictive Control. In Proceedings of the 2013 European Control Conference (ECC), Zurich, Switzerland,
17–19 July 2013; pp. 1371–1376.

8. Zheng, K.; Liu, S. RRT based Path Planning for Autonomous Parking of Vehicle. In Proceedings of the 2018 IEEE 7th Data Driven
Control and Learning Systems Conference (DDCLS), Enshi, China, 25–27 May 2018; pp. 627–632.

9. Alagoz, O.; Hsu, H.; Schaefer, A.J.; Roberts, M.S. Markov decision processes: A tool for sequential decision making under
uncertainty. Med. Decis. Mak. Int. J. Soc. Med. Decis. Mak. 2010, 30, 474–483. [CrossRef] [PubMed]

10. Li, Y. An RRT-Based Path Planning Strategy in a Dynamic Environment. In Proceedings of the 2021 7th International Conference
on Automation, Robotics and Applications (ICARA), Prague, Czech Republic, 4–6 February 2021; pp. 1–5.

11. Yu, C.; Zheng, Y.; Shyrokau, B.; Ivanov, V. MPC-based Path Following Design for Automated Vehicles with Rear Wheel Steering.
In Proceedings of the 2021 IEEE International Conference on Mechatronics (ICM), Kashiwa, Japan, 7–9 March 2021; pp. 1–6.

12. Guo, H.; Cao, D.; Chen, H.; Sun, Z.; Hu, Y. Model predictive path following control for autonomous cars considering a measurable
disturbance: Implementation, testing, and verification. Mech. Syst. Signal Process. 2019, 118, 41–60. [CrossRef]

13. Jayaweera, S.K. Markov Decision Processes. Signal Processing for Cognitive Radios; Wiley: Hoboken, NJ, USA, 2015; pp. 207–268.
14. You, C.; Lu, J.; Filev, D.; Tsiotras, P. Advanced planning for autonomous vehicles using reinforcement learning and deep inverse

reinforcement learning. Robot. Auton. Syst. 2019, 114, 1–18. [CrossRef]
15. Kim, J.-H.; Huh, J.-H.; Jung, S.-H.; Sim, C.-B. A Study on an Enhanced Autonomous Driving Simulation Model Based on

Reinforcement Learning Using a Collision Prevention Model. Electronics 2021, 10, 2271–2290. [CrossRef]
16. Zhang, P.; Xiong, L.; Yu, Z.; Fang, P.; Yan, S.; Yao, J.; Zhou, Y. Reinforcement Learning-Based End-to-End Parking for Automatic

Parking System. Sensors 2019, 19, 3996. [CrossRef] [PubMed]

http://doi.org/10.1016/j.trpro.2016.05.236
https://en.wikipedia.org/wiki/Automatic_parking
https://www.cleverciti.com/en/resources/blog/history-of-smart-parking
https://www.cleverciti.com/en/resources/blog/history-of-smart-parking
https://blog.getmyparking.com/2017/07/12/history-of-automated-parking-system/
https://blog.getmyparking.com/2017/07/12/history-of-automated-parking-system/
http://doi.org/10.3390/s20195493
http://www.ncbi.nlm.nih.gov/pubmed/32992750
http://doi.org/10.1177/0272989X09353194
http://www.ncbi.nlm.nih.gov/pubmed/20044582
http://doi.org/10.1016/j.ymssp.2018.08.028
http://doi.org/10.1016/j.robot.2019.01.003
http://doi.org/10.3390/electronics10182271
http://doi.org/10.3390/s19183996
http://www.ncbi.nlm.nih.gov/pubmed/31527481

Sensors 2022, 22, 6655 15 of 15

17. Wei, Z.; Xu, J.; Lan, Y.; Guo, J.; Cheng, X. Reinforcement Learning to Rank with Markov Decision Process. In Proceedings of the
40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Tokyo, Japan, 7–11 August
2017; pp. 945–948.

18. Tang, W.; Yang, M.; Le, F.; Yuan, W.; Wang, B.; Wang, C. Micro-Vehicle-Based Automatic Parking Path Planning. In Proceedings of
the 2018 IEEE International Conference on Real-Time Computing and Robotics (RCAR), Kandima, Maldives, 1–5 August 2018;
pp. 160–165.

19. Xu, W.; Wen, Z.; Zhao, H.; Zha, H. A vehicle model for micro-traffic simulation in dynamic urban scenarios. In Proceedings of the
2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 2267–2274.

20. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. OpenAI Gym. arXiv 2016,
arXiv:1606.01540.

21. Giacomelli, M.; Colombo, D.; Faroni, M.; Schmidt, O.; Simoni, L.; Visioli, A. Comparison of Linear and Nonlinear MPC on
Operator-In-the-Loop Overhead Cranes. In Proceedings of the 2019 7th International Conference on Control, Mechatronics and
Automation (ICCMA), Delft, The Netherlands, 6–8 November 2019; pp. 221–225.

22. Wedel, A.; Franke, U.; Badino, H.; Cremers, D. B-spline modeling of road surfaces for freespace estimation. In Proceedings of the
2008 IEEE Intelligent Vehicles Symposium, Eindhoven, The Netherlands, 4–6 June 2008; pp. 828–833.

23. Zhang, X.; Liniger, A.; Sakai, A.; Borrelli, F. Autonomous Parking Using Optimization-Based Collision Avoidance. In Proceedings
of the 2018 IEEE Conference on Decision and Control (CDC), Miami, FL, USA, 17–19 December 2018; pp. 4327–4332.

24. Zhang, C.; Zhou, R.; Lei, L.; Yang, X. Research on Automatic Parking System Strategy. World Electr. Veh. J. 2021, 12, 200. [CrossRef]

http://doi.org/10.3390/wevj12040200

	Introduction
	Problem Description
	Related Studies
	Autonomous Rear Parking Problem

	Proposed Method
	OpenAI Gym
	RRT-Based Path Planning
	MPC-Based Path Following
	MDP-Based Reinforcement Learning
	Estimation of Travel Length

	Evaluation Results
	Value- and Policy-Based Training
	ARP Results

	Conclusions
	References

