
Citation: Cho, H.W.; Song, Y.J. High

Speed Decoding for High-Rate and

Short-Length Reed–Muller Code

Using Auto-Decoder. Appl. Sci. 2022,

12, 9225. https://doi.org/10.3390/

app12189225

Academic Editor: Valentino Santucci

Received: 2 August 2022

Accepted: 13 September 2022

Published: 14 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Communication

High Speed Decoding for High-Rate and Short-Length
Reed–Muller Code Using Auto-Decoder
Hyun Woo Cho and Young Joon Song *

Department of Electronic Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea
* Correspondence: yjsong@kumoh.ac.kr

Abstract: In this paper, we show that applying a machine learning technique called auto-decoder (AD)
to high-rate and short length Reed–Muller (RM) decoding enables it to achieve maximum likelihood
decoding (MLD) performance and faster decoding speed than when fast Hadamard transform (FHT)
is applied in additive white Gaussian noise (AWGN) channels. The decoding speed is approximately
1.8 times and 125 times faster than the FHT decoding for R(1, 4) and R(2, 4), respectively. The number
of nodes in the hidden layer of AD is larger than that of the input layer, unlike the conventional
auto-encoder (AE). Two ADs are combined in parallel and merged together, and then cascaded to
one fully connected layer to improve the bit error rate (BER) performance of the code.
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1. Introduction

Machine learning (ML) techniques are widely used in many fields, such as image
recognition, natural language processing, and autonomous driving [1–3]. Auto-encoder
(AE) unsupervised ML techniques are known for their capacity to extract important features
of data while reducing unwanted noise, and thus are useful in generating new images with
key features [4]. AEs perform roles such as dimensionality reduction, image denosing,
image generation, and abnormality detection, and are used in various fields such as
medical care, autonomous driving, and image recognition [5–8]. In addition, various
studies are being undertaken to apply machine learning technology to communication
systems, such as channel coding, massive multi-input and multi-output, multiple access,
resource allocation, and network security [9,10]. In this study, we modify an AE to a
new model called the auto-decoder (AD), which is suitable for reducing the noise that
corrupts the transmitted information signal in channel coding. The proposed AD is used
to decode Reed–Muller (RM) code of high-rate and short length, which is used in many
communication systems, such as long-term evolution (LTE) and fifth-generation wireless
(5G) cellular systems [11,12], where the minimum latency delay is 5 ms. The requirement
is to further reduce this delay in sixth-generation (6G) wireless systems [13,14]. Since
we consider high-rate Reed–Muller code of short length, such as R(2, 4) with code rate
0.6875, we use a fast Hadamard transform (FHT) decoding method [15] for performance
comparison instead of the recursive decoding of [16,17] which is useful for low-rate RM
code. Because the RM code has an extremely simple structure and can be decoded with
maximum likelihood decoding (MLD) performance using FHT, it is especially useful in
control channels in wireless communication systems. We first illustrate the key differences
between the conventional AE and the proposed AD, and then show how to construct the
decoder for the RM code using it. After training the AD model for the code, we found
that the proposed method showed similar performance to the conventional FHT method
with faster decoding speed. For improved performance, we present a parallel auto-decoder
(PAD) that combines a couple of ADs in parallel.
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2. RM Decoder Based on AD

This section explains the RM decoder using AD and compares the performance of
FHT decoding. Table 1 shows the notations used in this paper.

Table 1. Summarizes the notation used in the paper.

Symbol Description

n length of codeword (bits)
r, m parameters of RM code (0 ≤ r ≤ m)

k length of message (bits)
N number of nodes in FC layer
y one-hot encoding vector
m message vector
z output of FC layer
S number of validation sets

ρt, ρv,s
SNRs for the training set and the s-th

validation set

2.1. Auto-Decoder

The AD, which plays a central role in decoding of the RM code, is modified from
a conventional AE. Figure 1 shows the basic structures of the conventional AE and the
proposed AD, highlighting the difference between the number of nodes in two different
hidden layers. The number of nodes in the hidden layer of the AE in Figure 1a is less than
that of the input layer. In comparison to the AE, the number of nodes in the hidden layer
of the AD in Figure 1b is larger than that of the input layer. Figure 2 shows the typical
structure of an AD that is composed of three hidden layers for the decoder; the number
of nodes in each layer is presented in Table 2. The number of nodes in the input layer is
the same as the length of the codeword n. The number of nodes in the first hidden layer
is 2n, in the second hidden layer is 4n, in the last hidden layer is again 2n, and finally the
output layer becomes n again. In general, a neural network with a multilayer perceptron
shows much better performance than a single-layer perceptron. From this perspective, we
can speculate that the hidden layer structure of the AD is more suitable for decoding short
length codes, such as RM code, than the AE, in which the number of nodes of the hidden
layer becomes smaller as the depth of the hidden layer increases, which may result in a
smaller number of nodes, especially in the middle of the hidden layer, resulting in poor
decoding performance.

(a)

Figure 1. Cont.
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(b)

Figure 1. Structure of (a) auto-encoder and (b) auto-decoder.

Figure 2. Structure of auto-decoder with 3 hidden layers.

Table 2. Number of nodes for layers in AD.

Layer Number of Nodes

input n
1st hidden 2n
2nd hidden 4n
3rd hidden 2n

output n

2.2. RM Decoding Model

The RM code of n = 2m bits with the minimum Hamming distance of 2m−r used to
encode k = ∑r

i (
m
i ) bits of message is denoted as R(r, m) [15,18]. To illustrate the proposed

decoding model, we consider two cases of RM code, R(1, 4) and R(2, 4) of code length
16, because the model training for longer code consumes more time. Figure 3 shows the
proposed RM decoder structure constructed in such a way that the AD of Figure 2 is
followed by one fully connected (FC) layer with the number of nodes defined as N = 2k,
and, thus, N = 25 for R(1, 4) and N = 211 for R(2, 4). Because N = 2k is equivalent to
the number of all possible messages transmitted, we use the FC layer as the output layer.
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Moreover, a softmax activation function is used to normalize the output of the model to a
probability distribution over all possible transmitted messages. Figure 4 shows the method
used to estimate the transmitted message bits of the (16,11) code of R(2, 4) from the output
layer. The output node index of the FC layer is the decimal value corresponding to the
message bits, and the transmitted message bits are estimated by converting the index of
the maximum output node value into k = 11 binary bits.

Figure 3. Structure of RM decoder based on AD.

Figure 4. Message estimation of R(2, 4) from the output of FC layer.

2.3. Hyperparameters

Table 3 lists the hyperparameters used for training the RM decoder. Let y = {0, 1}N =(
y0, y1, · · · , yj, · · · , yN−1

)
= (0, 0, · · · , 1, · · · , 0) be the one-hot encoded vector for the

message m = (m0, m1, · · · , mk − 1), where j = ∑k−1
l=0 ml2l is the decimal value for m,

and all bits of y are zeros, except the value of one at the j-th bit. Let zi be the i-th output of
the FC layer. The cross-entropy is given by:

L(y, z) = −
N−1

∑
i=0

[yi log zi + (1− yi) log(1− zi)] (1)

is used as the loss function, and the Adam optimizer is used for model training. The training
data set was 2k × 105, the epoch was 102, and the batch size was set to 104. Normalized
validation error (NVE) of [19]

NVE =
1
S

S

∑
s=1

BERAD(ρt, ρv,s)

BERFHT(ρv,s)
(2)
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is used to select the appropriate signal-to-noise (SNR) ratio for model training, where ρt
and ρv,s are the SNRs for the training set and the s-th validation set, respectively, and S
is the number of all possible different validation sets. BERAD(ρt, ρv,s) is the bit error rate
when the RM decoder with AD is trained at ρt and evaluated at ρv,s. Table 4 shows the NVE
values at different training SNRs, from 0 dB to 7 dB with 1 dB intervals, and we observe
that NVE = 0.945 at ρt = 1 dB is the lowest value among them. Thus, the training SNR is
set to 1 dB.

Table 3. Hyperparameters for model training.

loss function cross-entropy
optimizer Adam

training data set 2k × 105

epoch 102

batch size 104

Table 4. NVE for different training SNRs.

Training SNR
(ρt)

0 1 2 3

NVE 0.972 0.945 0.982 1.138

Training SNR
(ρt)

4 5 6 7

NVE 0.981 1.320 1.529 2.489

2.4. Performance Evaluation

To evaluate the performance of the proposed decoder using AD, we consider two
cases of RM code, R(1, 4) and R(2, 4) whose code structure is simple, with a short message
length. Figure 5 shows the BER of RM coding with the AD compared with FHT decoding.
The BER at each SNR was calculated when the maximum number of error bits was 500,
or the number of codewords generated reached 105. From the graph, we can see that
the two methods show almost the same BER performance. Table 5 shows the decoding
times for R(1, 4) and R(2, 4) using FHT decoding and the AD. A computer with a central
processing unit (CPU) of Intel i9-7920, graphics processing unit (GPU) of Nvidia Titan XP,
and 64 GB random access memory (RAM) was used for the evaluation. If a GPU is used
for decoding, the proposed method can have an advantage over the method using FHT,
and for a fair comparison, we measure the decoding time using a CPU without a GPU.
The decoding time of the proposed method was 1.8 times faster than the decoding time of
FHT decoding for R(1, 4) and 125 times faster for R(2, 4). This derives from the fact that
(16,11) R(2, 4) decoding using FHT needs 26 FHTs, considering six masking bits, whereas
(16,5) R(1, 4) decoding needs only one FHT operation [15]. The main difference between
the RM decoding using the AD for R(1, 4) and R(2, 4) is the number of nodes in the FC
layer, which increases the number of parameters.

Table 5. Decoding time of RM code using FHT and AD.

RM Code Method Time (ms)

R(1, 4) FHT 0.6012
AD 0.3327

R(2, 4) FHT 46.625
AD 0.3704
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Figure 5. BER of RM decoding with FHT and AD.

3. PAD

To improve the BER performance of the RM decoder using a single AD, we present
a PAD composed of multiple ADs. We call an AD in a PAD a constituent auto-decoder
(CAD). To illustrate the structure of a PAD, we set the number of CADs in the PAD to
five, as shown in Figure 6, where the output layers of all CADs are simply added at the
merge layer with n = 2m nodes. Each CAD has the same structure, except for the different
number of nodes at the first, second, and third hidden layers, as described in Table 6, where
the first and the third hidden layers have the same number of nodes; thus, we find the
symmetry structure of the PAD based on the second hidden layer or middle layer. As in the
case of the AD, the activation functions for the hidden and output layers of CADs in the
PAD are exponential linear unit (ELU) and tanh functions, respectively [20,21]. The PAD
is followed by the FC layer, and the hyperparameters for the decoder model using PAD
are the same as in the case of the AD. Figure 7 shows the BER performance for R(1, 4) and
R(2, 4) using the conventional FHT decoder, and the proposed decoder model denoted as
PAD-i, where i CADs are used. The specifications of the computer and the conditions for
the BER calculation in Figure 7 for PAD are the same as those used in Figure 5 for the AD.
Figure 7a shows the BER for R(1, 4) in the range from 0 to 6 dB with 1 dB steps, and (b)
in the range of 1.5 dB to 2.5 dB, which provides a better discrimination between different
cases where no significant difference can be observed in terms of BER. However, PAD-2
shows the best performance. Figure 7c shows the BER for R(2, 4) in the range from 0 to
6 dB with a 1 dB step, and (d) in the range of 1.5 dB to 2.5 dB for better observation. PAD-3
demonstrates the best performance, but there is no significant improvement as we increase
the number of CADs in PAD. The comparison of decoding process times and the number
of parameters for R(1, 4) and R(2, 4) using FHT and PADs is described in Table 7, where
the higher the number of CADs in PAD, the higher the number of parameters and the
complexity, and the longer the decoding process time. In R(1,4), the number of parameters
of PAD-1 and PAD-5 are about 10-fold different, but the decoding time is only about 1.3-fold
different. This is because the computation of CADs is performed in parallel.
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Figure 6. Structure of PAD with 5 CADs.

(a) (b)

(c) (d)

Figure 7. BER of RM decoding with FHT and PADs.
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Table 6. The number of nodes in PAD with 5 CADs.

Layer
Number of Nodes

1st 2nd 3rd 4th 5th
CAD CAD CAD CAD CAD

1st hidden n 2n 3n 4n 5n
2nd hidden n 4n 9n 16n 25n
3rd hidden n 2n 3n 4n 5n

output n n n n n

Table 7. RM decoding time using FHT and PADs.

Method
Time (ms) Parameters

R(1, 4) R(2, 4) R(1, 4) R(2, 4)

FHT 0.6012 46.625 - -
PAD-1 0.3327 0.3704 5808 40,080
PAD-2 0.3472 0.3785 6896 41,168
PAD-3 0.3838 0.4037 22,512 56,784
PAD-4 0.4075 0.4367 57,728 92,000
PAD-5 0.4520 0.4854 124,864 159,136
PAD-6 0.4972 0.5241 239,312 273,584
PAD-7 0.5508 0.6225 419,536 388,032
PAD-8 0.6198 0.6352 687,072 502,480

4. Conclusions

In this paper, we proposed R(1,4) and R(2,4) decoders using an AD, with MLD
performance and shorter decoding process time than the FHT decoder. The decoding time
of the RM decoder using the AD is 1.8 times faster than that using FHT decoding for R(1,4),
and 125 times faster for R(2,4). This is because the FHT decoding method relies heavily on
masking bits. We presented PAD with multiple CADs to improve the BER performance
of the RM decoder using a single AD, and found that PAD-2 and PAD-3 showed the best
performance for R(1,4) and R(2,4), respectively; however, the performance difference is
not significant. The proposed fast decoding method with MLD performance can be useful
in mobile communication systems, such as 5G and 6G, which require low latency and BER.
Since the AD shows better performance then the AE when input size is small, it can be
useful for noise removal in signal processing with a relatively small data size. The AD can
be used not only in communication fields, but also in fields using various sensors. As we
have confirmed the performance of the proposed model based on the AD and PAD for
high-rate and short-length RM codes in terms of decoding speed and BER, we will extend
the result to other error-correction coding schemes.
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