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Abstract: This paper addresses the problem of nonlinear and dotted defect detection for multi-
vision-based mask inspection systems in mask manufacturing lines. As the mask production amounts
increased due to the spread of COVID-19 around the world, the mask inspection systems require more
efficient defect detection algorithms. However, the traditional computer vision detection algorithms
suffer from various types and very small sizes of the nonlinear and dotted defects on masks. This
paper proposes a deep learning-based mask defect detection method, which includes a convolutional
neural network (CNN) and efficient preprocessing. The proposed method was developed to be
applied to real manufacturing systems, and thus all the training and inference processes were
conducted with real data produced by real mask manufacturing systems. Experimental results show
that the nonlinear and dotted defects were successfully detected by the proposed method, and its
performance was higher than the previous method.

Keywords: deep learning; mask defect detection; visual inspection system

1. Introduction

As COVID-19 spread around the world, the use of masks increased, and subsequently,
many automated mask production factories were built. Mask production lines include a
fabric supply device for supplying mask fabrics for making mask filters, a mask molding
device for molding mask fabrics, and a band attachment device for attaching a band to
the mask filters. In the automated production of a mask, after manufacturing a mask by
attaching a band to a mask filter, an inspection process is required to inspect the mask for
defects before packaging the mask. So, our proposed method algorithm is used in final
process with a vision system in a mask manufacturing factory, as shown in Figure 1. In
the band attachment test, it is checked whether the band is firmly attached to the mask
filter. Things such as dust or hair can be stuck to the mask. These masks must be removed
through inspection because they cause discomfort to consumers. During this inspection
process, normal and defective products are selected, and defective products are discarded.
Human visual inspection is not effective, in terms of fatigue and costs, for determining
whether a mask passes or fails inspection. The method introduced in this study strives to
resolve these pain points.

Some techniques that are related to image-based inspection systems are Hough trans-
form [1–3], local binary patterns (LBP) [4,5], you only look once (YOLO) [6,7], single-shot
multibox detector (SSD) [8], RetinaNet [9], scale invariant feature transform (SIFT) [10–12],
speeded up robust features (SURF) [13,14], artificial neural networks (ANN) [15–17], and
convolutional neural network (CNN) [18–22]. Hough transform is a technique for de-
tecting straight lines in an image. The detected straight lines have the maximum and
minimum values of the x and y coordinates, and various kinds of image processing can
be conducted based on these values. LBP is a rotation invariant texture measure that is
simple and powerful. YOLO is used for detecting and recognizing various objects in a
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picture or video. Object detection in YOLO also provides the class probabilities of the
detected images. SSD is faster than YOLO. Accuracy is also higher than YOLO. The main
idea is predicting category scores and box offsets for a fixed set of default bounding boxes
using small convolutional filters applied to feature maps. RetinaNet is composed of a
backbone network and two task-specific subnetworks. While having the advantage of
the fast detection time of the one-stage detector, the detection performance degradation
problem of the one-stage detector was improved. SIFT is an algorithm that extracts features
that are invariant to rotation and scale. This method extracts features from two different
images and matches the most similar features to find the corresponding parts in the two
images. However, the disadvantage of this method is that the processing speed is very
low. SURF is an algorithm designed to compensate for the shortcomings of SIFT. SURF
uses a method of approximating the LOG with a BOX filter, and the processing speed
is made high by adding many characteristic elements in each step of calculating the key
point and descriptor. However, when the viewpoint of lighting changes, the features of
the image cannot be properly detected. Among these techniques, the CNN and ANN use
deep learning and are mainly used for image processing. ANN is an algorithm that mimics
the information processing method of the human brain. This technique is used for solving
decision-making problems, such as prediction and classification, and it consists of an input
layer, a hidden layer, and an output layer. A CNN consists of a convolutional layer, ReLU,
and pooling, and when it is given data to learn, it creates a learning model using a fully
connected layer. Then, verification is carried out by training and testing the created model.
The CNN is useful for finding patterns to recognize images. However, it is hard to find a
proper model for a certain application.
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The contributions of this paper are as follows:

• The data for training and verification were produced in the real mask production lines.
• An efficient pre-processing process was developed to apply highly small dotted defects,

which were difficult to be trained and inferred to the CNN.
• Various types of nonlinear and dotted defects were successfully detected by the

proposed method based on the CNN.

The remainder of this paper is organized as follows: Section 2 describes the training
problem of the small dotted defect with the masks. Additionally, the reason for using
multi-vision-based mask inspection is addressed. In Section 3, preprocessing methods of
input data before training and the CNN model are proposed. In Section 4, the evaluation
results of the proposed method are shown and compared with other methods quantitatively
using a confusion matrix. Finally, Section 5 gives conclusions.
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2. Problem Description
2.1. Multi-Vision-Based Mask Inspection

The visual inspection system uses an automated visual inspection device with a camera.
This system can improve efficiency and perform objective and accurate quality control by
automating the manual inspection of parts with computer-based camera imaging technology.

Several visual inspection systems exist, such as eddy current [23–25], thermogra-
phy [26–28], and dye penetrant testing [29–31]. Eddy current consists of an electronic
sensor and a magnetic coil that induces a magnetic field. The magnetic field is induced in
such a way that the interaction between the target magnetic field and the component under
examination induces an eddy current that can be measured using an electromagnetic wave
sensor. This system has the advantage of being simple and easy, and the inspection can
be performed without physical contact. Thermography uses a thermal sensor. A thermal
sensor measures the infrared radiation of the inspected component; the radiation flux is
converted into a temperature and the temperature distribution is then represented in the
form of a thermal image. This system is suitable for surface and interior inspection and has
great advantages in detecting large voids or crack defects. Dye penetrant testing detects
discontinuities by applying a colored fluid penetrant to the inspection surface. Then, a
light source is used by the inspector to highlight the defective features of the surface being
inspected. The multi-vision system is a digital camera/software-based system that can
visually recognize media registration marks and automatically compensate for distortion,
and image drift. In our mask production factory, we use a multi-vision system for this
reason, and it improves process time than single-vision system. When taking an image
in a multi-vision system, four mask images come in at once. Then, the algorithm divides
the four images into quarters and trains each image one by one, as shown in Figure 2,
and it is the first algorithm to detect mask inspection using a multi-vision-based system,
as shown in Table 1.
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2.2. Mask Defect Detection

For a nonlinear defect, which is a thickness of 100 µm attached to a normal mask, as
shown in Figure 3b, the mask is classified as a nonlinear defect mask. If a dotted defect is a
radius of 100 µm attached to a normal mask, as shown in Figure 3c, the mask is classified
as a dotted defect mask. Additionally, white paint or dust may come off during the mask
production process, as shown in Figure 3d. It is difficult to distinguish mask defects using
a traditional computer image processing method.
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Our previous work [32] about detecting nonlinear and dotted defect masks was based
on the Pearson correlation coefficient, a calculation that cuts only the filter part of the mask
and performs LoG processing to make the defective parts in the filter more visible. After
this step, by blurring the average of the mask filter, the difference between the image of
the normal mask and the defective area was amplified by changing the pixel values of
the part containing the defective part and the surrounding area. The Pearson correlation
coefficient was derived by extracting the histogram for each normal and defective mask.
This method found the Pearson correlation coefficient per kernel size, and using this value,
the minimum value is obtained. Then, the Pearson correlation coefficient value determines
whether the mask was normal or defective with that value. It is good to detect different
types of nonlinear defect matter in the same mask image, but it is difficult to do this in
different mask images because the mask filter patterns may vary slightly, even for a single
mask type. However, when we acquired more data from the real vision-based system and
tested it, the performance deteriorated. Therefore, we decided to apply the CNN-based
method, which is robust to various patterns of defect masks.

3. Methods

In an actual automated mask factory, when images are collected with a vision system,
four masks are included in one image. Because it is necessary to distinguish between
images in the learning process, each image was divided into fourths. With a sufficient
amount of data, one-hot encoding was then performed to convert the images into numerical
data. After this step, images were classified as normal mask images or defective mask
images, and this classification was used to train the model in this study. Finally, the trained
model was tested on real images to verify its accuracy.

3.1. Data Acquisition

Because there were no mask image data that were publicly available, the mask images
used in this experiment were produced by a mask manufacturing factory, as shown in
Figure 4. After completing all the processes in the mask production line, the mask passes
through the multi-vision system, and an image is taken when every 4 masks are produced,
as shown in Figure 5. Then, our proposed method is conducted for detecting normal masks
and defective masks. In this study, 1000 of the 1300 normal mask images were used for
learning, 300 images were used for testing; 1000 of the 1300 defective mask images were
used for learning, and 300 were used for testing.
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3.2. Nonlinear Defect Detection

The deep neural network model proposed in this paper was built as shown in Figure 6.
In the nonlinear defect detection CNN model, the input image was 2592 × 1136 pixels,
each convolution layer was composed of a 3 × 3 filter, and the padding, which refers to
the number of pixels added to an image when it is being processed by the kernel of a
CNN, was set to “same”. After each layer trained features in the order of 32, 32, 64, and
256, an activation function, ReLU, was applied, followed by max pooling. The output
was then flattened, a fully connected layer with 256 outputs was applied, and the ReLU
activation function was applied again. The dense layer was reapplied as many times as the
number of output classes. To get the final output, it had a final pass through the softmax
layer. When the model was compiled, the loss used binary_crossentropy, which is used
for binary classification because there were only two types of data to classify—normal and
defective. The Adam optimizer was used, and finally the metrics were set to “accuracy” to
find the accuracy. The number of iterations of the model (epochs) was set to 15, as shown
in Figure 7, and the batch size was set to 32.
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3.3. Dotted Defect Detection

In the dotted defect detection preprocessing method, several processes are added. If
the entire mask image and background are trained together, it is difficult to train small dots.
Therefore, using template matching, crop only the mask filter part for focusing small dots.
Template matching is an algorithm that finds an area in the original image that matches the
template images. The minimum cross correlation (TM_CCORR) multiplicatively matches
the template against the image, so a perfect match will be large and bad matches will be
small or 0. The minimum cross coefficient (TM_CCOEFF), which is using the TM_CCORR
method after correcting brightness. The minimum square difference (TM_SQDIFF), which
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is subtracting the pixels of the original image from the template image, squared, and added,
is a method of template matching. For the calculation of template matching, the minimum
square difference (TM_SQDIFF) is defined as:

R(x, y) = ∑
x′ ,y′

(
T
(

x′, y′
)
− I

(
x + x′, y + y′

))2. (1)

In this equation, x′ and y′ represent the coordinates of the template image. TM_SQDIFF
is used for obtaining the difference between the template image and the source image. Place
the template image on top of the original image and move it little by little to compare it
until reaching the end of the image. The area most similar to the template image is detected
in the original image, as shown in Figure 8. After applying template matching, use the
morphology erode calculation in OpenCV for making the black dots bigger. The erosion
operation replaces the values of all pixels in the kernel area with the local minimum in the
kernel. Therefore, applying an erosion operation reduces the bright areas and increases
the dark areas, as shown in Figures 9 and 10. However, the morphology erode calculation
cannot detect white dotted defective parts. Therefore, our proposed method uses CNN to
detect various types of dotted defect masks. The deep neural network model proposed
in this paper was built as shown in Figure 11. In the dotted defect detection CNN model,
the input image after preprocessing was 2592 × 1136 pixels, each convolution layer was
composed of a 3 × 3 filter, and the padding was set to “same”. After each layer trained
features in the order of 32, 64, 128, an activation function, ReLU, was applied, followed by
max pooling. The output was then flattened, and a fully connected layer with 256 outputs
was applied with ReLU. To get the final output, a softmax layer is used. The Adam
optimizer was used, and the metrics were set to “accuracy”. The epochs were set to 15, as
shown in Figure 12, and the batch size was set to 32.
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coefficient method; (b) apply the minimum cross correlation method; and (c) apply the minimum
square difference method.
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4. Experiments and Results
4.1. Mask Defect Detection

Our proposed method was conducted on Python 3.7.9, TensorFlow 2.2.0, NVIDIA
GeForce RTX 3060. The result of the feature map created by the layers in the neural network
proposed in this study is shown in Figures 13 and 14. Table 2 shows the confusion matrix
for the mask nonlinear defect detection results. The recall, which is the ratio of the data for
which the prediction is true, is 1 for the data having an actual value of true. The precision,
where the actual value is the true data ratio, is 0.99 for the data for which the prediction is
true. The accuracy, which is an index that evaluates how closely the actual data matches
the predicted data, is 99.8%. Computation cost was about 0.06 s per single mask image.
However, when we used a single vision-based system, the computation cost was about
0.2 s per single mask image.

Table 3 shows the confusion matrix for mask dotted defect detection results. The recall,
which is the ratio of the data for which the prediction is true, is 0.99 for the data having an
actual value of true. The precision, where the actual value is the true data ratio, is 1 for the
data for which the prediction is true. The accuracy, which is an index that evaluates how
closely the actual data matches the predicted data, is 99.8%. Computation cost was about
0.14 s per single mask image. When comparing computation cost in a single-vision-based
system and a multi-vision-based system, computation cost was improved form 0.45 s to 0.12 s.
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Table 2. Quantitative comparison results (nonlinear defect detection).

TP FN FP TN Recall Precision Accuracy

Proposed method 300 0 1 299 1 0.99 99.8%
Previous work [32] 256 44 63 237 0.85 0.8 82.1%

YOLO v5 198 102 88 212 0.66 0.69 68.3%
SSD 223 73 70 230 0.75 0.76 75.5%

RetinaNet 182 118 86 214 0.6 0.67 66%

Table 3. Quantitative comparison results (dotted defect detection).

TP FN FP TN Recall Precision Accuracy

Proposed method 299 1 0 300 0.99 1 99.8%
Previous work [32] 244 56 89 211 0.81 0.73 75.8%

YOLO v5 206 94 119 181 0.68 0.63 64.5%
SSD 229 71 97 203 0.76 0.7 72%

RetinaNet 185 115 141 159 0.61 0.56 57.3%
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Figure 14. Nonlinear defect model training results for convolution layers. (a) Feature map of the
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convolution layer; and (d) feature map of the fourth convolution layer.

4.2. Quantitative Comparison Results

A total of 1000 out of 1300 normal images were used for training, and 300 were used
for testing. Additionally, 1000 out of 1300 defective images were used for training and
300 were used for testing. Since there is no defect detection algorithm in the actual mask,
we compared the proposed method with our previous work [32], SSD, RetinaNet, and
YOLO v5. In the proposed method, the threshold for judging normal and defect masks
was set to 0.8. Then, we compared the result of the proposed method with previous
work according to the change in the threshold, which is shown as a receiver operating
characteristic (ROC) curve in Figures 15 and 16. The graph shows our CNN model is
robust, even with a changing threshold. The difference in accuracy between the method
proposed in this paper, SSD, YOLO v5, RetinaNet, and our previous work is shown in
Tables 2 and 3. The specific model of the YOLO v5 was the YOLO V5l. Computation cost
was about 0.3 s per 4 images. Additionally, YOLO v5 had relatively bad results in mask
inspection because the line defective part and dotted defective part is too small. So, it is
hard to distinguish normal masks and defective masks in YOLO v5. SSD computation cost
was about 0.23 s per 4 images. SSD showed better results in mask inspection than YOLO
v5, but still the defective part of the mask image was to too small to detect well. RetinaNet
computation cost was about 1.2 s per 4 images. Additionally, RetinaNet showed the lowest
accuracy compared to other methods. Our previous work computation cost was about 0.4 s
per 4 images. Our previous work also shows relatively bad results because when a mask
is produced in a factory, it is not always produced in a precise shape, and wrinkles can
also occur in various patterns for each mask. The Pearson correlation coefficient method
detected with high accuracy only when defective parts were changed in the same image,
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but when a different mask image was used, the difference between the normal and defective
mask values were not big because of the different patterns in each image. On the other hand,
when the method proposed in this paper was tested, there was high accuracy, regardless of
the different patterns in each image.
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5. Conclusions

In this paper, we proposed a suitable CNN structure and proper preprocessing meth-
ods for the detection of normal masks and masks having various nonlinear, dotted defects
in a mask production line. When the classical computer vision-based method was applied,
it was difficult to detect defects due to the diversity of the masks, but the defects were suc-
cessfully detected when the deep learning-based method with preprocessing was applied.
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Multi-vision-based system computation time was more improved than the single-vision-
based system. The experiment was performed with actual mask image data and showed
higher accuracy than other methods for detecting normal masks and defective masks.
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