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Abstract: The rapid development of deep-learning-based edge artificial intelligence applications
and their data-driven nature has led to several research issues. One key issue is the collaboration
of the edge and cloud to optimize such applications by increasing inference speed and reducing
latency. Some researchers have focused on simulations that verify that a collaborative edge–cloud
network would be optimal, but the real-world implementation is not considered. Most researchers
focus on the accuracy of the detection and recognition algorithm but not the inference speed in actual
deployment. Others have implemented such networks with minimal pressure on the cloud node,
thus defeating the purpose of an edge–cloud collaboration. In this study, we propose a method to
increase inference speed and reduce latency by implementing a real-time face recognition system
in which all face detection tasks are handled on the edge device and by forwarding cropped face
images that are significantly smaller than the whole video frame, while face recognition tasks are
processed at the cloud. In this system, both devices communicate using the TCP/IP protocol of
wireless communication. Our experiment is executed using a Jetson Nano GPU board and a PC as the
cloud. This framework is studied in terms of the frame-per-second (FPS) rate. We further compare
our framework using two scenarios in which face detection and recognition tasks are deployed
on the (1) edge and (2) cloud. The experimental results show that combining the edge and cloud
is an effective way to accelerate the inferencing process because the maximum FPS achieved by
the edge–cloud deployment was 1.91× more than the cloud deployment and 8.5× more than the
edge deployment.

Keywords: deep learning; edge–cloud; face recognition; real-time; TCP/IP

1. Introduction

With the development of deep learning (DL) applications, the implementation of
real-time video and image analytics in computer vision (CV) has become an active field
of research in recent years. The applications of CV proved to be a great problem solver
in real-time applications. Several CV application studies have been carried out, such as
detecting a compact fluorescence lamp [1], recognizing speed limit traffic signs using a
shape-based approach [2], detecting sugar beetroot crops with mechanical damage [3],
designing of an autonomous underwater vehicle that performs computer-vision-driven
intervention tasks [4], tracking of ball movement in a smart goalkeeper prototype [5],
and recognizing an obstacle on a powered prosthetic leg [6]. These papers all utilized a
single-board computer for real-time deployment. The authors of [7] discussed the recent
developments in the computer vision domain, particularly in face detection sector, focusing
on the development of 2D facial recognition to optimize the recent systems that use 3D
face recognition algorithms [8]. The authors of [9] proposed a recognition system using
ear images based on an unsupervised deep learning technique. Cameras generate a huge
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amount of sensor data, which needs to be processed for video analytics applications. These
applications can be applied in several fields, including thermal camera applications [10],
autonomous vehicles [11], traffic engineering and monitoring, access control (e.g., buildings,
airports), logistics, and biometrics [12]. This means that DL-based computer vision appli-
cations for video analytics are anticipated to yield a huge amount of data. Consequently,
the real-time demands of these applications lead to several challenges in terms of storage,
communication, and processing [13].

One common application of video analytics is face recognition. DL-based face recogni-
tion has two parts: training and inference. It is more suitable to perform the training process
in the cloud because the process requires high throughput computing and a huge amount of
data [14,15]. The cloud can provide sufficient resources for processing, storage, and energy.
However, it does not scale well as the number of cameras increases. Thus, the inference
process, which requires low latency, cannot be handled by cloud computing [16]. However,
while the edge is more flexible and can scale well as the number of cameras increases, it is
inadequate with regards to processing, storage, and energy [15]. Numerous studies have
explored the dilemma of having to choose between these two strategies and proposed
various approaches. Most of these approaches focused mainly on independently improving
the performance of DL-based applications either on the edge or the cloud. However, it
is imperative to explore a solution that tries to concurrently improve the performance of
these applications on both the edge and cloud [17]. One way to achieve this is to explore
a solution that has a tradeoff between managing the limited computational capabilities
of the edge device and latency issues in the cloud. The integration of edge and cloud
for computing purposes can lead to a hierarchical mode of computing in which tasks are
processed by both the edge node and cloud in an opportunistic fashion [18,19].

Recently, some researchers have attempted to optimize deep learning applications by
combining the edge and cloud. In [20], the authors proposed three hierarchical optimization
frameworks that aim to reduce energy consumption and latency. Their strategy was to
offload tasks strategically from the edge node to the cloud node. In [21], an offloading
framework based on edge learning was proposed for autonomous driving. Although
these studies reinforce our claim that the edge and cloud should be combined for optimal
performance, they are based entirely on simulations because implementations with actual
devices have not been considered. In [22], a real-time baby facial expression recognition
system was proposed. In this system, the predictions are stored on the actual edge device,
whereas insights are sent to the cloud at intervals for visualization and analysis. Although
this work efficiently implements and tries to combine the edge and cloud for optimized
learning, (i) it only allocates noncomputationally intensive tasks to the cloud and (ii) it
performs most of the training, detection, and recognition on the edge device. The authors
of [23] proposed a system that automatically partitioned computations among several cloud
servers, proving that this method provides faster inference speed; however, they focused
on utilizing multiple cloud servers rather than mainly collaborating with the edge device.
In [24], an optimized edge implementation of face recognition is proposed but fails to
utilize the capability of cloud as a processing tool and is only used as storage. This not only
defeats the purpose of a collaborative edge–cloud network but also leads to computational
pressure on the edge device or on the cloud server and a suboptimal learning process.
Moreover, [25] noted that transferring all tasks from the edge to the cloud could lead to
second-level latency, which does not meet the real-time requirement.

In this study, we provided an implementation of optimized inference of face recogni-
tion utilizing a collaborative edge–cloud network. The main contribution of this paper is as
follows: (i) we implemented an edge–cloud-based real-time face recognition framework
based on the multitask cascaded convolutional neural network (MTCNN) consisting of
P-net, R-net, and O-net and trained it using randomly cropped patches from WIDER FACE
dataset for positives, negatives, and part face with additional data from cropped faces
from the CelebA dataset as landmark faces [26] and the Python face recognition library,
Dlib-ml [27]. In the proposed framework, once the on-device face detection acquired a face
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extracted from video frames, the system will then send the face image instead of the whole
frame to the cloud server, resulting in significantly faster inference, and communication will
use less bandwidth and energy. The server-side system will then perform face recognition.
(ii) We implemented communication between the edge and cloud using the TCP/IP of
wireless communication. We set up a TCP server on the edge, which sends video frames
to the TCP client on the cloud for onward processing. (iii) Furthermore, we compared the
proposed system with two scenarios: (a) Performing both the detection and recognition
tasks at the edge device; and (b) performing both the detection and recognition tasks in
the cloud.

2. Review of Related Works

Several approaches have been proposed for the real-time execution of face recognition
tasks, based on the deployment architecture. The ultimate aim is to identify the best way
to connect cameras to computing devices such as the edge and cloud while satisfying the
latency and energy-efficiency requirements. The goal is to achieve the highest frame per
second (FPS) rate and concurrently maintain a low energy consumption level. A typical
face recognition task consists of two subtasks, which are independently computationally
extensive. These could lead to increased energy consumption and a surge in the processing
time. These tasks include: (i) face detection and (ii) face recognition, which are both based
on deep learning. The major challenge is the decision to either deploy the architecture
on the cloud or on the edge. This section discusses the two possible deployments and
their disadvantages.

2.1. Face Recognition

Face recognition is the capability of human beings to differentiate one face from another.
This concept is adapted in machines utilizing deep learning techniques, producing models
that can recognize faces in videos or images. The research on machine recognition of faces
began in the year 1970 [28]. During the past decades, the development of face recognition
algorithms have gained attention due to the abundant data available [29]. In [30], a support
vector machine (SVM) is used for classification problems such as face recognition. An
SVM is a pattern classifier that considers form as a matching scheme in controlled and
uncontrolled situations. An artificial neural network is developed for face recognition tasks.
In [30] a feed-forward algorithm, a multilayer perceptron (MLP) is proposed for supervised
pattern matching and has been used in several pattern classification tasks such as face
recognition. Another face detection algorithm is the Gabor wavelets with feed-forward
algorithm. This method is used for finding feature points and extracting feature vectors. A
new type of convolutional neural network is proposed in [31]. In this method, the inhibitory
neurons are shunned by the processing cells. In the past, it has been demonstrated that
shunning inhibitory neurons are more effective than MLPs for classification and nonlinear
regression when utilized in a traditional feed-forward architecture. They are substantially
better than MLPs at approximating complex decision surfaces. Most of these methods
are computationally expensive and complex tasks, thus requiring an ample amount of
processing power and high memory for training and inferencing.

2.2. Cloud-Based Machine Learning

Cloud-based deployment refers to the processing of face recognition tasks on the cloud.
It is also termed as computation offloading [20]. This is because in the literature, tasks
that are computationally intensive are offloaded from the edge to the cloud. In a typical
cloud-based deployment, the camera is connected to a cloud server via an RTSP stream
over the internet or using a local network. Owing to the distance of the sensor (i.e., camera)
from the cloud, the frame rate is affected by the available bandwidth in the communication
channel. Videos are streamed from the camera to the cloud. The cloud receives the camera
frames at a certain FPS and directs the frame to the DL model, which executes both tasks of
face detection and recognition.
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Like the edge, the biggest challenge in cloud-based face recognition is whether the
cloud capabilities are sufficient to process the incoming frames in real time and with a
fair FPS rate. One major problem is that the FPS might be considerably low because of
the constraints of the communication channel. However, owing to the high processing
performance of the GPUs of cloud servers, the processing of DL frameworks will be
seamless. Thus, in this deployment, the performance of the face recognition process is
significantly affected by the communication channel when receiving the continuous video
stream from the camera. As the number of cameras increases, it becomes less scalable.
Furthermore, there are also security and privacy concerns with the deployment of crucial
data to the cloud.

2.3. Edge-Based Machine Learning

Edge-based deployment of machine learning models refers to embedded machine
learning. Embedded machine learning is a concept that has been gaining popularity
due to the development of several ways of implementing machine learning models in
power-constrained devices such as efficient neural networks, optimization techniques, and
edge-oriented frameworks. In [32,33], they established an edge computing paradigm in
video surveillance units (VSUs) by locally processing captured images. In [34], a method is
proposed where a computer vision system is implemented on an edge device that combines
a gray level co-occurrence matrix and a support vector machine (SVM) that enables the
system to be implemented on a minimum resource platform. Another computer vision
system uses SVM to classify obstacles, which is implemented in a single-board computer
(SBC), which is capable of running less complex ML models. They also utilized the cloud
for database storage [35]. Edge devices that implement computer vision such as obstacle
detection and face recognition are devices that are usually embedded GPU computing
devices, such as a Jetson board. In this deployment, the edge device consists of the camera
and an embedded device, such as a GPU computing device. Videos are streamed from the
camera to the computing device. The computing device receives the camera frames at a
certain FPS and performs the dual operation of face detection and face recognition using
deep learning algorithms. The concept behind this deployment is that the computation
tasks are executed close to the data source (i.e., cameras).

The biggest challenge in edge-based deployment is whether the capabilities of the edge
device are adequate to process the incoming frames in real time and with a fair FPS rate.
The solution lies in the specification of the computing device and DL framework employed.
Computing devices such as the Jetson Nano have less storage and computing resources
when compared with the Jetson Xavier AGX. Similarly, the inference performance of the
face recognition process significantly depends on the selected deep learning framework.
The most common frameworks include TFLite from Google and TensorRT from NVIDIA.
TensorRT is preferred because it is capable of speeding up the inference performance of
deep learning models running on Jetson Nano boards. This is because it can maximize the
number of inference images processed by quantization. It also optimizes the bandwidth and
memory usage of the computing device by performing layer and tension fusion. Thus, in
this deployment, the performance of the face recognition process significantly depends on
the device and DL framework being used. In terms of security and privacy, this deployment
is adequate, as it has total control over what data is being received or sent.

2.4. Communication Protocol

There are various types of existing communication protocols that are used in differ-
ent applications. The following exist for a normal communication protocol: (1) a user
datagram protocol (UDP), which is a substitute communication protocol to transmission
control protocol implemented primarily for creating loss-tolerating and low-latency linking
between different applications; (2) post office protocol (POP), which is designed and used
for receiving e-mails; and (3) simple mail transport protocol (SMTP), designed to send and
distribute outgoing e-mail. Moreover, for program files, multimedia files, text files, and
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documents, there are various communication protocols used, such as (1) hypertext transfer
protocol (HTTP), which is designed and used for transferring a hypertext among two or
more systems. HTML tags are used for creating links. These links may be in any form, such
as text or images. HTTP is designed on client–server principles, which allow a client system
for establishing a connection with the server machine for making a request. The server
acknowledges the request initiated by the client and responds accordingly; (2) hypertext
transfer protocol secure (HTTPS) is a standard protocol to secure the communi-cation
between two computers, one using the browser and the other fetching data from the web
server. HTTP is used for transferring data between the client browser (request) and web
server (response) in the hypertext format, similar to the process of HTTPS except that
the transferring of data is done in an encrypted format. Therefore, it can be inferred that
HTTPS thwarts hackers from the interpretation or modification of data throughout the
transfer of packets; (3) message query telemetry transport (MQTT), which is composed
of MQTT client and broker (MQTT is based on TCP/IP protocol); and (4) transmission
control protocol/internet protocol (TCP/IP), which is designed for the server and client
network relation. Considering all the existing communication protocols, each has a distinct
functionality that can be leveraged on a certain application.

In this study, the TCP/IP communication protocol is utilized over all the other com-
munication protocols. The US Department of Defense created TCP/IP to define how
com-puters communicate data from one device to another. TCP/IP places a high value on
pre-cision, and it takes numerous steps to verify that data is delivered accurately between
the two machines. With that, we consider using TCP/IP because we also only deploy the
sys-tem between two devices: (1) an edge device and (2) a cloud device. TCP/IP breaks
each message into packets, which are then reassembled at the other end. In fact, each
packet could take a different route to the other computer if the first route is unavailable or
congested. The TCP/IP communication protocol is divided into four layers, which ensures
the accuracy of data processing. These layers include: (1) the datalink layer, (2) internet
layer, (3) transport layer, and (4) application layer. These layers work together to process
the data from one machine to another.

3. Proposed Edge–Cloud System

There has been a lot of debate on the strategies for the deployment of DL applications.
One common way is to offload and perform tasks that are computationally expensive on
the cloud [14,15]. The second approach is to perform computations closer to the edge and
only send the metadata to the cloud [16,17]. Although the first approach fails to reduce
latency, the second approach increases computational pressure on the edge device. In
this study, we aim to reduce latency while maintaining the accuracy of DL applications.
To achieve this, we implement a face recognition system on an edge–cloud network in
which tasks are uniformly distributed between the edge and cloud device. The entire face
recognition process is composed of two tasks: Face detection and face recognition.

As illustrated in Figure 1, the proposed edge–cloud network is made up of two
sections: edge-based face detection and cloud-based face recognition. The task of face
detection is carried out on the edge device in the first section, whereas the task of face
recognition is carried out on the cloud in the second section. The two sections are integrated
using a wireless communication protocol. The wireless communication protocol allows the
transmission of video frames from the server to the client. In this study, the communication
protocol utilized is the Transmission Control Protocol/Internet Protocol, also known as
the TCP/IP communication protocol. The system’s primary objectives are to: (i) perform
real-time face recognition, (ii) lower the computational burden on the edge device, and
(iii) boost the system’s processing speed.
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3.1. Edge-Based Face Detection

The edge-based face detection system consists of the (i) face detection algorithm and
(ii) TCP/IP Server. The face detection task is employed in the edge device. This process
starts with (1) initializing the camera for real-time video input. (2) The face detection system
will cut the video feed into frames. (3) Utilizing the MTCNN function for face detection,
the frames with detected faces will only be considered as an input for the face recognition
function. (4) After processing the frame with a detected face, this detected face will be
cropped from the input frame. After having a validated input for the face recognition
system, the system will establish a connection with the cloud server by (1) specifying the
IP address and port number of the server, (2) creating a client socket, (3) initiating the
connection, (4) encoding the image into utf-8 encoding, and (5) sending the file and closing
the socket connection.

3.1.1. Face Detection Algorithm

The employed face detection algorithm is based on the multitask cascaded convo-
lutional network (MTCNN). The MTCNN is a deep-learning-based approach for face
and landmark detection having an accuracy of 96% and 92% for frontal face and side
face, respectively, which is invariant to the head pose, occlusions, and illuminations. The
locations of the face and landmarks are computed by a three-stage process. In the first
stage, a fully convolutional network (FNN) called the proposal network (P-Net) is used
to obtain the candidate windows and regression vectors. Subsequently, non-maximum
suppression (NMS) is employed to merge highly overlapped candidates. In the second
stage, all obtained candidates are fed into another CNN called the refine network (R-Net).
This network rejects a huge number of false candidates and outputs whether the input is a
face. In the third stage, the output network (O-Net) outputs five facial landmarks’ positions
for eyes, nose, and mouth. Each stage involves three tasks: (1) face/non-face classification,
(2) bounding box regression, and (3) facial landmark localization. The face/non-face classi-
fication challenge is a binary classification task. No face is classified when the output is
zero, and a face is classified when the output is one. Bounding box regression is a type of
regression task. This task determines the location of the facial bounding box. The challenge
of locating facial landmarks is also a regression task. In this part, the positions of the face
markers, such as the eyes, nose, and mouth, are further examined. This helps the system to
identify the head pose more precisely.

3.1.2. TCP/IP Server

As shown in Figure 2, the server end of the TCP/IP protocol works in conjunction
with the MTCNN algorithm for face detection and transmission of frames containing the
detected faces to the cloud. The server creates a socket object when it starts up. This means
it associates a socket with the cloud device’s IP address and port number. The IP address is
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then bound to the socket. This is the same as giving the socket a name. The server attempts
to connect to the client. It keeps track of any new connections that are made. It manages
connections using the accept or close methods. The server establishes a connection with the
client using the accept method and then uses the close method to terminate the connection.
After the connection is established, the camera on the edge device is activated and the
MTCNN face detection algorithm is used to check for faces. Subsequently, all cropped face
images within the frames are sent to the cloud device’s client socket.
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3.2. Cloud-Based Face Recognition

The cloud-based face recognition system is made up of the (i) face recognition algo-
rithm and (ii) TCP/IP Client. After MTCNN has been applied in the edge device, a cropped
image of only the detected face is extracted. The size of this image will be much smaller
than the entire image’s size. This image is then received by the cloud for postprocessing
with a face recognizer. Owing to the small size of the extracted face, the procedure will be
significantly faster, and communication will use less bandwidth and energy.

3.2.1. Face Recognition Algorithm

In this study, a Python face recognition module was utilized to implement face recog-
nition. The library allows recognizing and manipulating faces using Python IDE or the
command line interface (CLI). The library is built using Dlib’s state-of-the-art face recog-
nition built with deep learning. The accuracy of the face recognition algorithm performs
99.38% on the labeled faces in the wild benchmark. This face recognition algorithm is
deployed on the client side of the TCP/IP network. The client network must remember all
the faces even if the machine is shut down and restarted, which is one of the challenges
with the application. Consequently, we compiled a database of well-known individuals.
Only faces that have been previously identified in the knowns database were detected
when the face recognition algorithm was executed. The remaining faces were assigned as
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“unknown”. Consequently, a frame with a bonding box and a name label with the name of
the recognized face were established.

The face recognition algorithm works by first finding the facial outline. The outline
maps the facial features such as each person’s eyes, nose, mouth, and chin. Moreover,
this face recognition library has a list of module content that can be used to further im-
prove and manipulate the output. This library can be installed using Python language.
Python 2.7 or Python 3.3+ can be used for the face recognition library dependency. With
the facial images already extracted, cropped, and resized, the face recognition algorithm
is responsible for finding the characteristics that best describe the image. A face recog-
nition task is basically comparing the input facial image with all facial images from a
database with the aim of finding the user that matches that face. It is basically a 1xN
comparison. Once the face image is loaded, the face_encodings() function returns the
128-dimension embedding vector for each given face. This encoding process is performed
using a ‘dlib_face_recognition_resnet_model_v1.dat’ model, which stores the recognized
face image in a NumPy array. Thereafter, the face_distance() function gets a Euclidean
distance for each comparison face. The Euclidean distances in the embedding space directly
correspond to face similarity; faces of the same person have small distances and faces
of distinct people have large distances. The matching name of the face which poses the
smallest distance compared against the face encoding lists will be the final output.

3.2.2. TCP/IP Client

On the cloud device, the TCP socket’s client end was implemented. When the client
is initiated, it associates a socket with the IP address, as shown in Figure 3. The socket is
then tied to the IP address. The client checks the TCP socket’s server for any connection
requests. After establishing a connection, the frames containing the discovered faces are
received for further face recognition. The output is the result of the entire face recognition
process, indicating whether a face was recognized.
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The necessity for a large computing capacity of a high-complexity, machine-learning
algorithm is handled by partitioning the task across the edge and cloud networks. The
processing becomes more efficient by running the face detection algorithm on the edge and
the face recognition on the cloud. Face detection is implemented on the cloud in this article
to address the latency issue, allowing the face detection algorithm to recognize faces and
remove those frames before sending to the cloud.

4. Results and Discussions

In this study, a real-time face recognition inference application was deployed, using the
MTCNN detector and Python’s face recognition library. The performance of the application
was evaluated on (i) an edge device, (ii) a cloud device, and (iii) the proposed edge–cloud
system. We provide a comparative analysis of the three deployments using input videos
of varying resolutions and FPS values. Through a series of 45 experiments, the results
demonstrate that the edge–cloud deployment is the most efficient implementation in terms
of processing speed. We intend to extend this study to the use of deep learning frameworks
for face recognition and the processing of live camera feed.

4.1. Experimental Setup
4.1.1. Input Data

During the inferencing procedure, fifteen videos with varied duration, FPS values, and
resolutions (HD and full HD) were used as input. The goal was to determine how varying
resolutions and frames per second affect the processing speed of different deployment
systems. Table 1 lists the information of these videos. Three sets of video durations (Video
1 = 50 s, Video 2 = 40 s, and Video 3 = 10 s) were used and tested as input. The durations of
each video were classified into three FPS categories (30 FPS, 60 FPS, and 90 FPS). Moreover,
the video dimensions of each video are also listed in Table 1.

Table 1. Results for each deployment for the fifteen input videos.

Video Duration FPS a Resolution Width Height Edge FPS [15] Cloud 1 FPS [14] Cloud 2 FPS [14] Edge-Cloud FPS

Video 1 50 30 HD 1280 720 7.40 20.56 28.72 60.34
FHD 1920 1080 4.26 10.56 25.67 39.76

60 HD 1280 720 7.24 21.12 34.27 56.52
FHD 1920 1080 4.24 10.16 24.52 32.95

90 FHD 1920 1080 3.90 10.31 22.93 39.39
Video 2 40 30 HD 1280 720 7.14 20.21 19.27 65.51

FHD 1920 1080 4.54 11.54 15.92 38.23
60 HD 1280 720 7.72 21.47 19.87 55.11

FHD 1920 1080 4.33 11.58 05.03 37.77
90 FHD 1920 1080 4.08 12.12 13.03 33.77

Video 3 10 30 HD 1280 720 7.44 21.19 18.07 64.65
FHD 1920 1080 4.98 11.37 17.34 37.76

60 HD 1280 720 7.63 21.46 14.67 58.23
FHD 1920 1080 5.15 11.29 15.31 39.39

90 FHD 1920 1080 4.89 11.67 16.89 37.19

4.1.2. Edge Device

Originally, computing networks are classified into three main categories, namely:
(1) edge, (2) fog, and (3) cloud. For this study, we only considered the edge and cloud
network. Moreover, fog devices were also regarded as edge or cloud devices. The proposed
edge–cloud system was implemented using an embedded device and a PC that serves
as the cloud platform or device. The embedded device employed in this paper was the
NVIDIA Jetson Nano. It is a single board computer that includes a 128-core Maxwell GPU
and a quad-core ARM A57 64-bit CPU. For detecting faces, the prototype used a camera,
the Raspberry Pi Camera version 2. It has a Sony IMX219 8-megapixel sensor, supports
1080p30, 720p60 and 640 × 480p90 video, and is connected via camera port using a short
ribbon cable.
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4.1.3. Cloud Device

Instead of a cloud provider, in this study, a device serving as a cloud device was
deployed. The cloud device is a desktop with Ubuntu 18.04.5 LTS. The desktop was
equipped with an Intel i5-4690 CPU @ 3.50 GHz and a RAM size of 32 GB. To evaluate
our face recognition system, we utilized random faces of known people saved in the cloud
storage as a reference for face recognition.

4.2. Results Analysis

In each deployment, a pre-trained MTCNN face detection algorithm was used during
the inferencing stage. The inference process was accelerated using the ONNX runtime.

Table 1 lists the FPS rates achieved for all deployments. From the results of each
deployment, as expected, the edge shows a slow execution time. Jetson Nano clearly has
limited computational capabilities when executing the MTCNN implementation. The
cloud 1 deployment, running on Ubuntu 18.04.5, achieved a low execution time better
than the edge deployment. The cloud 2 deployment, which receives the video stream, was
faster than the former approach. The process can be performed by edge, cloud 1, or cloud
2 deployment. However, while running a high-complexity algorithm, the accuracy and pro-
cessing speed are hampered because of the edge device’s limited computational capability.

The proposed edge–cloud deployment outperformed the edge deployment by 8.5 times
and outperformed both cloud 1 and cloud deployments by 1.91 times This demonstrates
how the cloud device’s computational capability can influence the performance of the
deployed facial recognition model.

In Figure 4, a violin plot is employed because it is a method of plotting numeric data
that can be considered as a combination of a box plot and a kernel density plot. Generally,
the violin plot shows the same information as the box plot. The violin plot displays the
(1) median, which is a white dot on the violin plot, (2) interquartile range, which is the
black bar in the center of the violin, and (3) the lower/upper adjacent values, which are the
black lines stretched from the bar. In this study, the violin plots show the density of the
processing speed achieved by each of the deployments for the input video resolutions (HD
and full HD). Two plots were constructed inside one figure by splitting the violin plots,
which correspond to HD and FHD. Consequently, for every deployment, the HD videos
are processed faster than the FHD videos.
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The box plots in Figure 5 represent the density of the processing speed, which was
achieved by all deployments, for the input video FPS (30, 60, and 90). As shown in Figure 5d,
it can be inferred that for edge–cloud deployments, 30 FPS is the best input video FPS to
use. In the edge and cloud 1 deployments in Figure 5a,b, video inputs with 60 FPS perform
better compared to other deployments. Moreover, as depicted in Figure 5, video inputs
with 90 FPS perform worse for all deployments. This poor performance can be attributed
to the fact that all 90 FPS videos were FHD.
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A better comparison is depicted in Figure 6, where the processing speed density of the
HD and FHD videos for different FPS values is shown. For all deployments, videos with
90 FPS performed worse than other videos of the same FHD resolution. Figure 6a, Figure 6b,
and Figure 6c show the result for the edge, cloud 1, and cloud 2, respectively. For the
proposed edge–cloud system, 30 FPS video inputs achieved better performance compared
to both 60 FPS and 90 FPS video inputs. Furthermore, when the proposed edge–cloud
system is compared to other deployments, the proposed system achieved a higher FPS rate.
This means that splitting the task of face detection and face recognition on the edge and
cloud network is beneficial.
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From these results, it can be deduced that the FPS and resolution of the input video
play a key role in the processing speed of the deployment of face recognition applications. It
is also clear that the best performance was achieved in the edge–cloud deployment with an
input video of 30 FPS and HD resolution. Additionally, splitting the task of face detection
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and face recognition between the edge and cloud network shows an improvement in the
processing speed and capability of the system.

5. Conclusions

In this study, a real-time face recognition inference application was deployed, using the
MTCNN detector and Python’s face recognition library. The performance of the application
was evaluated on (i) an edge device, (ii) a cloud device, and (iii) the proposed edge–cloud
system. We provided a comparative analysis of the three deployments using input videos
of varying resolutions and FPS values. Through a series of 45 experiments, the results
demonstrated that the edge–cloud deployment is the most efficient implementation in
terms of processing speed. We intend to extend this study to the use of deep learning
frameworks for face recognition and the processing of live camera feed.
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