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Abstract: Convolutional neural networks (CNNs) have enhanced ultrasound image-based early
breast cancer detection. Vision transformers (ViTs) have recently surpassed CNNs as the most
effective method for natural image analysis. ViTs have proven their capability of incorporating more
global information than CNNs at lower layers, and their skip connections are more powerful than
those of CNNs, which endows ViTs with superior performance. However, the effectiveness of ViTs
in breast ultrasound imaging has not yet been investigated. Here, we present BUViTNet breast
ultrasound detection via ViTs, where ViT-based multistage transfer learning is performed using
ImageNet and cancer cell image datasets prior to transfer learning for classifying breast ultrasound
images. We utilized two publicly available ultrasound breast image datasets, Mendeley and breast
ultrasound images (BUSI), to train and evaluate our algorithm. The proposed method achieved the
highest area under the receiver operating characteristics curve (AUC) of 1 ± 0, Matthew’s correlation
coefficient (MCC) of 1± 0, and kappa score of 1± 0 on the Mendeley dataset. Furthermore, BUViTNet
achieved the highest AUC of 0.968 ± 0.02, MCC of 0.961 ± 0.01, and kappa score of 0.959 ± 0.02 on
the BUSI dataset. BUViTNet outperformed ViT trained from scratch, ViT-based conventional transfer
learning, and CNN-based transfer learning in classifying breast ultrasound images (p < 0.01 in all
cases). Our findings indicate that improved transformers are effective in analyzing breast images and
can provide an improved diagnosis if used in clinical settings. Future work will consider the use of a
wide range of datasets and parameters for optimized performance.
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1. Introduction

Breast cancer is the most prevalent malignancy, accounting for 12.5% of new cases
globally by 2020 [1,2]. The survival rate of breast cancer for at least five years after diagnosis
varies among populations depending on the economic standing of nations; it is greater
than 90% in high-income nations, 40–65% in middle-income nations, and less than 40%
in low-income nations [2,3]. This difference is primarily attributable to the ability of
high-income nations to detect breast cancer early [1]. Early detection expands treatment
options and lowers the risk of breast-cancer-related deaths considerably. The primary
imaging modalities for the early diagnosis of breast cancer include mammography and
ultrasound [4].

Previously, ultrasonography was considered helpful only for cyst diagnosis. However,
it improves local preoperative staging, guided interventional diagnosis, and differential
diagnosis of benign and malignant tumors [5]. Mammography has a low sensitivity for
thick breasts [6]. Women with dense parenchyma are far more likely to develop breast
cancer [7]. Dense breast tissue can be examined using ultrasound [8]. Recent research has
demonstrated that high-resolution ultrasonography increases the diagnosis of tiny tumors
by three to four tumors per 1000 women without clinical or mammographic abnormal-
ities [9]. Carcinomas observed on mammography and sonography have a similar stage

Diagnostics 2022, 12, 2654. https://doi.org/10.3390/diagnostics12112654 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics12112654
https://doi.org/10.3390/diagnostics12112654
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-5219-6098
https://orcid.org/0000-0002-7298-4147
https://doi.org/10.3390/diagnostics12112654
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics12112654?type=check_update&version=1


Diagnostics 2022, 12, 2654 2 of 14

distribution [10]. To overcome the limitations of mammography, ultrasound is frequently
employed for curative diagnosis [11]. Ultrasound is noninvasive, widely available, easy
to use, less expensive, and provides real-time imaging [12]. Moreover, ultrasound is safer
and does not generate radiation [13]. More importantly, ultrasound helps detect tumors
in women with dense breasts and detects and classifies breast lesions that cannot be in-
terpreted adequately through mammography alone [14]. Doctors can use ultrasound to
identify many clinically relevant regions such as benign cysts or normal tissues. Most
women over the age of 30 years usually undergo ultrasonography along with mammog-
raphy. For women under the age of 30, ultrasonography is sufficient to decide whether a
biopsy is necessary in a particular area of the suspected breast.

However, early breast ultrasound diagnosis has limitations [15]. First, follow-up
ultrasound, aspiration, or biopsy may be performed after a breast ultrasound image is inter-
preted [16]. Biopsy may be recommended to determine whether a suspicious abnormality
is cancer. Most of the suspected problem locations detected by ultrasonography that require
biopsy are noncancerous (false positives) [17]. Second, although ultrasound is a breast
imaging method, annual mammography is still recommended [1]. Many tumors cannot
be detected via ultrasonography. Numerous calcifications detected by mammography are
invisible with ultrasonography [18]. In mammography, some early breast tumors simply
manifest as calcifications [19,20]. Even for women with dense breasts, many institutions do
not offer ultrasound screening, and some insurance plans might not pay for treatment. As
a real-time test, ultrasound depends on the anomaly detected during the scan. Therefore,
sophisticated tools and experienced professionals are required.

Deep learning (DL) has been used to overcome the limitations of ultrasound in the early
detection of breast cancer [21]. Many studies have been conducted in the areas of synthetic
imaging, object detection, segmentation, and imaging categorization of breast lesions using
DL [22]. Many of these approaches have received the necessary legal certifications and
are used in clinical settings [23]. Additionally, DL approaches have demonstrated ability
to perform at levels comparable to those of human experts in a variety of breast cancer
detection tasks and have the potential to help physicians with little training improve the
diagnosis of breast cancer in clinical settings [24].

All prior investigations regarding DL for ultrasound-based early breast cancer diag-
nosis have used convolutional neural networks (CNNs) [25]. Vision transformers (ViTs),
developed by Dosovitskiy et al. [26] in 2020, outperform state-of-the-art (SOTA) CNN
algorithms in natural images categorization. ViTs demonstrate a superior performance
by incorporating more global information than a CNN does in lower layers and having
a stronger skip connection than that of ResNet. CNNs require several layers to calculate
features computed by a smaller collection of lower layers of ViTs. All these attributes help
ViTs outperform CNNs in classifying real-world images. However, not much research
has been conducted on the application of ViTs in medical image analysis. This is mainly
because of the heavy reliance of ViTs on extensive training data. ViTs do not outperform
CNNs with small-scale datasets. The heavy reliance of ViTs on big data has limited its
effective use in certain sectors. The same is true for medical images, as it can be difficult to
locate substantial training datasets. To overcome this challenge, transfer learning has been
extensively used in CNN-based medical image analysis [25,27,28]. The use of ViT models
that have been pretrained on large natural image datasets and transfer learning via ViT
models may help increase the performance of DL in medical image analysis. Hence, we
present BUViTNet breast ultrasound detection via ViTs, a new transfer-learning strategy
based on ViTs for the classification of ultrasound breast cancer images.

The proposed ViT-based transfer learning has multiple advantages over CNN-based
transfer learning. The disadvantages of CNNs include their high processing cost, narrow
focus on a portion of the image rather than the entire image, inability to encode relative
spatial information, and inability to handle rotation and scale invariance without augmen-
tation. CNNs are computationally expensive owing to the use of pixel arrays [29]. Because
deeper layers are required to extract features from the entire image, CNNs require more



Diagnostics 2022, 12, 2654 3 of 14

training time and hardware. In addition, because of the information lost during processes
such as pooling (average- or max-pooling), CNNs become slower and less accurate. A
convolutional layer is the primary building block of a CNN. Its task is to identify significant
details in the image pixels. Higher layers combine simple characteristics into more complex
features, whereas deeper layers (closer to the input) learn to recognize simple features such
as edges and color gradients. Very high-level features are finally combined in thick layers
at the top of the network to create classification predictions. All higher-level neurons in a
CNN receive low-level information. Then, these neurons perform additional convolutions
to determine whether specific features are present. This is accomplished by repeating
the knowledge across all the individual neurons after traversing the receptive field. The
location and orientation of the object are not considered by a CNN when forming the
predictions. They entirely lose all internal information about the position and orientation
of the item and route all of the data to the same neurons that may not be able to process
this type of input [30]. A CNN predicts output by observing an image and determining
whether specific elements are present. If they are, the image is appropriately categorized.
An artificial neuron produces only one scalar. Additionally, CNNs employ convolutional
layers that produce a 2D matrix, with each number representing the result of the kernel’s
convolution with a portion of the input volume. These layers duplicate the weights of
each kernel across the entire input volume for each kernel. Therefore, we can consider the
2D matrix as the output of the replicated feature detector. The output of a convolutional
layer is then produced by stacking all the 2D matrices of the kernel on top of one another.
The next step is to attempt to attain perspective invariance in the neuronal activity. This is
accomplished using max pooling, which selects the greatest value in each region of the 2D
matrix after looking at each region in turn. Consequently, invariance is achieved. When
the output is invariant, the input can be slightly altered without affecting the results. In
other words, max pooling ensures that the network activities (neuron outputs) remain
constant even if the object we wish to detect is slightly shifted in the input image, allowing
the network to continue to recognize the object. However, because max pooling discards
important data and does not encode the relative spatial relationships between features,
the approach described above is ineffective [31]. Consequently, CNNs are not genuinely
immune to significant input data alterations. The use of ViTs enables us to overcome these
limitations of CNNs to detect breast cancer using ultrasound images. In this study, we
also introduced a novel transfer-learning method to compensate for the ViT’s data hunger.
The use of transfer learning enables ViT to be pretrained on a large number of natural and
microscopic images and to be used to classify ultrasound images without overfitting.

Generally, the proposed method provides the following contributions.

• Developed the first multistage transfer-learning method using vision transformers for
breast cancer detection.

• Utilized microscopic image datasets that have related image features to those of
ultrasound images for intermediate-stage transfer learning to improve the performance
of breast cancer early detection.

• Carefully studied the characteristics of different vision transformers based on pre-
trained models for translation to ultrasound image-based breast cancer detection.

• Investigated the effectiveness of the proposed BUViTNet method when applied to
datasets from different sources as well as on mixed datasets from different origins.

• Compared the performance of the BUViTNet method against vision transformers
trained from scratch, conventional vision transformer-based transfer learning, and
convolutional neural networks for breast cancer detection.

2. Materials and Methods
2.1. Dataset

We evaluated our method using two publicly available datasets: breast ultrasound
image (BUSI) (Available online: https://scholar.cu.edu.eg/?q=afahmy/pages/dataset
(access on 1 July 2022)) and Mendeley breast ultrasound (Available online: https://data.

https://scholar.cu.edu.eg/?q=afahmy/pages/dataset
https://data.mendeley.com/datasets/wmy84gzngw/1
https://data.mendeley.com/datasets/wmy84gzngw/1
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mendeley.com/datasets/wmy84gzngw/1 (access on 1 July 2022)) datasets. Moreover, we
created a mixed BUSI and Mendeley dataset to evaluate the performance of the proposed
method on datasets from different sources.

The BUSI dataset is categorized into three classes: benign (210 images), malignant (437
images), and normal (210 images). BUSI dataset images were taken from women between
the ages of 25 and 75 years; hence, the dataset is preferred for studies involving early breast
cancer detection in women below 40 years of age [32]. The dataset was collected in 2018
from 600 female patients. The dataset consists of 780 images, each with an average size of
500 × 500 pixels. The dataset images are PNG files. Representative images from the dataset
are shown in Figure 1.
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for each class. Class imbalance impinges upon the learning process by biasing the model 
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Figure 1. Representative images from BUSI dataset: (a) Benign; (b) Malignant; (c) Normal.

The Mendeley breast ultrasound dataset is divided into two categories: benign
(100 images) and malignant (150 images) [33]. The dataset was collected in Brazil from
women aged 30–70 years. The images in the dataset are in PNG format and of different sizes.
This dataset is practical for our needs and was extensively used in numerous investigations.
Representative images from this dataset are shown in Figure 2.
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Figure 2. Representative images from Mendeley breast ultrasound dataset: (a) benign; (b) malignant.

The mixed dataset is categorized into two classes: benign (310) and malignant (587).
We mixed the datasets to evaluate the performance of the proposed method on datasets
from different locations. We added benign images from the BUSI and Mendeley datasets to
make a mixed benign image class, and the same was done for malignant images.

2.2. Preprocessing

The preprocessing of the data involved resizing the dataset images and balancing
the number of images in each class. The images in both datasets utilized in this study
had different pixel sizes from their corresponding sources. Therefore, we resized them to
use them as input in our proposed method. Each image was resized to 224× 224 pixels.
Additionally, the datasets were class-imbalanced owing to the different number of images
for each class. Class imbalance impinges upon the learning process by biasing the model
toward the class having a larger dataset size. To prevent this, we implemented spatial
transformation-based augmentations (horizontal flip, color jitter, sharpening, salt-and-
pepper, gamma correction, random rotation, and height shift) to equalize the size of the
images in each class. Subsequently, we created a BUSI dataset with three classes, each
having 500 images; a Mendeley dataset with two classes, each having 500 images; and a
mixed dataset with two classes, each having 1000 images. Following this, we categorized
our dataset into training, validation, and test sets with a 7:2:1 ratio. Figure 3 depicts the
dataset distribution after preprocessing the BUSI dataset. The training data were further

https://data.mendeley.com/datasets/wmy84gzngw/1
https://data.mendeley.com/datasets/wmy84gzngw/1
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augmented to enrich the training images. We performed random rotation, flip (both
horizontal and vertical), shift (both width and height), shear, and other augmentations.
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2.3. Proposed Method

The proposed method employs multistage transfer learning. A ViT model pretrained
using the ImageNet dataset was first used for transfer learning with cancer cell line images
to distinguish breast (MCF-7), lung (NCI-60), and cervical (HeLa) cancers. Figure 4 shows
the acquisition and preparation of the cancer cell images for the intermediate stage transfer
learning. The cancer cell images were captured under microscope, separated from the
background, and then segmented to form patches of each cancer cell line. Details about
acquisition and preprocessing of cancer cell lines can be found in [28]. Using the ImageNet
pretrained model, transfer learning was employed to train a model for classifying the
cancer cell line images as breast, lung, and cervical cancers.



Diagnostics 2022, 12, 2654 6 of 14

Diagnostics 2022, 12, x FOR PEER REVIEW 6 of 15 
 

 

pretrained model, transfer learning was employed to train a model for classifying the can-
cer cell line images as breast, lung, and cervical cancers. 

 
Figure 4. Acquisition and preprocessing of cancer cell line images: (a) acquired image (b) binarized 
image (c) patch selection (d) final cancer cell images used for training. MCF-7, breast cancer cell; 
NCI-60, lung cancer cell; HeLa, cervical cancer cell. 

Then, the model trained for cancer cell classification was used as a pretrained model 
for transfer learning on breast ultrasound images. Figure 5 depicts the multistage ap-
proach used in this study. Multistage transfer learning was applied for two main reasons. 
The first was to develop a model that was trained on large image datasets with features 
similar to those of ultrasound images, which can be acquired in large numbers and are 
ideal as intermediate-stage transfer learning domains. A previous study we conducted 
also proved that CNN models pretrained on cancer cell line images improved the perfor-
mance of classifying breast ultrasound images. The second reason was that the use of can-
cer cell lines would optimize large ViT models, which are data-hungry, for small datasets. 
We utilized 28,560 cancer cell images [28] to train the ViT models in the intermediate 
transfer-learning stage before using them for classifying ultrasound images.  

 
Figure 5. The proposed transfer-learning approach using the mixed ultrasound dataset. 

Multistage transfer learning was applied using three ViT models: a base model with 16 × 16 input patch size (vitb_16), a base model with 32 × 32 input patch size (vitb_32), 
and a large model with 32 × 32 input patch size (vitl_32). Table 1 lists their details.  

Figure 4. Acquisition and preprocessing of cancer cell line images: (a) acquired image (b) binarized
image (c) patch selection (d) final cancer cell images used for training. MCF-7, breast cancer cell;
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Then, the model trained for cancer cell classification was used as a pretrained model
for transfer learning on breast ultrasound images. Figure 5 depicts the multistage approach
used in this study. Multistage transfer learning was applied for two main reasons. The
first was to develop a model that was trained on large image datasets with features similar
to those of ultrasound images, which can be acquired in large numbers and are ideal as
intermediate-stage transfer learning domains. A previous study we conducted also proved
that CNN models pretrained on cancer cell line images improved the performance of
classifying breast ultrasound images. The second reason was that the use of cancer cell lines
would optimize large ViT models, which are data-hungry, for small datasets. We utilized
28,560 cancer cell images [28] to train the ViT models in the intermediate transfer-learning
stage before using them for classifying ultrasound images.
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Figure 5. The proposed transfer-learning approach using the mixed ultrasound dataset.

Multistage transfer learning was applied using three ViT models: a base model with
16× 16 input patch size (vitb_16), a base model with 32× 32 input patch size (vitb_32), and
a large model with 32× 32 input patch size (vitl_32). Table 1 lists their details.
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Table 1. Vision transformer model details.

Model Layers Hidden Size MLP Size Heads Patch Size

vitb_16 12 768 3072 12 16 × 16
vitb_32 12 768 3072 12 32 × 32
vitl_32 24 1024 4096 16 32 × 32

The ViT-based transfer learning at both intermediate and task levels was implemented
by replacing the last layer of each ViT model using a flattening layer followed by batch
normalization, one dense layer followed by batch normalization, and a final dense layer as
a classifier, as shown in Figure 6.
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A transformer model is a neural network that learns context and meaning by tracking
relationships in sequential data, such as the words in a sentence. Transformer models apply
an evolving set of mathematical techniques, called attention or self-attention, to detect
subtle ways by which even distant data elements in a series influence and depend on each
other. ViTs use data sequences in the form of image patches. The ViTs used in the study
operate as follows.

• Conversion of images into patches: ViTs use image patches as tokens of words, as in
the original paper Vaswani et al. [34]. For images, pixels can be considered; however,
it increases the computational cost. Moreover, finding hardware to process high-
resolution images such as medical images is challenging. Therefore, we propose the
conversion of input images into patches, as in [26]. In this study, an image with H×W
was converted into N patches of size P× P.

• Flattening and patch embedding: The patches were then flattened and sent through a
single feed-forward layer to obtain a linear patch projection. This feed-forward layer
contained the embedding matrix E, as mentioned in Dosovitskiy et al. [26]. Matrix E
is randomly generated.

• Learnable embedding and positional embedding: Learnable embeddings are concate-
nated with patch projection, which is used later for classification. Because patches are
not naturally formed in sequences, as in time sequence models, the transformers uti-
lized positional embeddings to establish a certain order in the patches. The positional
encoding matrix is randomly generated, as in patch embedding.

• Multilayer perceptron (MLP) head: The outputs of the transformer encoder unit
are passed to the MLP head for classification. Despite the multiple outputs from
the transformer encoder, the MLP considered only one output related to the class
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embedding, whereas the other outputs are ignored. MLP outputs the probability
distribution of the labels to which the corresponding images belong.

2.4. Implementation Details

We trained our models for 50 epochs using the Adam optimizer with a learning rate of
0.0001. A batch size of 16 and exponential decay were used for training. Our datasets were
divided with a 7:2:1 ratio for training, validation, and testing. GELU was utilized as an
activation function with an L2 regularizer for the ViT models. In CNNs, ReLu was utilized
with an L2 regularizer. For experiments involving comparison with the proposed method,
the same parameter settings were utilized to avoid bias in the results.

2.5. Experimental Settings

Four experiments were conducted to evaluate the proposed model. The first exper-
iment was conducted to compare the performance of the proposed model in three ViT
models (vitb_16, vitb_32, and vitl_32). This was done to select the best-performing model
having the least computational cost. In the second experiment, a ViT model trained from
scratch was implemented and compared with the proposed transfer-learning model. This
experiment evaluated whether the ViT trained from scratch was more suitable for classi-
fying breast ultrasound images than a ViT pretrained on different datasets prior to being
applied to the task of classifying breast ultrasound images. The third experiment was
performed to choose the transfer-learning approach (conventional ImageNet-only pre-
training or the proposed transfer-learning method) appropriate for the ViT-based transfer-
learning method in classifying breast ultrasound images. Finally, in the fourth experiment,
the performance of ViT-based transfer learning was evaluated and compared with that
of CNN-based transfer learning. This experiment provides an effective comparison be-
tween ViT-based and CNN-based transfer-learning methods for breast ultrasound image
classification.

2.6. Evaluation Metrics

Metrics including accuracy, area under the receiver operating curve (AUC), F1-score,
recall, and precision were used to assess the performance of our model. We used Matthew’s
correlation coefficient (MCC) and kappa scores also to assess the performance of our model,
owing to the uneven nature of our dataset and the superiority of these metrics in analyzing
the performance. A 95% confidence interval was used to determine each outcome. In
Table 2, TP, TN, FP, and FN stand for true positive, true negative, false positive, and false
negative, respectively.

Table 2. Evaluation metrics.

Metrics Formula

Accuracy TP+TN
TP+FP+FN+TN

Precision TP
(TP+FP)

Recall TP
(TP+FN)

F1 score TP
TP+ 1

2 (FP+FN)

MCC score TN×TP−FN×FP√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

Kappa score 2×(TP×TN−FN×FP)
(TP+FP)×(FP+TN)+(TP+FN)×(FN+TN)

3. Results

The proposed method was evaluated using two datasets from different sources and
their mixture, as listed in Table 3. The proposed method achieved an AUC of 1 ± 0, MCC
score of 1 ± 0, and kappa score of 1 ± 0 on the Mendeley dataset for the vitb_16, vitb_32,
and vitl_32 ViT models. Furthermore, the proposed method achieved the highest AUC
of 0.968 ± 0.02, MCC score of 0.961 ± 0.01, and kappa score of 0.959 ± 0.02 on the BUSI
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dataset for the Vitb _16 ViT model. For the mixed dataset, the vitb_16 model achieved the
highest AUC of 0.937 ± 0.03, MCC score of 0.924 ± 0.02, and kappa score of 0.919 ± 0.03.

Table 3. The performance of the proposed method: BUSI, breast ultrasound image dataset; LR,
learning rate; s, seconds; AUC, area under receiver operating curve.

Model Optimizer LR Accuracy (95%) AUC (95%) F1 Score (95%) Time (s) (95%) Loss (95%)

Mendeley

vitb_16 Adam 0.0001 1 ± 0 1 ± 0 1 ± 0 123.35 ± 2.7751 0.33 ± 0.0037
vitb_32 Adam 0.0001 1 ± 0 1 ± 0 1 ± 0 69.85 ± 1.4289 0.33 ± 0.0053
vitl_32 Adam 0.0001 1 ± 0 1 ± 0 1 ± 0 157.16 ± 6.8667 0.33 ± 0.0031

BUSI

vitb_16 Adam 0.0001 0.952 ± 0.0296 0.968 ± 0.0232 0.966 ± 0.0323 371.39 ± 3.1718 0.68 ± 0.0213
vitb_32 Adam 0.0001 0.944 ± 0.0242 0.958 ± 0.0183 0.942 ± 0.0204 294.874 ± 2.2868 0.72 ± 0.0145
vitl_32 Adam 0.0001 0.928 ± 0.0309 0.947 ± 0.0315 0.922 ± 0.0333 407.074 ± 5.191 0.7± 0.0289

Mixed

vitb_16 Adam 0.0001 0.919 ± 0.0188 0.937 ± 0.0256 0.919 ± 0.0225 407.024 ± 1.7652 0.43 ± 0.0051
vitb_32 Adam 0.0001 0.904 ± 0.0068 0.929 ± 0.0092 0.904 ± 0.0068 265.434 ± 1.8455 0.45 ± 0.013
vitl_32 Adam 0.0001 0.891 ± 0.0291 0.914 ± 0.343 0.894 ± 0.0335 448.092 ± 5.0215 0.44 ± 0.008

Figure 7 shows the receiver operating characteristics (ROC) curves of the proposed
BUViTNet method on the three datasets, using vitb_16 as a base model.

We compared the proposed method with ViT models trained from scratch using
ultrasound images. This was performed to determine whether the ViT-based transfer-
learning model performed better than a ViT model trained directly from scratch with
ultrasound images. The highest AUC recorded with the models trained from scratch were
0.73 ± 0.2, 0.71 ± 0.07, and 0.7 ± 0.1 using vitb_16 on Mendeley, BUSI, and mixed datasets,
respectively (Table 4). The proposed method significantly outperformed the ViT models
trained from scratch with a p-value of less than 0.01 in all cases on all datasets.

Table 4. Performance results of ViT models trained from scratch. BUSI, breast ultrasound image
dataset; LR, learning rate; s, seconds; AUC, area under receiver operating curve.

Model Optimizer LR Accuracy (95%) AUC (95%) F1 Score (95%) Time (s) (95%) Loss (95%)

Mendeley

vitb_16 Adam 0.0001 0.704 ± 0.3 0.730 ± 0.2 0.706 ± 0.3 123.35 ± 2.7751 0.33 ± 0.0037
vitb_32 Adam 0.0001 0.692 ± 0.1 0.715 ± 0.2 0.693 ± 0.2 69.85 ± 1.4289 0.33 ± 0.0053
vitl_32 Adam 0.0001 0.673 ± 0.1 0.695 ± 0.3 0.671 ± 0.2 157.16 ± 6.8667 0.33 ± 0.0031

BUSI

vitb_16 Adam 0.0001 0.694 ± 0.0296 0.710 ± 0.07 0.693 ± 0.0323 371.39 ± 3.1718 0.68 ± 0.0213
vitb_32 Adam 0.0001 0.684 ± 0.0242 0.698 ± 0.0183 0.682 ± 0.0204 294.874 ± 2.2868 0.72 ± 0.0145
vitl_32 Adam 0.0001 0.669 ± 0.0309 0.6851 ± 0.0315 0.667 ± 0.0333 407.074 ± 5.191 0.7 ± 0.0289

Mixed

vitb_16 Adam 0.0001 0.684 ± 0.0188 0.70 ± 0.125 0.689 ± 0.0225 407.024 ± 1.7652 0.43 ± 0.0051
vitb_32 Adam 0.0001 0.674 ± 0.0068 0.699 ± 0.0092 0.68 ± 0.0068 267.434 ± 1.8455 0.45 ± 0.013
vitl_32 Adam 0.0001 0.66 ± 0.0291 0.689 ± 0.343 0.67 ± 0.0335 448.092 ± 5.0215 0.44 ± 0.008
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Furthermore, the proposed transfer-learning method was compared with conventional
ImageNet-pretrained ViT models. This experiment validates the superiority of the proposed
method over traditional transfer learning. The highest AUCs achieved for conventional
transfer learning using ViT models were 1 ± 0, 0.9548 ± 0.0183, and 0.9116 ± 0.0156
on Mendeley, BUSI, and mixed datasets, respectively (Table 5). The performances of
the proposed method and traditional transfer learning on the Mendeley dataset were
comparable; however, the proposed method outperformed the traditional transfer-learning
method on BUSI and mixed datasets, with a p-value of less than 0.01.

Table 5. Performance of conventional transfer-learning-based ViT models. BUSI, breast ultrasound
image dataset; LR, learning rate; s, seconds; AUC, area under receiver operating curve.

Model Optimizer LR Accuracy (95%) AUC (95%) F1 score (95%) Time (s) (95%) Loss (95%)

Mendeley

vitb_16 Adam 0.0001 1±0 1 ± 0 1 ± 0 118.35 ± 2.7751 0.33 ± 0.0037
vitb_32 Adam 0.0001 1±0 1±0 1 ± 0 64.85 ± 1.4289 0.33 ± 0.0053
vitl_32 Adam 0.0001 1±0 1±0 1 ± 0 152.16 ± 6.8667 0.33 ± 0.0031

BUSI

vitb_16 Adam 0.0001 0.942 ± 0.0296 0.9541 ± 0.0272 0.936 ± 0.0323 366.39 ± 3.1718 0.68 ± 0.0213
vitb_32 Adam 0.0001 0.934 ± 0.0242 0.9548 ± 0.0183 0.932 ± 0.0204 289.874 ± 2.2868 0.72 ± 0.0145
vitl_32 Adam 0.0001 0.918 ± 0.0309 0.9351 ± 0.0315 0.912 ± 0.0333 402.074 ± 5.191 0.7 ± 0.0289

Mixed

vitb_16 Adam 0.0001 0.914 ± 0.0188 0.9116 ± 0.0156 0.909 ± 0.0225 402.024 ± 1.7652 0.43 ± 0.0051
vitb_32 Adam 0.0001 0.894 ± 0.0068 0.8799 ± 0.0092 0.884 ± 0.0068 262.434 ± 1.8455 0.45 ± 0.013
vitl_32 Adam 0.0001 0.86 ± 0.0291 0.8499 ± 0.343 0.844 ± 0.0335 443.092 ± 5.0215 0.44 ± 0.008

Finally, we compared the proposed ViT-based transfer-learning method with the
transfer-learning method using CNNs. To do so, we used three SOTA CNN architectures:
ResNet50, EfficientNetB2, and InceptionNetV3. All implementation parameters were
kept the same as those of the ViT-based transfer-learning method for a fair comparison.
ResNet50-based transfer learning provided the highest AUC scores of 0.972 ± 0.01, 0.879
± 0.2, and 0.836 ± 0.08 on Mendeley, BUSI, and mixed datasets, respectively (Table 6).
The proposed ViT-based transfer-learning method performed better than the CNN-based
transfer-learning method for breast ultrasound images, with a p-value of less than 0.01.

Table 6. Performance of CNN-based transfer-learning models. BUSI, breast ultrasound image dataset;
LR, learning rate; s, seconds; AUC, area under receiver operating curve.

Model Optimizer LR Accuracy (95%) AUC (95%) F1 score (95%) Time (s) (95%) Loss (95%)

Mendeley

ResNet50 Adam 0.0001 0.965 ± 0.02 0.972 ± 0.01 0.964 ± 0.02 113.35 ± 2.7751 0.33 ± 0.0037
EfficientNetB2 Adam 0.0001 0.961 ± 0.03 0.969 ± 0 0.956 ± 0.03 115.85 ± 1.4289 0.33 ± 0.0053
InceptionNetV3 Adam 0.0001 0.947 ± 0.1 0.951 ± 0.01 0.941 ± 0.02 123.16 ± 6.8667 0.33 ± 0.0031

BUSI

ResNet50 Adam 0.0001 0.862 ± 0.1 0.879 ± 0.2 0.864 ± 0.2 261.39 ± 3.1718 0.68 ± 0.0213
EfficientNetB2 Adam 0.0001 0.851 ± 0.2 0.864 ± 0.1 0.856 ± 0.3 270.874 ± 2.2868 0.72 ± 0.0145
InceptionNetV3 Adam 0.0001 0.854 ± 0.1 0.87 ± 0.05 0.859 ± 0.1 272.074 ± 5.191 0.7 ± 0.0289

Mixed

ResNet50 Adam 0.0001 0.838 ± 0.2 0.836 ± 0.08 0.841 ± 0.1 302.024 ± 1.7652 0.43 ± 0.0051
EfficientNetB2 Adam 0.0001 0.824 ± 0.1 0.829 ± 0.1 0.824 ± 0.2 362.434 ± 1.8455 0.45 ± 0.013
InceptionNetV3 Adam 0.0001 0.806 ± 0.07 0.8199 ± 0.1 0.804 ± 0.1 343.092 ± 5.0215 0.44 ± 0.008
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4. Discussion

In this study, we proposed a novel transfer-learning approach for ViT-based breast
ultrasound image classification. Our approach uses a ViT model pretrained on the ImageNet
dataset for transfer learning to classify cancer cell images. This model, trained on ImageNet
and cancer cell images, was then used to classify breast ultrasound images. This novel
transfer-learning approach enables a model to learn from a large number of natural and
medical images before being used for classifying breast ultrasound images. The model
leverages the features learned in the previous transfer-learning stages to use it for the target
task. As a result, we were able to achieve the best performance in terms of all metrics used
with our proposed model. We compared the proposed approach with ViT models trained
from scratch, ViT-based conventional transfer learning, and CNN-based transfer learning.
The proposed approach outperformed all of these models.

Regarding the performance of BUViTNet using various base models, vitb_16-based
BUViTNet performed better than vitb_32 and vitl_32, thereby providing less computational
complexity. The main reason for this might be the size of the patches used in these base
models. The vitb_16 base model utilizes an input patch size of 16 × 16, whereas vitb_32
and vitl_32 base models utilize an input patch size of 32 × 32. The smaller the patch size,
the higher the efficiency and effectiveness of the transformer encoder’s attention. This
leads to a better performance in extracting local and global features, which consequently
improves tumor classification. The other reason, specially, in the case of vitl_32 is that the
network is larger and overfits the data compared to that of vitb_16 and vitb_32 models.
Moreover, the vitb_16 model is less computationally complex compared to vitb_32 and
vitl_32 models, making it preferable in our case.

Despite the superior performance of the proposed method in all the experiments, it
has some disadvantages. As can be observed from the results in Table 4, ViT trained from
scratch performed poorly. This is because ViTs are data intensive. ViTs require a large
number of images to perform well when trained from scratch, owing to their large number
of parameters. The ViT base model had 86 million parameters and the ViT large model had
300 million parameters. It is difficult to train from scratch using hundreds or thousands of
ultrasound images, as was the case in our study. Therefore, the model, which was trained
from scratch, performed poorly. Another observation made from the experiments was that
ViTs are more computationally expensive compared to CNNs. Models using ViTs require
more time to train owing to the large size of its architecture. Comparing the results in
Tables 3 and 6 in terms of the time taken for training the models, one can observe that
CNNs were mostly faster than ViTs to train. Despite the larger number of parameters and
higher computational cost compared with CNNs, our proposed ViTs performed better
than CNNs in all cases. The transfer-learning method proposed in this study exhibited a
superior performance.

Future work is directed towards optimizing the model using different parameters
not included in this paper. Previous studies related to multistage learning methods for
ultrasound images have shown the effect of different deep-learning parameters [25,28].
Thus, we will further our efforts in optimizing the proposed model using different deep-
learning parameters. Furthermore, we have observed the slight performance difference
when using different datasets from different sources, as can be observed in Table 3. The
reason for this is obvious and it is due to the difference of imaging equipment, personnel,
location, and other related factors. A good deep-learning model should entertain such
variations and perform uniformly, irrespective of the source of the dataset. However, this
requires the availability of diverse datasets from different locations and in large amounts,
which are not currently available. Therefore, our next task will be considering the usage
of different datasets across the globe from different locations and training our proposed
model. The proposed method could also be translated to breast cancer early diagnosis via
other modalities, such as mammogram and magnetic resonance imaging (MRI). Multistage
transfer learning using natural images and microscopic images has shown improvement
on CNNs’ performance for breast ultrasound image classification [27]. This could also
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be true for vision transformers’ performance on breast mammogram images. Therefore,
the proposed method could be translated to breast cancer early detection using other
modalities, such as mammograms.
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