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Abstract: This study proposes a convolutional neural network (CNN) model using action potential
(AP) shapes as input for proarrhythmic risk assessment, considering the hypothesis that machine-
learning features automatically extracted from AP shapes contain more meaningful information
than do manually extracted indicators. We used 28 drugs listed in the comprehensive in vitro
proarrhythmia assay (CiPA), consisting of eight high-risk, eleven intermediate-risk, and nine low-risk
torsadogenic drugs. We performed drug simulations to generate AP shapes using experimental drug
data, obtaining 2000 AP shapes per drug. The proposed CNN model was trained to classify the TdP
risk into three levels, high-, intermediate-, and low-risk, based on in silico AP shapes generated using
12 drugs. We then evaluated the performance of the proposed model for 16 drugs. The classification
accuracy of the proposed CNN model was excellent for high- and low-risk drugs, with AUCs of 0.914
and 0.951, respectively. The model performance for intermediate-risk drugs was good, at 0.814. Our
proposed model can accurately assess the TdP risks of drugs from in silico AP shapes, reflecting the
pharmacokinetics of ionic currents. We need to secure more drugs for future studies to improve the
TdP-risk-assessment robustness.

Keywords: drug screening; action potential shape; convolutional neural network

1. Introduction

The International Council for Harmonization (ICH) established the S7B and E14
guidelines for drug safety assessment, which present a human ether-à-go-go (hERG) block
and a prolonged QT interval as critical indicators of evaluation based on in vitro and
in vivo methods [1,2]. The hERG assay has high sensitivity, allowing high-risk candidates
to be rapidly and strictly excluded from drug development. However, as its specificity
is low, it discontinues development of potential therapeutic drugs that prolong action
potential duration (APD) but do not induce torsade de pointes (TdP), a lethal drug-induced
syndrome [3–5]. Thirteen advanced medical institutions in seven countries are aware of
the limitations of the existing guidelines for drug toxicity assessment and have initiated the
comprehensive in vitro proarrhythmia assay (CiPA) project to revise the current guidelines
and solve the problems caused by the current strict regulations [5,6].

The CiPA guidelines comprise four nonclinical phases: in vitro assessment of multiple
ionic currents, in silico computer modeling, in vivo electrocardiograph (ECG) assessment,
and in vitro assessment using stem-cell-derived ventricular cardiomyocytes [5]. The in vitro
assessment phase of the CiPA includes both an hERG assay and an in vitro assay for
six major ion channels, INa, INaL, ICaL, IKs, IK1, and Ito, that directly or indirectly affect
action potential (AP) repolarization. The dose–response curves of drugs generated from
the voltage clamp of the in vitro assay provide important drug characteristic parameters,
such as half-maximal inhibitory concentration (IC50) and slope at IC50 (Hill coefficients).

Biomedicines 2023, 11, 406. https://doi.org/10.3390/biomedicines11020406 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines11020406
https://doi.org/10.3390/biomedicines11020406
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://doi.org/10.3390/biomedicines11020406
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines11020406?type=check_update&version=1


Biomedicines 2023, 11, 406 2 of 13

The in silico computer modeling phase quantitatively predicts drug effects from the cellular
level to the organ level based on IC50 and the Hill coefficient [7].

Following the CiPA guidelines, several researchers have proposed classification mod-
els and in silico biomarkers for drug safety assessments. Li et al. presented qInward, the
total amount of charge that flows into cells through INaL and ICaL, as an indicator that can
detect drugs with high potential to induce TdP [8]. Dutta et al. recommended a qNet
value, which is the total amount of net charges that move through INaL, ICaL, IKr, IKs, IK1,
and Ito, as a new metric to classify the TdP risks of drugs as high-, intermediate-, and
low-risk [9]. Li et al. calculated the qNet value of 28 drugs and assessed their TdP risk
using threshold qNet values calculated using hERG-dynamic whole-cell simulation and
non-hERG whole simulation [10,11]. The classification accuracies without hERG were 86%
for high-risk drugs and 85.6% for low-risk drugs [11], whereas those with hERG dynam-
ics were 98.8% for high-risk drugs and 90.1% for low-risk drugs [10]. Miram et al. suggested
a linear discriminant analysis using APD at 90% repolarization (APD90), classifying 31 drugs
into a five-risk level at an average error rate of 0.323 [12]. Llopis-Lorente et al. presented
a decision-tree model using TqNet, the qNet response rate based on drug concentration,
and showed 91.7% accuracy in predicting the TdP risks of drugs [13]. Lancaster et al.
found remarkable differences in APD at 50% repolarization (APD50) and diastolic Ca2+

concentrations between torsadogenic and nontorsadogenic drugs. Using these two metrics,
a support vector machine (SVM) model successfully identified torsadogenic drugs with
96.3 % accuracy and a 12.8% misclassification rate [14].

It is essential to select significant input indicators in machine-learning models for
TdP risk assessment [7]. There have been many attempts to select the most accurate and
reasonable input indicators for drug classification [9,15]. The aforementioned studies
have suggested various physiological biomarkers, but the selection criteria thereof remain
unclear, and many covered potential biomarkers may still exist. We speculate that raw AP
shape has more potential characteristics than only one or two biomarkers. Therefore, this
study proposes a convolutional neural network (CNN) model using AP shapes as input
for proarrhythmic risk assessment, with the hypothesis that the machine-learning features
automatically extracted from AP shapes contain more meaningful information than do
manually extracted indicators. The proposed CNN model classifies the TdP risk of CiPA
drugs into three levels, high-, intermediate-, and low-risk, based on the criteria described
by Li et al. [10].

2. Materials and Methods
2.1. Drug Experimental Data

We used the 28 drugs listed by Li et al., opened in the GitHub. They included eight
high-risk, eleven intermediate-risk, and nine low-risk torsadogenic drugs (Table 1) [10].
The CiPA experimental data had block percentages measured through a voltage clamp
in seven ion channels, INa, INaL, IKr, IKs, IK1, Ito, and ICaL, according to four variations of
drug concentration (https://github.com/FDA/CiPA (accessed on 28 September 2022)). We
preprocessed these in vitro data following the methodology of Crumb et al. [11]. First, the
experimental data were bootstrapped to quantify uncertainty using the Markov Monte
Carlo (MCMC) method proposed by Chang et al. [16], and the half-maximal inhibitory
concentration (IC50) and slope coefficients at IC50 (hill coefficient) of 2000 hill curves within
a 95% confidence interval were computed. The in silico model used these IC50 and Hill
coefficients to implement static drug binding for ion channels and determined AP, reflecting
the drug effects (see the Section 2.2).

https://github.com/FDA/CiPA
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Table 1. List of CiPA training and test drugs used in this study [10].

Risk Level Training Drugs Test Drugs

High

Bepridil
Dofetilide

Sotalol
Quinidine

Ibutilide
Vandetanib
Azimilide

Disopyramide

Intermediate

Chlorpromazine
Cisapride

Ondansetron
Terfenadine

Domperidone
Droperidol
Pimozide

Astemizole
Clopromazine
Clarithromycin

Risperidone

Low

Verapamil
Ranolazine
Mexiletine
Diltiazem

Nifedipine
Nitrendipine
Metoprolol
Tamoxifen
Loratadine

2.2. In Silico Model

The software for the in silico simulation was written in the C++ language and based
on the O’Hara–Rudy (ORd) model that was optimized to assess drug effects, as described
by Dutta et al. [9,17]. It has scaled conductances in five major ionic currents: IKr, IKs, IK1,
ICaL, and INaL (Figure 1). The ionic current blocked by the drug was expressed through
the Hodgkin–Huxley equation, multiplied by the inhibition factor (IF) equation that con-
sists of the IC50, the Hill coefficient (h), and the drug concentration (D), as shown in
Equations (1) and (2):

inhibition factor (IF) =
1

1 +
(

IC50
[D]

)h (1)

Iion = IF·Gion·mion(V − Eion) (2)

where Iion represents the ionic currents inhibited by the drug and Gion is the conductance
of specific ionic currents. mion denotes the gate-state variable and can have more than
one value depending on the type of ionic current. V is the membrane potential and Eion
is the equilibrium potential of the specific ionic current. Based on this simple form of
the ionic-current model, the ORd model comprises complex ionic-current equations with
several constants. In the drug simulation, we set 1, 2, 3, and 4 times the peak serum
concentration (Cmax) of each drug. All drug simulations used the state values of the
gates and currents that reached steady-state conditions after 10,000 pacings without drug
effects as initial cell-model values [9]. These stimulations were applied 1000 times at
a cycle length of 2000 ms to mimic the bradycardia condition and assess the TdP-inducible risk
of a drug via setting the slow pacing cycle of a 30 bpm heart rate, generating 1000 AP beats.
The time resolution for this calculation was 0.1 ms and the time resolution for writing
the AP profile was 2 ms. Since the beginning of the beating was transient and unsta-
ble, we selected AP shapes as the input of the machine-learning model when the slope
during the repolarization phase was maximal among 750–1000 pacings (last 250 beats),
in which we could capture AP shapes when early after-depolarization (EAD) occurred
in a steady state [9]. As we mentioned above, we bootstrapped in vitro experimental
data into 2000 samples of IC50 and H per drug using the uncertainty quantification
algorithm based on the Markov chain Monte Carlo (MCMC) method and finally ob-
tained a total of 56,000 samples (2000 samples per 28 drugs). When the in silico simu-
lation was performed with drug effects, using the bootstrapped drug samples as inputs,
8000 AP shapes per drug (2000 AP shapes × 4 concentrations) were generated. Then, we
randomly extracted 500 APs from these 8000 APs per drug, generating 6000 AP shapes
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(500 AP shapes × 12 training drugs) total for training the model. These AP shapes were
fed into the CNN model as input to classify the proarrhythmic risks of drugs without
additional preprocessing, such as filtering, because AP shapes do not have any noise or
artifact as computational output of the in silico simulation.
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Figure 1. Schematic of in silico cell model for drug simulation; the ventricular cell model used in
this study is the ORd model optimized to assess drug effects as described by Dutta et al. INa, fast
Na+ current; INaL, L-type Na+ current; Ito, transient outward K+ current; IKr, rapid-delayed rectifier
K+ current; IKs, slow-delayed rectifier K+ current; IK1, inward rectifier K+ current; INaCa, i, 80% of
Na+-Ca2+ exchange current; INaCa, ss, 20% of Na+-Ca2+ exchange current; INaK, Na+-K+ exchange
current; ICaK, Ca2+-K+ exchange current; ICaNa, Ca2+-Na+ exchange current; ICaL, L-type Ca2+ current;
INab, background Na+ current; ICab, background Ca2+ current; IKb, background K+ current; IpCa, Ca2+

pump current; Jup, Ca2+ upstroke flux from myocyte into network sarcoplasmic reticulum (NSR); Jrel,
Ca2+ flux through ryanodine receptor inside junctional sarcoplasmic reticulum (JSR); Jdiff, Na, Na+

diffusion flux between subspace and myoplasm; Jdiff, Ca, Ca2+ diffusion flux between subspace and
myoplasm; Jdiff, K, K+ diffusion flux between subspace and myoplasm; PLB, phospholamban; CSQN,
calsequestrin; CaMK, Ca2+-calmodulin-dependent protein kinase II; BSR, anionic SR binding sites for
Ca2+; BSL, anionic sarcolemmal binding sites for Ca2+.

2.3. Model Structure

The proposed CNN model using AP shapes as an input is structured as shown
in Figure 2. The input of the CNN model, each AP shape, had 1000 data points with
a time resolution of 2 ms. The proposed model comprises three convolutional layers with
two filters each, with filter sizes of 32, 16, and 8 for the first, second, and third layers,
respectively. The first convolutional layer moved every two strides for the input shape,
resulting in an output size of 485. It was connected to the batch-normalization (BN) layer
and a max-pooling layer with a size of four to prevent overfitting to the training set. The
second convolutional layer was connected to a max-pooling layer with a size of eight
for every two strides after passing the drop-out layer at a 20% rate. With the outputs of
the last convolutional layer flattened, the 214 generated machine-learning features fed
into the hidden layer with five nodes to predict proarrhythmic risk in three levels: high-,
intermediate-, and low-risk. Aside from the output layer using the “softmax” activation
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function, the hidden layer and convolutional layers used the “Rectified Linear Unit (ReLU)”
activation function. The loss function for training the model was “categorical cross-entropy,”
and the optimization function was “adam” with a learning rate of 0.01.

Figure 2. Model structure of proposed CNN model using AP shapes as input: 1D CNN, one-
dimensional convolutional neural network layer; BN, batch-normalization layer; AP, action potential.
Each AP shape has 1000 data points with a 2 ms time resolution (cycle length of 2000 ms). After
passing through three CNN groups, machine-learning features of 214 were extracted and fed into the
artificial neural network layers with five nodes.

2.4. Model Training and Testing

We used 12 CiPA training drugs to train the model (quinidine, sotalol, dofetilide,
bepridil, cisapride, terfenadine, chlorpromazine, ondansetron, verapamil, ranolazine, dil-
tiazem, and mexiletine). As the number of AP shapes for each drug was 2000, the total
number of AP shapes for training was 24,000. The model training worked out 100 epochs
through 10-fold cross-validation to determine the optimal model with hyperparameters
for assessing proarrhythmic risks of drugs. Then, we determined the hyperparameters of
the final model through comparison of the classification performances from the validation
sets to the training sets, which were randomly distinguished from 12 training drugs. The
final model was validated using 16 CiPA test drugs: disopyramide, ibutilide, vandetanib,
azimilide, clarithromycin, clozapine, domperidone, droperidol, pimozide, risperidone,
asemizole, metoprolol, nifedipine, nitrendipine, tamoxifen, and loratadine. The number of
AP shapes for the test was 32,000.

The proposed model was validated through a 10,000-times-repeated testing method
in which we randomly extracted samples from each drug set, generating 10,000 test sets [8].
We then plotted the receiver operating curves for 10,000 test sets and evaluated model
performance via calculating the area under the curve (AUC), sensitivity, specificity, and
likelihood (LR) values. Each value was calculated for individual TdP-risk categories based
on the 10,000 AUCs;

Sensitivity = TP/(TP + FN) (3)

Specificity = TN/(TN + FP) (4)

Positive likelihood ratio (LR+) =
sensitivity

1 − specificity
(5)

Negative likelihood ratio (LR−) =
1 − sensitivity

specificity
(6)

where TP and TN are true positives and true negatives, respectively, indicating that the
model correctly answers actual positive and negative problems. An FP is a “false positive”,
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indicating that the model mispredicts an actual negative problem as positive. An FN is
a “false negative”, representing the mispredicted case of an actual positive problem as
negative. In the calculation of LR+, we set a small number, close to zero, in the denominator
to prevent the result from becoming infinite.

3. Results
3.1. In Silico Simulation Results

The AP traces of the in silico simulations that observed the effects of drugs according to
four Cmax variations are shown in Figures 3 and 4. Figure 3 shows the AP traces of
12 training drugs: (a–d) for high risk, quinidine, sotalol, dofetilide, and bepridil; (e–h)
for intermediate risk, cisapride, terfenadine, chlorpromazine, and ondansetron; and (i–l)
for low risk, verapamil, ranolazine, diltiazem, and mexiletine. APD90 was prolonged as
Cmax increased for most drugs, but in the case of diltiazem, the APD90 median was not
remarkably changed, at 295.4 (295.1–295.7) ms. However, this did not show APD90 tendency
according to proarrhythmic risk; there was no significant difference in the APD90 values
between the three categorized risk levels. All of the drugs made the APD90 change range
wide according to Cmax variation. The APD90 variation for Cmax changes was the smallest
for diltiazem, at 29.2 (20.4–35.8) ms, followed by that of chlorpromazine, at 43.4 (30.5–53.7)
ms. Among the training drugs, EAD was only observed in all Cmax-variation conditions of
quinidine. Even though mexiletine is categorized as low-risk, its AP traces were unstable
under the Cmax3 (107.4 ms) and Cmax4 (612.9 ms) conditions as compared to other drugs.
Accordingly, the change in APD90 was the largest for mexiletine, at 190.9 (17.9–612.9) ms,
followed by that of bepridil, at 157.3 (195.1–114.0) ms. Mexiletine induced unstable APD
and prolonged APD more than did bepridil. This was due to the high uncertainty for
the in vitro experimental data sets. If an in vitro experiment is performed in a narrow
concentration range that cannot cover all dose–response variations, the uncertainty for the
in vitro experimental data set becomes increased in the fitting of the progress of the optimal
hill curve that explains the reactions of ionic channels according to drug concentration.
Therefore, since this in silico simulation used bootstrapped IC50 and Hill coefficients,
which were calculated for in vitro experimental data sets through the bootstrap algorithm
(Supplementary Figures S1 and S2), for input, when the quantified uncertainty was high,
the simulation results also became unstable. Indeed, the bootstrap results and hill curves
for mexiletine were very unstable, while bepridil showed stable bootstrapped curves. Thus,
the in silico simulation results for mexiletine showed unstable APD and prolonged APD
more than those of bepridil.

Figure 4 shows the AP traces of 16 test drugs: (a–d) for high risk, disopyramide,
ibutilide, vandetanib, and azimilide; (e–k) for intermediate risk, clarithromycin, clozapine,
domperidone, droperidol, pimozide, risperidone, and astemizole; and (l–p) for low risk,
metoprolol, nifedipine, nitrendipine, tamoxifen, and loratadine. Among the test drugs,
EAD only occurred in one high-risk drug, ibutilide, as with the training drugs. The
test drugs had relatively minor changes, according to Cmax variation, compared to the
training drugs; indeed, the most significant change in APD90 was 97.3 (59.2–128.0) ms in
vandetanib. Nifedipine, tamoxifen, and loratadine, of the low-risk drugs, especially did
not show remarkable changes in AP traces, according to four Cmax variations; the APD90
median and variation were 286.5 (283.5–293.6) ms and 10.3 (10.2–10.6) ms, respectively,
for nifedipine; 313.7 (309.9–316.2) ms and 16.0 (10.2–20.4) ms, respectively, for tamoxifen;
and 307.2 (307.2–307.2) ms and 0.001 (0.001–0.001) ms, respectively, for loratadine. The
notable difference in APD90 between the three proarrhythmic risk levels was not observed
in the test drug set, nor, likewise, the training set. We noted the APD90 values for each drug
according to the Cmax variation provided in Supplementary Tables S1 and S2.
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3.2. Classification Results

The proposed CNN model predicted the proarrhythmic risks of drugs based on AP
shapes. Table 2 shows the evaluation scores for the 95% confidence interval of 10,000 tests.
The classification accuracies of the proposed CNN model were excellent for high- and
low-risk drugs, with AUCs of 0.914 (confidence range, 0.913–0.916) for high-risk drugs
and 0.951 (confidence range, 0.950–0.952) for low-risk drugs. The model performance
for intermediate-risk drugs was good, with an AUC of 0.814 in the confidence range
of 0.812–0.815. The true negative rate (specificity) of the proposed classifier was 0.853
(0.852–0.855)—0.999 for high risk, 0.664 for intermediate risk, and 0.999 for low risk—and
the true positive rate (sensitivity) was 0.70 (0.699–0.702): 0.773 for high risk, 0.853 for
intermediate risk, and 0.773 for low risk. The normalized confusion matrix for 10,000 tests
of the proposed CNN classifier is shown in Supplementary Figure S3.
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Table 2. Classification performances of proposed CNN model. CNN, convolutional neural network;
AUC, area under the curve; LR+, positive likelihood; LR−, negative likelihood.

Score High Intermediate Low

AUC 0.914
(0.913–0.916)

0.814
(0.812–0.815)

0.951
(0.950–0.952)

LR+ 4465.4
(4445.4–4485.3)

2.536
(2.522–2.550)

1807.4
(1741.3–1873.6)

LR− 0.227
(0.225–0.230)

0.222
(0.219–0.225)

0.227
(0.225–0.230)

Specificity

0.999
(0.999–0.999)

0.664
(0.661–0.667)

0.999
(0.999–0.999)

0.853
(0.852–0.853)

Sensitivity

0.773
(0.770–0.775)

0.853
(0.850–0.855)

0.773
(0.770–0.775)

0.700
(0.699–0.702)

The LR+ values of the high- and low-risk drugs were significantly high; the prob-
ability that the drugs predicted as high-risk were truly high-risk was higher, at 4465.4
times (confidence interval: 4445.4–4485.3); for low-risk drugs, these values were 1807.4
(1741.3–1873.6) times higher. The probability that the drugs predicted as intermediate-risk
were indeed intermediate-risk was only 2.536 (confidence interval of 95%: 2.522–2.550)
times higher, which means that the specific AP shape of intermediate risk generated small
but sometimes conclusive shifts in the probability of being intermediate-risk. All proar-
rhythmic risk groups showed similar LR values of 0.2, indicating that assessment of a drug
of a specific risk level as the wrong risk level would increase the probability of other risk
levels: 0.227 (confidence interval of 95%: 0.225–0.230) for high risk, 0.222 (0.229–0.225) for
intermediate risk, and 0.227 (0.225–0.230) for low risk. The proposed CNN classifier is four
times (1/LR−) less likely to classify a specific-risk-level drug as the wrong level.

4. Discussion

This study proposed a CNN classifier that can reflect the pharmacokinetics of ionic
currents using in silico AP shapes to assess the TdP risks of drugs. Many studies have
suggested machine-learning models that use AP features, such as APD90, APD50, APD
triangulation (APDtri), AP peak voltage, and AP resting, extracted manually from AP
shapes [13–15]. These features are calculated through feature engineering. Feature engi-
neering, usually used in classical assessment methods, can select significant and objective
features with theoretical rationale but make the whole process of assessing drug risk
complex. In contrast, the proposed CNN model automatically extracts machine-learning
features based on the configuration information of an AP shape according to drug effect,
without feature engineering, by working out a random box. Therefore, we guessed that
extracted features may have included known information of AP features as well as un-
known information, such as temporal correlation, when AP was generated, based on our
previous research. Although the physiological meaning of machine-learning features and
the exact relationship between features is unknown because the CNN structure works out
as a random box, the proposed CNN model can classify drug TdP risks with high accuracy
through selection of the most mathematically valuable features. The AUCs of the proposed
model were still “excellent” based on the criteria of Han et al., which were 0.9 or higher in
the high- and low-risk groups [7].

Llopis-Lorente’s group showed that the accuracy of a decision-tree model with T_qNet
as input was 0.917, the true positive rate was 0.90, and the true negative rate was 0.93 [13].
They represented the characteristics of the drug through only one measurement datum,
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but it could not deal with the uncertainties that could have arisen in in vitro experiments.
In this study, the drug data calculated through experimental data were amplified with
2000 IC50 and Hill coefficients so that the drug characteristics could be quantitatively
reliable. In addition, drug concentration was expanded to four cases, including the risk of
actual drug intake.

In this study, we did not normalize AP shapes before feeding them to the CNN layers,
but we added a “Batch Normalization” layer, which normalized each data batch using
the mean and standard deviation; here, normalization for training uses the mean and
standard deviation of a minibatch, and normalization for testing uses the moving average
calculated in the training process. Therefore, even though the distribution of inputs was
different, the batch-normalization layer could make zero-mean Gaussian distribution for all
data. Additionally, we decided on the model structure through comparison of performance
according to various structures, such as batch-normalization number, number of dropout
layers, and the position of each layer; then, finally, we added only one batch-normalization
layer after the first CNN layer.

The overall strategy for the in silico simulation in this study followed the methodology
of Li et al. They assessed the proarrhythmic risks of drugs through logistic regression based
on qNet values, suggesting two threshold values that distinguished high- and low-risk
drugs from intermediate-risk drugs. They showed a difference in TdP risk-classification
performance according to the hERG dynamic considered for drug response [10]. Compared
to their qNet logistic regression model, our proposed model especially showed outstanding
performance in predicting low-risk drugs, with a 5% higher AUC than that of the hERG
qNet logistic regression model, even though we did not consider the hERG dynamic. For
high-risk drugs, the classification performance of the proposed model was 7% lower than
that of the hERG qNet logistic regression model [10]. This may be because some drugs
used in this study may have had ambiguous AP-shape characteristics. Indeed, the AP
traces of intermediate-risk drugs were quite different between training and test drugs.
Changes according to Cmax variations were more prominent in the intermediate-risk drugs
of the training set than those in the test set (Figures 3 and 4). Furthermore, in the study by
Li et al., the qNet values of disopyramide, a high-risk drug, were distributed within the
intermediate-risk range. We observed that the AP shapes of disopyramide had topological
features similar to those of intermediate-risk drugs. To solve this problem, training and
validation using various drugs are required.

The proposed model showed lower sensitivity and higher specificity for high- and
low-risk drugs. For intermediate-risk drugs, specificity was a bit lower but sensitivity was
high. Sensitivity means the ability to accurately predict positive values as positive, whereas
specificity refers to the ability to accurately classify negative values as negative; for example,
when classifying high-risk drugs (positive values), sensitivity refers to accuracy in detecting
those high-risk drugs and specificity refers to the accuracy of classifying intermediate/low-
risk drugs. Therefore, low sensitivity and high specificity mean that high-risk drugs and
low-risk drugs are more likely to be classified into other risk groups, but not-high-risk
drugs and not-low-risk drugs are unlikely to be classified into high-risk groups.

Our proposed CNN model showed acceptable results for sensitivity and specificity,
at over 70%, with minimal levels in screening and diagnostic research [7,18]. To evaluate
model performance via combination of sensitivity and specificity, we calculated the LR,
denoting the statistical significance of the specific state predicted with a model to the
corresponding condition. The proposed model had excellent LR+ values for high and low
risk (>10); they were significantly higher than those of the qNet logistic regression with
the hERG dynamic (8.05 for high risk and 750,000 for low risk) [10]. The LR values for the
three categorized TdP-risk levels were close to the minimum acceptable performance of
0.2. This means that there is a likelihood that the characteristics of drugs classified into the
wrong categories will generate small but sometimes essential changes in the probabilities
of the corresponding TdP risk categories.
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As in this study, the Cai group that used the cardiotoxic risk group classifier with
the CNN model used drug molecular structure images, using the molecular operating
environment (MOE), as the CNN input without using the results of the in silico model. The
characteristics of high sensitivity and low specificity for the classification model remained,
and low accuracy was 53.8%–78.1% for drugs that did not block the hERG channel [19].
However, the drug proposed by the CiPA in this study showed high accuracy via mixing
28 drugs with drugs that blocked hERG channels or non-hERG channels.

According to the classification table presented by Han et al., the AUC of the classifi-
cation model shown was 0.9 or higher in high- and low-risk drugs, which is the highest
performance of “excellent.” The LR+ values of the high- and low-risk groups were 10
or higher, which is the highest performance of “excellent.” The performance of the LR
indicators was the minimally acceptable performance of 0.2 or higher for the high- and
low-risk groups. It should be considered that there is a difference between the existing
medical evaluation criteria based on binary classification and the multiple classifications
performed in this study, and that the classification performance of the medium-risk group
suggested by our classification model could not be directly compared.

This study has several limitations. First, the temporal resolution of the AP shapes
was slightly rough, at 2 ms, which might have caused us to miss the upstroke of the
membrane voltage. As the CNN model extracts machine-learning features based on the
morphological form, its rough temporal resolution may have affected the model’s classifi-
cation performance. Nevertheless, the proposed CNN model can accurately classify low-
and high-risk drugs. Considering the higher AP-shape resolution, we assumed that the
CNN model structures would perform better. Second, the TdP-risk labels for the drugs
were not standardized. In this study, we followed the methodology described by Li et al.,
but the labels of drugs can vary according to quantified biomarkers in an experimental
data set; Champeroux et al. [20], Woosley et al. [21], and Redfern et al. [22] used different
TdP-risk categories based on their results. Finally, the diversity of the proarrhythmic
drugs used was insufficient. Even though we generated sufficient drug samples via boot-
strapping the in vitro experimental data through the uncertainty quantification algorithm,
the total number of drug types was still limited (12) for training the machine-learning
model. We thus need to secure more drugs for future studies to improve the robustness of
TdP-risk assessments.

5. Conclusions

This study proposes a CNN classifier that can automatically extract machine-learning
features based on AP-shape configuration information through consideration of the phar-
macokinetics of ionic currents from in silico AP shapes in order to assess the TdP risks of
drugs. We expect it to be helpful in predicting the cardiac toxicities of new drugs and used
as a preliminary validation tool before animal experiments or clinical trials if the proposed
methods are validated using more data.
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