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Abstract: This paper addresses the problem of multi-robot task scheduling in Antarctic environments.
There are various algorithms for multi-robot task scheduling, but there is a risk in robot operation
when applied in Antarctic environments. This paper proposes a practical multi-robot scheduling
method using ant colony optimization in Antarctic environments. The proposed method was tested
in both simulated and real Antarctic environments, and it was analyzed and compared with other
existing algorithms. The improved performance of the proposed method was verified by finding
more efficiently scheduled multiple paths with lower costs than the other algorithms.
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1. Introduction

Due to the development of robot technology, robots are working instead of humans in
many places. Robots have the advantage of being able to perform precise tasks that humans
cannot do, and tasks that are dangerous for humans to do. Based on these advantages,
robots are used in many places such as in homes, services, industry, medical applications,
and military applications. Robot applications using a single object, such as a cleaning robot,
a guide robot, and a process using a robot arm, have been commercialized. However, in
the case of a single robot, the limitations are clear, such as low efficiency or unachievable
tasks. To overcome this, multi-robots began to be introduced, which showed increased
work efficiency and more diverse mission performance. In other words, using multi-robots
enables efficient performance of tasks such as fast processing speed and large workload,
but this requires advanced technology. This is because as the number of robots increases,
the control structure and calculation time increase dramatically. For this reason, research
fields for multi-robots such as task allocation, coverage, and scheduling have been created
and are being studied steadily.

Among them, scheduling is for the efficient operation of the robot and aims to reduce
the driving time of the robot. When there are multiple robots and multiple destinations,
each robot is given an appropriate visit order to minimize the robot’s travel distance and
reduce driving time. This can be seen as a kind of traveling salesman problem (TSP) [1–5].
The TSP is to find the shortest possible route from a given set of cities, visiting every city
exactly once and returning to the starting point. The TSP is NP-Hard, and there are a
number of algorithms to solve this problem. Representatively, there are breadth-first search
(BFS) and depth-first search (DFS) [6]. These are algorithms for traversing or searching tree
or graph data structures, which guarantees the minimum distance, but has the disadvantage
of consuming a lot of resources when the path is long and not guaranteeing a problem-
solving time. Nearest neighbor [7] is a simple algorithm to repeat visiting the nearest
city. This has the advantage of being easy to implement and fast to calculate, but it does
not guarantee minimum distance. The genetic algorithm (GA) [8–11], one of the heuristic
algorithms, guarantees distance and time according to the setting of the user parameter.
If the user parameter is properly set, the distance can be calculated with a reasonable
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calculation time. Ant colony optimization (ACO) [12–20] is also a heuristic algorithm that
was conceived in the way ants return home in search of food. Various approaches have
been taken to solve the TSP using ACO, which also made it possible to obtain distances
with reasonable computational time. When the TSP is applied to multi-robots, it is called
the multiple traveling salesman problem (MTSP) [21–28]. The MTSP is an optimization
problem in which multiple salesmen visit all destinations with minimal distance. Many
approaches have been taken to solve the MTSP based on the above algorithms.

However, these TSP solutions will become more difficult to implement in extreme
environments. The extreme environment examined here is Antarctica, a place with a large
area of about 14,000,000 km2, very low temperatures, and various adverse conditions
including snow, ice, and crevasses. Antarctica is the southernmost continent of the Earth,
and is an attractive unexplored region with enormous scientific value, fishery resources,
and energy resources to cope with the Earth’s climate change problems. To discover this
value of Antarctica, 47 countries have joined the Antarctic Treaty and are fiercely competing
for Antarctic research. Many scientists are trying to study Antarctica, but in extreme
weather, crevasses make it difficult for humans to explore the polar regions. To overcome
this, scientists have begun to research and introduce unmanned autonomous driving robots.
The operation of robots in general environments such as roads and indoors is relatively
free from the aforementioned constraints. The general environment does not make robot
operation difficult because the floor is relatively flat and not slippery, and there are few
fatal obstacles such as crevasses. However, in Antarctic environments, sloping areas such
as hills and mountains, slippery floors caused by snow or ice, and crevasses should be
considered. The Cold Regions Research and Engineering Lab (CRREL) in the United States
has developed ‘Cool Robot’ [29] and ‘Yeti’ [30], autonomous vehicles that can be operated
in polar environments, and they are used to collect research data in extreme areas such
as Antarctica. However, they show disadvantages in environments such as snow and ice.
In addition, the average speed of the robot is about 0.4 to 1.5 m/s, which is slow, and it
is somewhat disadvantageous in time to explore the vast area of Antarctica. Therefore,
the need for efficient exploration work using multi-robots rather than single robots has
emerged. Figure 1 describes the concept of multi-robot scheduling.

Figure 1. The concept of multi-robot scheduling in Antarctic environments.
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In this paper, we propose a practical multi-robot scheduling method in Antarctic
environments. This allows multi-robots to visit all nodes with the shortest distance. This
can be seen as a kind of MTSP problem-solving, but considering the specificity of Antarctica,
the process of returning to the starting point after visiting all nodes was omitted. In addition,
stable driving can be realized by avoiding sharp slopes by reflecting Antarctic altitude
information in scheduling. It can also produce better results with reasonable computational
time. The contributions of this paper are as follows.

• To the best of our knowledge, this is the first approach which solves the multi-robot
task scheduling problem in Antarctic environments.

• The performance of the multi-robot task scheduling result was tested and evaluated in
both simulated and real Antarctic environments.

• The scheduled paths by the proposed method can improve the efficiency of operating
multiple robots by considering the characteristics of robot movement in Antarctic
environments.

The remainder of this paper is organized as follows. Section 2 describes constraints
in the Antarctic environments and the necessity for scheduling including constraints, as
well as the definition of MTSP and problems of applying existing algorithms to Antarctic
environments. Section 3 describes the cost function and the structure of ACO used for
multi-robot scheduling. Section 4 shows the experimental results and the comparison with
other methods. Finally, Section 5 is the conclusion.

2. Problem Description

This paper addresses the problem of multi-robot scheduling in Antarctic environments.
First, we define the specificity of the Antarctic environment and its problems. It addresses
problems that can be caused by extremely low temperatures, snow and ice environments,
and altitudes. A practical scheduling method for overcoming these problems is described
later. This can be seen as a kind of MTSP, but considering the characteristics of Antarctic
environments, it is assumed that the multi-robot does not return to the starting point after
visiting all nodes.

2.1. Antarctic Environments

Antarctica is one of the coldest regions on Earth, covering an area of about 14,000,000 km2,
of which 98% is made up of snow and ice. In all regions, the temperature does not exceed
0 ◦C, and the lowest temperature is −89.2 ◦C, which is the coldest area. These conditions
make it difficult to operate the robot. For example, when exposed to low temperatures,
it causes damage to the battery and is bad for the chassis of the robot. Additionally, the
snow and ice floor reduce the robot’s ability to move. For stable driving in snow and on
icy terrain, it will be necessary to avoid slopes in consideration of height. The crevasse,
a deep crack on the glacial surface, is also one of the obstacles that must be avoided. For
stable robot operation, these constraints should be avoided as much as possible. Therefore,
scheduling in Antarctic environments needs to reflect elements of the terrain as well as
distance in the cost.

2.2. Definition of MTSP

In this paper, the definition of MTSP is as follows. The multi-robot scheduling
problem is defined as visiting a given a set of nodes C = {c1, c2, c3, . . . , cN}, where
n = 1, · · · , N for each robot r, with the shortest distance. Each robot has a number of visits
P = {p1, p2, p3, . . . , pR}, where r = 1, · · · , R. It is defined as a single depot if there is one
starting position and a multiple depot if there are multiple starting positions. In this paper,
a single depot is assumed. Each of the R robots located in the single depot must visit one or
more nodes and will not return to the starting position. Each robot has a tour Tr, which is
described as follows.

Tr = {čr
i }i=1,··· ,pR

where čr
i ∈ C (1)
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where čr
i is the node visited by the robot r and pr is the total number of nodes that the robot

r will visit, calculated as follows.
R

∑
r=1

pr = N (2)

In the tour Tr, when the distance between the nodes čr
i and čr

i+1 is dr
i , the total tour

distance for the tour Tr, is as follows.

D(Tr) =
pr−1

∑
i=1

dr
i (3)

Tr,min, the tour with the minimum total travel distance, is defined as follows.

Tr,min = argmin
Tr

(D(Tr)) (4)

Then, the goal is to obtain a set of Tr,min for R robots.

Tmin = {T1,min, T2,min, · · · , TR,min} (5)

To minimize the distance, it is required to set the number of tour nodes pr for each
robot r and obtain Tmin through an appropriate algorithm.

2.3. The Problem of Applying the Existing Scheduling Algorithm to Antarctic Environments

Various algorithms have been studied to solve the multi-robot scheduling problem.
Among them, the nearest neighbor algorithm is a simple algorithm, summarized as follows.

(1) Select a starting point for any city and register it as a visiting node.
(2) Move to the unvisited node with the lowest cost and register it as the visited node.
(3) Repeat Step 2 if there is a city that was not visited.

It is simple and effective. However, due to the greedy nature of the NN algorithm, it
only seeks immediate benefits. Thus, it misses the opportunity to make long-term gains.
This leads to the creation of a bad path. When scheduled based on the cost reflecting not
only the distance but also the topographical elements, these characteristics will be revealed
as disadvantages.

ACO is also one of the algorithms for solving the multi-robot scheduling problem.
ACO is an algorithm that solves problems by exploring artificial ants. Ants have a rule that
they prefer places with a low cost and high pheromones, which is summarized as follows.

(1) Explore ants.

An ant selects a node by the probability p, which is proportional to the amount of
pheromones and the cost.

(2) When the ants finish their search, they leave pheromones in the path of the ant that
has the lowest cost.

(3) Repeat as iteration.
(4) After that, the ant that moved to the lowest cost becomes a solution.

In ACO, pheromones as well as cost are additionally considered. Moreover, probabilis-
tic node exploration allows ants to explore various paths, which gives them an opportunity
to choose better nodes in the long term. This eventually makes it possible to find a better path.

ACO can easily control the cost function, so it is easy to evaluate factors other than
distance. It is also immediate and intuitive because it reflects the cost each time when
visiting the nodes one by one.
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3. Proposed Method
3.1. Overview

Figure 2 is a flowchart of the proposed algorithm. This algorithm is based on ACO, but
two main features are added. First, for multi-robot scheduling, the number of nodes each
robot will visit is set. This is determined by the user or automatically divided by the number
of robots. Then, paths for each robot, an MTSP solution, is generated for multi-robots using
ACO. After paths for multi-robots are created using the proposed method, each robot
moves according to its path. In this paper, a new cost function for ACO is proposed to
properly reflect the characteristics of Antarctic environments.

Figure 2. The flowchart of the proposed method.

3.2. Cost Function

Only the distance between nodes was considered for cost function used in the existing
ACO. This is difficult to reflect Antarctic environments. The proposed cost function contains
elevation information. In the existing cost function, the distance between nodes p and q is
calculated as the Euclidean distance. However, this is a straight distance, which becomes
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inaccurate if altitude information is added. It is also difficult to measure the exact distance
between nodes p and q including altitude information. This was overcome by obtaining
an approximate distance value by sampling between nodes. A method of obtaining the
distance between nodes p and q including the altitude value is as follows.

The node p and the node q are sampled k times, and the distance obtained by dividing
dp,q by k is dk, where dp,q is the distance between nodes p and q. The altitude value Hp,q
sampled between node p and node q is as follows.

Hp,q = (h1, h2, h3, · · · , hk−1, hk) (6)

where hk is the height of the kth sampled point. The difference li of the sampled height
value is as follows.

li = hi+1 − hi (7)

The elevation distance d′p,q for reflecting the altitude information between nodes p and
q is defined as follows.

d′p,q =
k−1

∑
i=1

√
dk

2 + li2 (8)

The value Θp,q for reflecting the altitude information between node p and node q is as
follows.

Θp,q =
k−1

∑
i=1

θi (9)

where θi is the angle between the straight line between hi and hi+1 and the straight line
parallel to the x-axis. Finally, the proposed cost function cp,q is as follows.

cp,q = Ad′p,q + BΘp,q (10)

where A and B are weights, which can be arbitrarily determined by the user. d′p,q is the
distance of the city time, and Θp,q is the altitude value of the city time. Figure 3 shows
that the cost function is calculated based on the altitude information included at the edge
between nodes, where the curve is height information and the straight red line is a straight
line connecting points sampled at regular intervals; the sum of the lengths of the straight
red line is d′p,q, and the sum of the angles is Θp,q.

Figure 3. Example of calculating the proposed cost function between nodes p and q.
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3.3. Ant Colony Optimization

There are various types of ACOs; among them, Ant Colony System (ACS) [13] was
used. ACS is an improved algorithm by adding several processes to the existing Ant System
(AS) [14–16]. Based on this, multi-robot scheduling using cost function adapted to Antarctic
environments was implemented.

First, it is the random-proportional rule that ant k visits from node p to node q.

ωk
pq =


τpq

αηpq
β

∑l /∈Vk
τpgαηpg β , i f g /∈ Vk

0, otherwise
(11)

where τ is the pheromones and η is the importance of the edge, which is the inverse of the
cost. The cost is the value obtained using Equation (10). Vk is the set of nodes visited by ant
k. α is a parameter that determines the importance of pheromones, and β is a parameter that
determines the importance of edge cost. Here, the state transition rule of ACS is applied
as follows.

s =

{
argmaxq/∈Vk

{
τpq

αηpq
β
}

, i f z < z0

S, otherwise
(12)

where S is a random variable determined by Equation (11). It is a rule about ants choosing
a pheromone-rich path. If the random number z (0 ≤ z ≤ 1) is less than z0, ants choose the
path where the pheromone level is high, and if not, it follows the random-proportional rule
of the AS. This prevents falling into the local optimal solution. Random-proportional rules
and the state transition rules are applied, and local parent update is performed according
to Equation (13) whenever visiting a node.

τpq = (1− ϕ)τpq + ϕτ0 (13)

where 0 ≤ ϕ ≤ 1 is a pheromone decay parameter. τ0 is a initial value of pheromone;
it is usually τ0 = 1/ncnn. c is the number of cities, and cnn is the cost calculated by the
nearest neighbor. This allows all ants to be affected by pheromones in real time and avoid
local optimums.

When all ants generate a tour, global pheromone update is performed through
Equations (14) and (15).

τpq = (1− ρ)τpq + ∆τbest
pq (14)

∆τbest
pq =

{
1/cbest, i f best ant travels on node p, q

0, otherwise
(15)

where cbest is the best ant’s tour. This increases the probability of exploring a better path in
the next iteration by accumulating pheromones along the tour of the best solution.

The proposed method appropriately divided the number of nodes so that multi-robots
can perform TSP. Although the user may determine the number of nodes to be visited by
the robot, it is basically implemented by dividing the number of nodes by the number of
robots. Algorithm 1 is a pseudo-code for the proposed method.
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Algorithm 1 Multi-robot scheduling algorithm in Antarctic Environments

1: Initialize the multi robot’s tour T
2: Set number of nodes that the robot will visit N and iteration I
3: for i← N do
4: for j← I do:
5: for each ant do
6: Build a solution according to the number of nodes i
7: Update local pheromone
8: end for
9: Update global pheromone

10: end for
11: Append best ant’s tour to T
12: end for
13: return Multi robot’s tour T

4. Results
4.1. Results in Simulation Environments

Simulations were performed to compare the proposed method with NN and GA. They
show a specific performance difference by comparing the elevation distance. The elevation
distance uses the value according to Equation (8) according to the x, y, and z coordinates of
the node and the edge. The simulations were performed in Python 3.9.7 and the results
were visualized using matplotlib. The environment within the simulation is a virtual 3D
space, which is 1000 × 1000 × 500 pixels. In order to realize the height in the virtual
space, virtual hills A and B according to the normal distribution were generated using the
probability density function. The normal distribution function value of hill A is as follows:
σ = 75, µ = 20. The height is 400. The normal distribution function value of hill B is as
follows: σ = 100, µ = 15. The height is 200. The location of the nodes was randomly set,
and simulations were performed on 20, 30, and 40 nodes. Figure 4 shows a virtual space,
where (a) is the space viewed from the side, and (b) is the space viewed vertically.

Figure 4. (a) The side view of the simulation environment. (b) The vertical view of the simulation
environment. A and B are the hills of the simulation environment.
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For the elevation distance comparison with the proposed method, the nearest neighbor
algorithm and the genetic algorithm were performed. The cost functions of the proposed
method, NN, and GA were defined according to Equation (10), and the parameter val-
ues were as follows: A = 10, B = 15. The parameter values of GA were as follows:
mutation rate = 0.05, population = 50, generation = 300, selection operator was tourna-
ment, crossover operator was two-point crossover and elitism was applied. and elitism
was applied. The parameter values of ACO in the proposed method were as follows:
ants = 40, iteration = 20, α = 2, β = b, ϕ = 0.1, ρ = 0.05, z0 = 0.5, ants is the number of
ants, iteration is the number of iterations. Figures 5–7 are the results of NN, GA, and the
proposed method in the simulation environment, and Table 1 is a comparison table of the
elevation distance. Figure 8 is a comparison chart of the elevation distance.

Figure 5. Simulation results of the nearest neighbor in virtual space for: (a) 20 nodes, (b) 30 nodes,
(c) 40 nodes. The red dot is the starting point and the blue dots are the nodes to visit. Each color line
is the path of each robot.

Figure 6. Simulation results of the genetic algorithm in virtual space for: (a) 20 nodes, (b) 30 nodes,
(c) 40 nodes.

Table 1. The elevation distance comparison results of the simulation.

Part Node 20 Node 30 Node 40

Nearest Neighbor 5476.98 6255.67 7943.39
Genetic Algorithm 5729.22 6348.65 8335.68
Proposed Method 5584.36 5784.93 6484.76
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Figure 7. Simulation results of the proposed method in virtual space for: (a) 20 nodes, (b) 30 nodes,
(c) 40 nodes.

Figure 8. The elevation distance comparison in simulation environments.

Regarding the results in simulation environments, as shown in Table 1, NN and the
proposed method showed similar results for 20 nodes. However, as the number of nodes
increased, the proposed method showed a shorter elevation distance. GA showed low
performance in all of the results. NN is shorter in computational time, but real time does
not need to be guaranteed, so the proposed method is reasonable by generating shorter
and more stable paths with less than 10 s.

4.2. Results in Real Antarctic Environments

Simulations in Antarctic environments were performed to compare the proposed
method with NN and GA. As described above, specific performance differences are pre-
sented by comparing the elevation distance.

In the simulation, the Antarctic environment was located at 74◦37.4′ S, 164◦13.7′ E,
and nodes were randomly set nearby. The latitude and longitude values of arbitrary
nodes were extracted from Google Earth. The distance between nodes was obtained using
the Haversine Formula. The altitude information obtained the altitude values of nodes
and edges using the Google Maps API. The altitude values for the edges were sampled
500 times at the same interval. For performance comparison with the proposed method, the
nearest neighbor algorithm and the genetic algorithm were performed. The cost functions
of the proposed method, NN, and GA were defined according to Equation (10), and the
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parameter values were as follows: A = 3, B = 2. The parameter values of GA were as
follows: Selection = tournament, Crossover = two− point crossover, mutation rate = 0.05,
population = 50, generation = 300, and elitism is applied. The parameter values of
ACO in the proposed method were as follows: ants = 40, iteration = 20, α = 2, β = b,
ϕ = 0.1, ρ = 0.05, z0 = 0.5, ants is the number of ants, iteration is the number of iterations.
Figures 9–11 are the simulation results of NN, GA, and the proposed method in the Antarctic
environments, respectively, and Table 2 is a comparison table of the elevation distance.
Figure 12 is a comparison chart of the elevation distance.

Figure 9. Simulation results of the nearest neighbor in Antarctic environments for: (a) 10 nodes,
(b) 20 nodes, (c) 30 nodes. The red dot is the starting point and the blue dots are the nodes to visit.
Each color line is the path of each robot.

Figure 10. Simulation results of the genetic algorithm in Antarctic environments for: (a) 10 nodes,
(b) 20 nodes, (c) 30 nodes.

Figure 11. Simulation results of the proposed method in Antarctic environments for: (a) 10 nodes,
(b) 20 nodes, (c) 30 nodes.
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Table 2. The elevation distance comparison results of real Antarctic environments.

Part Node 10 Node 20 Node 30

Nearest Neighbor 82.01 km 99.89 km 145.67 km
Genetic Algorithm 79.41 km 93.93 km 141.36 km
Proposed Method 78.17 km 82.95 km 122.78 km

Figure 12. The elevation distance comparison in Antarctic environments.

Regarding the results in Antarctic environments. As shown in Table 2, for all cases,
the ACO generated a shorter path, especially when the number of nodes was more than 20,
showing better performance. Although NN had a shorter computational time, the proposed
method was less than 5 s, which can be considered reasonable if it generates shorter and
more stable paths.

5. Conclusions

This paper addresses the problem of practical multi-robot task scheduling in Antarctic
environments. We analyzed the difficulties of robot operation in Antarctica and present
a solution. For stable robot operation, ACO with a novel cost function including altitude
information is proposed. The proposed method creates a path that avoids steep slopes,
enabling stable robot operation in Antarctic environments consisting of snow and ice.
Furthermore, the comparison of the results with the nearest neighbor algorithm shows that
the proposed method generates shorter paths, enabling efficient scheduling. However, as
mentioned earlier, there are a number of constraints in the Antarctic environment, such as
altitude, snow, ice, crevasses, wind speed, and limited communications. In this paper, only
a few constraints are considered. Various factors must be considered for more efficient robot
operation. In the future, scheduling will be carried out considering various constraints
while including altitude information. Stable and efficient robot operation will be possible
by further reflecting the factors of Antarctic environments.
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the manuscript.
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