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Abstract: This paper proposes a method for CNN-based fault detection of the scan-matching al-
gorithm for accurate SLAM in dynamic environments. When there are dynamic objects in an
environment, the environment that is detected by a LiDAR sensor changes. Thus, the scan matching
of laser scans is likely to fail. Therefore, a more robust scan-matching algorithm to overcome the
faults of scan matching is needed for 2D SLAM. The proposed method first receives raw scan data in
an unknown environment and executes ICP (Iterative Closest Points) scan matching of laser scans
from a 2D LiDAR. Then, the matched scans are converted into images, which are fed into a CNN
model for its training to detect the faults of scan matching. Finally, the trained model detects the
faults when new scan data are provided. The training and evaluation are performed in various dy-
namic environments, taking real-world scenarios into account. Experimental results showed that the
proposed method accurately detects the faults of scan matching in every experimental environment.

Keywords: deep learning; scan matching; 2D SLAM

1. Introduction

SLAM (Simultaneous Localization and Mapping) is a method which allows a mobile
robot to build a map and estimate its location simultaneously in an unknown environ-
ment [1–3]. Despite recent studies in novel SLAM algorithms, SLAM in dynamic envi-
ronments is still being studied for its more robust performance [4,5]. In 2D SLAM, when
objects are dynamic or interrupt the light from a LiDAR (Light Detection and Ranging) in
an environment, the detected environment by the sensor changes by seconds [6,7]; thus,
the accuracy of SLAM degenerates, as shown in Figure 1.

SLAM problems in dynamic environments have been explored with various solutions.
The authors of Ref. [8] proposed a filter-based dynamic object detection and removal
method that requires both a camera and a laser scanner for visual SLAM and laser-based
robot path planning. Ref. [9] suggested a distance filter to eliminate dynamic objects in laser
scan data with multi-layer searching [10] for robot localization for 2D SLAM. Meanwhile,
various methods utilizing deep learning for SLAM have been proposed. Ref. [11] is a
visual SLAM with the LIFT network used to extract features of challenging environments.
Ref. [12] suggested a moving object tracking algorithm that utilizes ML-RANSAC and
CNN for SLAM in a dynamic environment. Ref. [13] suggested a SLAM system that uses
local features obtained with CNN instead of traditional hand-made features. Regarding
deep learning-based 2D SLAM, most existing methods use a method to convert range
values of laser scans in Polar coordinates to panoramic grayscale images for the training of
CNN models [14–16]. In this paper, for the training processes, we have used a new form of
images which represent the laser range values as scan points in Cartesian coordinates with
multiple colors. Table 1 compared the related works in the aspects of dynamic objects, the
use of deep learning, and the type of sensors used.
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Figure 1. An example of the accuracy degeneration of SLAM in dynamic environments (a) SLAM in 
dynamic environments; (b) SLAM in static environments. 
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detection for visual SLAM. An undesirable consequence of this is that the image data have 
a large data size and take much more time to process than laser scan data. In this regard, 
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As described previously, most of the existing SLAM solutions in dynamic environ-
ments or those which are deep learning-based require vision sensors to perform object
detection for visual SLAM. An undesirable consequence of this is that the image data have
a large data size and take much more time to process than laser scan data. In this regard,
solutions for SLAM problems in dynamic environments with only a LiDAR, while not using
vision sensors, are worth further exploration. Additionally, deep learning applications for
2D SLAM are still open to be thoroughly studied.

The main contributions of this paper are as follows.

• An online process which includes raw scan data acquisition, scan matching, matched
scan image generation, and the fault detection of the scan matching has been proposed
and performed successfully, as shown in Figure 2.

• A method to form the training images which represent two consecutive laser scans,
thereby taking advantage of the effective CNN-model training, has been proposed for
the first time.

• The fault detection of scan matching has been conducted with high accuracy in various
dynamic real environments.

The remainder of this paper is organized as follows: In Section 2, we describe the
problem of deterioration of SLAM and scan matching in dynamic environments. Section 3
proposes the process of training image generation from raw scan data and a CNN model for
the fault detection of the scan matching. Section 4 describes the experimental environments
and reports the results. Finally, we conclude in Section 5.
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Figure 2. The concept overview of the proposed method. As soon as the raw scan data are received,
the process of scan matching, the generation of images of matched scans, and fault detection are
performed sequentially in each time step.

2. Problem Description
2.1. SLAM in Dynamic Environments

Various 2D SLAM algorithms with a LiDAR have been developed. This work has
utilized the GMapping algorithm, one of the widely used SLAM algorithms based on RBPF
(Rao-Blackwellized Particle Filter), to build a 2D grid map and a robot trajectory [17,18].
During the filtering process, the estimated robot trajectory is defined as p(x1:t|z1:t, u1:t−1) ,
where x is the robot position, z is the sensor observation, and u is control information from
the robot odometer. Then, while using the estimated robot positions and observations from
the sensor, the estimated map m is defined as: p(m|x1:t, z1:t) .

However, in dynamic environments, the sensor data for the computations of the two
posterior probabilities of the robot trajectory and the map are disrupted, resulting in bad
SLAM performance. To improve this situation, our proposed method detects the faults
of scan matching for the final decision to reflect the resulting scans from scan matching
or otherwise on the computations as described in Figure 3, which represents the whole
structure of 2D SLAM using the proposed method.
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In 2D SLAM, a new laser scan is matched to a previous scan. To take the results of
matching, the matched scans are converted into scan images. When the trained CNN model
confirms that the scan matching is successful, the new laser scan is used for updates of the
robot position and the map. If the scan matching is predicted to be faulty, the new laser
scan is discarded, but only the odometer data at the time are used. Not using the unaligned
scan points prevents an incorrect estimation of the map and the robot trajectory.

2.2. ICP (Iterative Closest Points)

ICP is a scan-matching method that iteratively matches two consecutive laser scans. A
transformation matrix that minimizes the distance between two scans is needed to align
the current scan with the previous scan.

The closest points pi in the current scan to the points qi in the previous scan are
searched. A cross-covariance matrix K is defined as:

K =
N

∑
i=1

pi · qi
T =

[
cov(Px, Qx) cov

(
Px, Qy

)
cov

(
Py, Qx

)
cov

(
Py, Qy

)] (1)

Then, to find the rotation elements in the transformation matrix, K is decomposed as:
K = UΣVT by a singular value decomposition, where U is the left singular vector and V is
the right singular vector. The rotation matrix R is defined as: R = UVT . The transformation
matrix is the combination of rotation and translation elements. Thus, the translation matrix
t is defined as: t = µQ − R · µP, where µQ and µP are the centers of mass of the previous
scan and current scan. The rotation and translation matrix are iteratively computed until
the scan matching error defined as: err =‖ µQ − R · µp ‖, is smaller than a preset threshold.
In this paper, the maximum number of iteration times and the error threshold were set as 20
and 0.01 (m), respectively. Disallowing too many iterations, the matching was terminated
when the distance between two scans was less than 1cm. However, in this paper, most of
the matchings were not finished before 20 iterations because the scan data were collected in
environments which were dynamically set.

2.3. The Problem of Scan Matching in Dynamic Environments

Scan matching is an important technique which allows SLAM to match the current
scan to the previous scan of two consecutive laser scans by searching the overlapping
parts [19]. ICP (Iterative Closest Points) [20–24], PSM (Polar Scan Matching) [25–27],
and NDT (Normal Distributions Transform) [28–30] are representative scan matching
methods. However, in dynamic environments, objects which move over time lessen the
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resemblance of two consecutive scans, making it challenging to perform accurate scan
matching, as shown in Figure 4. In GMapping, scan matching is used to compute the
maximum likelihood of the current robot position. The corrected robot position achieved
via scan matching is defined as: xt = argmax{p(zt|xt, mt−1) p(xt|ut, xt−1)}. However,
scan matching may fail in dynamic environments, since the sensor data for the computations
of the two posterior probabilities of the robot trajectory and the map are disrupted.
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Consequently, the scan matching in GMapping, as well as the traditional scan matching
methods, can be faulty due to dynamic objects and may cause errors in robot position
estimation and map building. Even though various methods have been developed to
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resolve the problem of scan matching in dynamic environments, this remains an ongoing
problem in SLAM communities. Therefore, this paper proposes a practical and reliable
method to resolve the problem by detecting faulty scan matching based on deep learning.

3. Proposed Method

In environments with various dynamic scenarios, the raw scan data are acquired
by a 2D LiDAR. The scans are then matched with ICP (Iterative Closest Points) scan
matching. The matched scans are converted into scan images to be fed as training data for
the CNN model for fault detection. When new scan data are acquired, the trained model
detects faults in scan matching. The sequential tasks of acquisition of raw scan data, scan
matching, conversion of matched scans into images, and fault detection are performed in a
single process.

3.1. Data Acquisition

To obtain a large amount of laser scan data for the training of the CNN model, raw
scan data from a high-resolution LiDAR are received in ROS (Robot Operating System)
sensor messages. The raw scan data include ranges values of dynamic objects and their
scan occlusions, as shown in Figure 5.
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3.2. Training Images

To conduct effective training of the CNN model, the scan points are converted into
simple scan-matching images with clear features. To generate scan-matching images, two
consecutive scans in the raw scan data are scan matched at each timestamp using ICP.

The matched scans with Cartesian values are plotted as point graphs, as shown in
Figure 6. To differentiate two scans in a pair, the previous scan is plotted in red, and the
current scan in blue. Since the images contain only two scans in different colors on the
white background, it is advantageous to extract features for the CNN model. In addition,
to maximize the meaningful parts in images, the plotted areas of scan pairs are not fixed,
but they change according to the ranges in which scans exist, as shown in Figure 7.
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For the preprocessing of plotted images, the unnecessary edge parts of scales are
eliminated, and the sizes are reduced by about 1/16, to a final total of 256 × 256 pixels. The
images are reduced in size for fast CNN model training while maintaining the features
of scan matching. The processed images are automatically saved, then classified into
binary class labels of normal and fault, as shown in Figure 8. The image generation and
preprocessing were performed using matplotlib, a python visualization tool, which has a
much shorter processing time than MATLAB.
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Since the training images consist of primarily white backgrounds and limited areas of scan
pairs, max-pooling layers are added for each convolutional layer to take meaningful values
in feature maps. In addition, a quarter of neurons are dropped out after each max pooling
to prevent over-fitting. Fully connected layers to flatten the extracted features follow the
convolutional layers, resulting in the likelihood of class labels with the activation function
Softmax; thereby, the scan matching can be found to be normal or faulty. For training
and validation, binary_crossentropy loss for binary classification and Adam optimizer are
utilized. The training epochs are set to 17, since the iteration number was sufficient to train
images. Too much repetition of training may cause an over-fitted model. The batch size
is set to 32 for the fast training; this value is not too large to affect the training accuracy.
Both the training and validation loss desirably decrease during the training repetitions, as
shown in Figure 10.
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4. Experiments and Results

The environments for the experiments are set with multiple dynamic scenarios for an
adaptive CNN model, as shown in Figure 11. To show the feature of each environment
clearly, the people have been excluded from the figure. Environment 1 is a lobby with
dynamic objects and clear landmarks. Landmarks with features are advantageous for scan
matching, but the dynamic objects disturb the sensor data. Environment 2 is a narrow
corridor with few features. This generally degrades the performance of scan matching.
Environment 3 is an indoor environment with mirrors (lifts) and windows; this makes the
range values from the sensor unreliable. Environment 4 is a wide hall; its structure partially
exceeds the detection distance of LiDAR. In addition to these challenging conditions,
Environments 1, 2, 3, and 4 were stuffed with dozens of people. Lastly, the Willow Garage
dataset [31] was used as Environment 5. The environment is an indoor office with a few
moving objects. For precise validation of the performance, the data collected in environment
5 were not used for training, but only to test the trained model.
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The mobile robot used for experiments is Omorobot R1, which has a maximum speed
of 1.2 m/s and an odometer for the control information, as shown in Figure 12. For the
detection of environments, RPLidar A3 is used with a maximum detection distance of
25 m, taking 1440 points for each scan with 360◦ of FoV (Field of View). With the sensor
with high angular resolution (0.25◦), acquiring large amounts of data is possible. The
Willow Garage dataset has exceptive data, of which laser scans have 1040 points with
270◦ of FoV.
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4.1. Scan Matching

The results of scan matching in Environments 1, 2, 3, 4, and 5 are shown in Figures 13–17.
In Environment 1, despite landmarks that provide good features for scan matching, dy-



Sensors 2023, 23, 2940 11 of 16

namic objects disturb the detection of LiDAR. As a result, scan matching occasionally fails.
Scan matching in Environment 2 is more challenging than in Environment 1, which has
few landmarks except the walls of the corridor. This is especially true when the mobile
robot moves in a straight line without rotation, as the consecutive scans from the motion
still have large overlapping areas of walls before scan matching. That is, the structural
features which are straight and continuous can stop the iterations of scan matching, even
though the scans are not yet adequately matched. When objects are added to this situation,
the performance of scan matching deteriorates further. Environment 3 shows the faults
of scan matching caused by both dynamic objects and the discouraging factors of sensor
detection. The mirrors (lifts) reflect the sensor light; thus, the scan points representing the
structure are scattered. Likewise, windows allow light to pass through them; therefore,
the sensor detection becomes unreliable and the environment map highly deteriorates. In
Environment 4, the scan points on the parts which are out of the range of the sensor are
received as infinite values, and the values are discarded for scan matching. This results in
small matching areas, and the areas are further reduced by dynamic objects, which hide the
landmarks in the environment from LiDAR detection. Environment 5, the public Willow
Garage dataset, has data with a smaller detection angle than the others, and many objects
hide a large part of its original structure.
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Figure 13. Scan matching images in environment 1 (Red: Previous scan, blue: current scan).
(a) Normal matching images; (b) faulty matching images.
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(a) Normal matching images; (b) faulty matching images.
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Figure 15. Scan matching images in environment 3 (Red: Previous scan, blue: current scan).
(a) Normal matching images; (b) faulty matching images.
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Figure 16. Scan matching images in environment 4 (Red: Previous scan, blue: current scan).
(a) Normal matching images; (b) faulty matching images.
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Figure 17. Scan matching images in environment 5 (Red: Previous scan, blue: current scan). (a) Nor-
mal matching images; (b) faulty matching images. 
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4.2. Fault Detection

For training and testing, among 20,830 images in total, 13,254 normal images and
7576 faulty images are used at a ratio of three (training) to one (testing). For the validation
of the prediction, 2969 normal images and 1283 faulty images of 4252 images are used.
Data from all environments described in 4.1 are used for the training and testing, and the
validations of label prediction are conducted using the total data of all environments and
the respective data of each environment. Table 2 shows the confusion matrix for prediction
results of fault detection in various environments.

Environment 1 shows the highest accuracy in detecting faults of 99.6%. This is be-
cause the images in this environment more clearly show whether the two consecutive
scans are aligned or not, compared to other environments. For the fault detection of
the trained model, the mismatch of scans results in more red points of the previous
scan in an image. That is, since the mismatched red points in Environment 1 are clearly
shown in faulty scan-matching images, the fault detection is successful. Comparatively, in
Environment 2, the fault detection has 99.3% accuracy, which is the lowest accuracy. Be-
cause the faults of scan matching in the environment are mostly linearly unaligned, the
current scan in blue covers the most of the previous scan in red, but the two scans are not yet
matched. These faults less clearly show the unconformity of the scans on images than faults
in other environments, making the fault detection of the CNN model confusing. However,
these errors are reduced by feeding a large number of linearly faulty images; thereby, the
trained model is still robust in its predictions. Environment 3 shows good results, except
for four incorrectly labeled predictions among 998 images, resulting in 99.5% accuracy.
Due to the windows and mirrors, as well as dynamic objects, the red previous scan points
partially decrease. The scan matching errors in this situation are wrongly predicted, but
they are handled by training data from different trajectories and environments. Likewise,
in Environment 4, the scan points of two laser scans are reduced by its spacious structure
and objects. The images of this matching error contain fewer features, which demonstrates
the quality of scan matching. Still, the trained model predicts it with an accuracy of 99.5%.
Only a few slightly unaligned scan images are incorrectly predicted. Environment 5 is
used only to test the trained model, and is never used for the fault detection training. Even
though the images reduce features as a result of the objects, 98.9% accuracy is achieved due
to the large dataset taken from Environments 1–4.

The results are also presented as ROC (receiver operating characteristic) curves in
Figure 18. As shown in the graphs, the trained CNN model accurately detects the faults
of scan matching, regardless of the environment. The proposed method is adaptive for
various environments with their own features. In addition, we compare the proposed
method to the original ICP in terms of scan matching error, as shown in Figure 19. The error
is defined as the Euclidian distance between the centers of mass of two matched scans, as
described earlier in Section 2.2. The smaller the error, the more accurate the scan matching.
The inaccuracy in matchings decreases by 75% using our CNN method.

Table 2. Predictions of the proposed method.

TP FN FP TN Recall Precision Accuracy

All environments 2946 23 6 1277 99.2% 99.7% 99.3%

Environment 1 978 3 2 274 99.6% 99.7% 99.6%

Environment 2 745 4 3 352 99.4% 99.4% 99.3%

Environment 3 700 3 1 294 99.5% 99.8% 99.5%

Environment 4 534 2 2 355 99.6% 99.6% 99.5%

Environment 5 702 7 4 360 98.0% 99.4% 98.9%
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5. Conclusions

We have proposed an applicable CNN model for the fault detection of scan matching
to complement SLAM in dynamic environments. For fault detection, as soon as the raw
scan data are received, scan matching, the conversion of matched scans into images, and
the fault detection by the trained CNN model are performed sequentially at each time step.
The scan data for the training of the model are acquired under various dynamic scenarios
to compare the model’s performances in real-world environments. As the training data
for a CNN model, the form of images that represent consecutive scan data in Cartesian
coordinates are used for the first time and demonstrate efficiency in the model training.
The validation of the trained model shows accuracy of over 99% in the detection of faults
of scan matching in every experimental environment.

For future work, the method can be extended to various SLAM frameworks in real
time. Depending on the methods of scan matching, mapping, and robot pose estimation
of different SLAM algorithms, the steps of scan matching and the application of fault
detection in the proposed method can be adapted to enhance existing SLAM and scan
registration systems.
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