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Abstract: The ultrasonic technique is an indispensable imaging modality for diagnosis of breast cancer
in young women due to its ability in efficiently capturing the tissue properties, and decreasing nega-
tive recognition rate thereby avoiding non-essential biopsies. Despite the advantages, ultrasound
images are affected by speckle noise, generating fine-false structures that decrease the contrast of
the images and diminish the actual boundaries of tissues on ultrasound image. Moreover, speckle
noise negatively impacts the subsequent stages in image processing pipeline, such as edge detec-
tion, segmentation, feature extraction, and classification. Previous studies have formulated vari-ous
speckle reduction methods in ultrasound images; however, these methods suffer from being unable
to retain finer edge details and require more processing time. In this study, we propose a breast
ultrasound de-speckling method based on rotational invariant block matching non-local means
(RIBM-NLM) filtering. The effectiveness of our method has been demonstrated by com-paring our
results with three established de-speckling techniques, the switching bilateral filter (SBF), the non-
local means filter (NLMF), and the optimized non-local means filter (ONLMF) on 250 images from
public dataset and 6 images from private dataset. Evaluation metrics, including Self-Similarity Index
Measure (SSIM), Peak Signal to Noise Ratio (PSNR), and Mean Square Error (MSE) were utilized to
measure performance. With the proposed method, we were able to record average SSIM of 0.8915,
PSNR of 65.97, MSE of 0.014, RMSE of 0.119, and computational speed of 82 seconds at noise variance
of 20dB using the public dataset, all with p-value of less than 0.001 compared against NLMF, ONLMF,
and SBF. Similarly, the proposed method achieved av-erage SSIM of 0.83, PSNR of 66.26, MSE of
0.015, RMSE of 0.124, and computational speed of 83 seconds at noise variance of 20dB using the
private dataset, all with p-value of less than 0.001 compared against NLMF, ONLMF, and SBF.

Keywords: ultrasound; filtering; speckle; clustering; block matching; non-local means

1. Introduction

Currently, the ultrasonic technique is a popular imaging modality for the diagnosis of
breast cancer in young women with dense breast tissue [1–3]. However, ultrasound images
are susceptible to noises, notably speckle noise. Speckle is a random noise pattern created
by a large number of scattering waves from the tissues possessing random phases [4].
The scattering waves interfere in two ways: either detrimentally by creating speckles and
mottled B-scan noises or constructively by creating intense noise [5,6]. Speckle noise in
ultrasound images is characterized by its high frequency and poor visual or perception
quality. It produces artificial structures while diminishing the actual boundaries of the tissue
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in breast ultrasound images. Furthermore, it poses challenges for the subsequent steps of
the image processing pipeline, such as edge detection, segmentation, feature extraction, and
classification [4,5]. Moreover, speckle is multiplicative in nature compared to other noises,
which are usually additive; this makes it challenging to filter from ultrasound images [7,8].

Speckle reduction algorithms can be categorized into five types: (i) the local adaptive
filters such as the Lee filter [9,10], the Frost filter [11,12] and the Bilateral filter [13,14]; (ii) the
anisotropic diffusion filters such as the Detail Preserving Anisotropic Diffusion (DPAD) [15]
and Oriented Speckle Reducing Anisotropic Diffusion (OSRAD) filters [16]; (iii) the multi-scale
filters such as the Generalized Likelihood Method (GLM) filter [17], the Wavelet-Based Filter,
and the Linear Wavelet filter [18]; (iv) the non-local means filters [19–21] such as the Optimized
Bayesian Non-local Means (OBNLM) filter and the Probabilistic Patch-based (PPB) filter [22];
and (v) the hybrid filters such as the Non-local Means and Multi-scale Hybrid Filter [23,24],
e.g., the SAR-Oriented Version of the Block Matching 3D (SAR-BM3D) filter.

Generally, the local adaptive filters have two disadvantages: being very sensitive to
noise and enhancing the high contrast areas of images too much, resulting in the intro-
duction of artifacts [25]. Anisotropic diffusion filters suffer from the need for intensive
parameter adjustment (number of iterations), the tendency to degrade the fine structures
in an image, and a reduction in the image resolution [26]. Multiscale methods are compu-
tationally intensive and require more constraints compared to other filters [17]. Similarly,
non-local means filters suffer from an increased computational speed due to weighted
averaging [21]. Finally, hybrid methods deteriorate the visual quality and do not preserve
the edges in the images [24].

Therefore, despite the fact that the existing filtering methods reduce speckle noise
significantly, there are still drawbacks associated with the filters in terms of achieving
high fidelity breast cancer detection [25–27]. Firstly, these filters remove finer edge details
that are necessary during diagnosis for defining the precise boundaries of tumors along
with the speckles. During subsequent iterations, the filters also cause blurred contrast
edges in the regions of low intensity, whereas the speckles are still retained in the high
intensity regions [18]. Secondly, in most of the algorithms, the restored value of a pixel
relies on the neighborhood pixels in its spatial vicinity; this is referred to as the locally
adaptive recovery paradigm [26]. In contrast, the non-local methods do not entirely depend
on neighborhood pixels; however, they require a longer processing or computation time
compared to the local methods [20]. Finally, prior to de-noising, most of the algorithms
do not distinguish pixel properties such as noise, speckle, or edge; hence, they cannot
find an adequate balance between edge enhancement and the retention of small structures,
especially when the quality of the source image is poor [18,26].

To overcome the shortcomings of the filter effects on speckle reduction in ultrasound
images, a Multi-Layer Fusion Enhancement Method was proposed based on Block Matching
and 3D (MLFE-BM3D) filtering [28]. This approach maintains a good filtering effect in the
smooth region of the image and also improves the performance of the block matching as
quantified by the Peak Signal-to-noise ratio (PSNR). Despite the improved noise reduction
achieved by the MLFE-BM3D filter, drawbacks persist, such as the removal of finer edge
details and the degradation of the edges and small dimensional structures, especially when
the quality of the image is poor. Moreover, the processing time is relatively long and
requires optimization.

Here we propose a de-speckling technique that uses rotationally invariant based
block matching and non-local means (RIBM-NLM) filtering for de-speckling ultrasound
breast cancer images for improved early diagnosis. The RIBM-NLM method includes
pre-classification as well as the definition of new similarity terms; these techniques allow
us to calculate a more reliable set of candidates required for calculating the weight factors
used by the non-local means filtering based on block matching. To achieve the goal of
finding more reliable sets of candidates, our method employs both pre-classification and the
definition of a new similarity term. We want to increase the chance of finding candidates
for non-repetitive patterns. Thus, pre-classification is used to provide candidate sets that
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can be from any part of the image. Moreover, because the moment invariants we use in
pre-classification are rotationally invariant, the neighborhoods will potentially contain
rotationally unaligned candidates. It is therefore necessary to define a new similarity term
that can estimate the rotation angle during the matching process. This is where RIBM
comes into play. Finally, the use of K-means increases the computation speed; this reduces
the processing time.

2. Materials and Methods
2.1. The Denoising Process

The filtering pipeline starts with pre-processing via a Gaussian filter, followed by pre-
classification using K-means clustering based on Hu’s moment invariants. Next, non-local
means (NLM) filtering based on the rotationally invariant block matching (RIBM) is carried
out as depicted in Figure 1. The Gaussian filter smoothens the image while making further
operations scale invariant, and the clustering step improves NLM by identifying suitable
candidates for the weighted averaging task [29]. The K-means clustering algorithm em-
ployed in the proposed method uses Hu’s moment invariants to group similar candidates
within a cluster [30]. The RIBM process provides reliable, noise-tolerant, and rotationally
invariant weights calculated for each cluster [31].
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Figure 1. Processing pipeline of the RIBM-NLM method. (a) Patch separation; (b) K-means clustering. 𝑁௜, 𝑁௝ denote two different patches of fixed size whose 
central pixels are 𝑖, 𝑗, respectively. Figure 1. Processing pipeline of the RIBM-NLM method. (a) Patch separation; (b) K-means clustering.

Ni, Nj denote two different patches of fixed size whose central pixels are i, j, respectively.

In the pre-classification process, the noisy input image is subjected to a Gaussian
filter. Gaussian was chosen over other filters because the original pixel value receives the
heaviest weight (having the highest Gaussian value), and the neighbouring pixels receive
proportionally lower weights as their distance to the original pixel increases. This results
in a blur that preserves boundaries and edges better than other more uniform blurring
filters. Furthermore, utilizing the Gaussian filter allows visual operations to be made scale
invariant, which is necessary for dealing with the size variations that may occur in image
data. This is because the images may be of different sizes and, in addition, the distance
between the object and the acquisition method may be unknown and may vary depending
on the circumstances. In general, the important properties of the Gaussian blur that made
it appropriate in our case include Gaussian kernel linearity, shift invariance, semi-group
structure, non-enhancement of local extrema, scale invariance, and rotational invariance.
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Consider a (2m + 1)× (2m + 1) square mask, with a center (0, 0) and x, y ranges from
(−m,−m) to (m, m). The element of the Gaussian mask is given by Equation (1):

Gσ(x, y) = e(
−(x2+y2)

2σ2 ) (1)

where σ is the standard deviation of the Gaussian distribution. To keep the brightness level
balanced in the image, we have performed normalization using Sumσ, Equation (2), as in
Equation (3):

Sumσ =
m

∑
x=−m

m

∑
y=−m

Gσ(x, y) (2)

Gkσ(x, y) =
Gσ(x, y)

Sumσ
(3)

where Gkσ is the normalized Gaussian filter used for generating the Gaussian blurred (Gb)
output image as in Equation (4):

Gb = Gkσ ∗ ν (4)

where ν denotes the intensity of the input noisy image and ∗ denotes the convolution operation.
In this work, we do not use a larger value of σ because it introduces additional artifacts,

and we want to retain most of the details of the input noisy image. After the Gaussian filter
is applied to the input noisy image, the resulting blurred image is used as an input for the
following clustering-based pre-classification process (see Figure S1).

The Gaussian filtered image is then converted into patches and used in the subsequent
processes. For each of the patches, Hu’s moment invariant features are calculated. In our
analysis, Hu’s moment invariants of order 2 have been used, and a feature descriptor of
dimension: (1× 7), a row vector was calculated for each patch. These feature descriptors
are used as input for K-means clustering as in [31]. Consider N × N image and n × n
patch with center i (i = 1, 2, . . . , N × N). The moment invariants and feature metrics
(φ1, φ2, · · · , φ7) are calculated for each patch and represented as a 1× 7 row vector. Then,
for the entire image, there exist N × N feature vectors. These vectors are given as the input
to the K-means clustering and the N × N vectors are clustered into K groups using the
objective function in Equation (5):

argmin
c

K

∑
k=1

∑
H(Gb(i))εHmk

i = 1, 2, . . . , N × N

|H(Gb(i))− µk|2 (5)

where Gb(i) is a Gaussian blurred image patch with center i. The H(·) provides the moment
invariants feature vector for the input patch, whereas µk is the mean vector for the kth
cluster, Hmk. Consequently, we obtain K clusters, {Hm1, Hm2, Hm3, . . . , Hmk}, with each
cluster Hmi containing li feature vectors. Therefore, each cluster has a different length,
li. In general, a pre-classified feature vector is represented with indices k and l as Hmkl ,
where the indices span: k = 1, . . . , K; l = 1, . . . , L. Here, the index k corresponds to different
clusters, and the index l corresponds to different patches that are clustered within it [32].

Most image processing methods use various parameters to recognize the different
features present in an image. The objective here is to find several such numerical parameters
that better characterize the image features. Statistical moments are usually used to generate
moment invariants that describe structural or shape features. The moment invariants are
normalized so that the intensity differences in images do not affect performance. These
shape descriptors are used by the K-means clustering algorithm to cluster similar patches.
Furthermore, tables corresponding to irregularity, compactness, aspect ratio, and size are
generated from these moment invariants. The K-means clustering algorithm clusters N
patches of an image into K classes based on the feature descriptors provided to it. In our
case, the objective of clustering is to reconstruct a given patch using a small number of
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the other patches least corrupted by noises. Consequently, we achieve this by classifying
an image into N small patches and looking for a close match for each patch within the
pre-classified K image templates; we can then send a closer and better fit for the image in
the form of a list of matching templates with the labels k1, k2, . . . , kN. Clustering-based
pre-classification performs faster without the loss of any pixels in the weight calculation.

K-means clustering was chosen over fuzzy C-means clustering and other clustering
methods due to two advantages: it processes quickly without eliminating any pixels during
the weight calculation and clusters data into only a single cluster, with no overlapping
clusters. Fuzzy C-means clustering, in contrast to K-means clustering, clusters data into
multiple clusters. In our case, we want each pixel of the image to be clustered only into a
single group, not into multiple groups. This property of K-means clustering helps to find
unique pixels for the weighted averaging process that follows, thereby increasing the speed
and quality of speckle reduction. In the K-means algorithm, the patches are partitioned
into distinct clusters, and every member of a patch is possessed by exactly one cluster [33].
This prevents the candidates from being available in more than one cluster. Here, K-means
clustering supplies the preselected candidates for the upcoming weighted averaging. The
classification data, which are the coordinates of the block centre, are kept in the look-
up table (LUT). Afterwards, the weighted averaging is carried out within each cluster
(Figure S2). In summary, following the pre-classification, the original noisy image is clus-
tered into K classes, and a look-up table is generated. Afterwards, the weighting average is
carried out.

The rotationally invariant block matching process uses the LUT and calculates the
weighted averaging for NLM filtering [31]. Non-local means filtering is based on the fact
that images have patches that possess self-similarity. Consider a noisy image, v, with
intensity, v(i), at each pixel, i, or coordinates (x, y) as follows in Equation (6):

v =
{

v(i)
∣∣∣i ∈ Ω, Ω ⊂ R2

}
(6)

The NLM intensity at each pixel, i, represented as NL(v)(i), is nothing but the
weighted average of i′s neighborhood pixels, I, denoted as Equation (7):

NL(v)(i) = ∑
j∈I

w(i, j)v(j) (7)

where v represents the input Gaussian blurred image, v(j) is the intensity at each pixel j,
and w(i, j) is the weightage factor calculated for each v(j) in order to restore the intensity
of the noise corrupted intensity v(i) at pixel i. The weightage factor for pixel i is calculated
from all its neighborhood pixels j ∈ I. The weightage factor w(i, j) is calculated as in
Equation (8):

w(i, j) =
1

Z(i)

e−
‖ν(Ni)−ν(Nj)‖

2
2,α

h2

 (8)

where Ni and Nj denote two different patches of fixed size whose central pixels are i, j,
respectively. ‖ν(Ni)− ν(Nj)‖2

2,α is a similarity measure, which is the Gaussian weighted
Euclidean distance between the pixels i and j. The factor α > 0 defines the width of the
Gaussian function used, which in turn determines the weightage factor applied to the
Euclidean distance. The variable h is the width of a Gaussian filter function used in the
calculation. The normalization constant, Z(i), used in Equation (8) is given by Equation (9):

Z(i) = ∑
j∈I

w(i, j) (9)

For the conventional NLM, the neighborhood pixels, j ∈ I, are defined as all the pixels
present in the image. The patches for the pixels i and j are defined as a circle whose center
pixels are i and j, respectively, with radius r. The similarity term ‖.‖2

2 or the Euclidean



Diagnostics 2022, 12, 862 6 of 17

distance is calculated between each pixel of the two patches being compared, weighted
with respect to the Gaussian filter of the width factor α and summed up. The normalization
factor, Z(i), is the sum of all the weightage factors, calculated for a single pixel, i, with
respect to all pixels, j ∈ I.

In the proposed method, instead of calculating the weightage factor wR(i, j) for all
pixels, j ∈ I, the patches with high self-similarity are pre-classified into K groups using
K-means clustering. After this classification, for an N × N image and an n× n patch size
with a center (i = 1, 2, . . . , N × N), the number of patches in each cluster is given by the
set l = {l1, l2, · · · , lk}. The proposed NLM, (NLMp), is given by Equation (10):

NLMp(v)(i) = ∑
j∈L

wR(i, j)v(j) (10)

Here, the weightage factor, wR(i, j), is calculated by comparing the patch i with every
other patch that was clustered together with the patch i, which is represented as j ∈ L.

The modified weight wR(i, j) is given by Equation (11):

wR(i, j) =
1

ZR(i)
e−

dR(i,j)
h2 (11)

Here, wR(i, j) is defined through a distance metric, dR(i, j), which is explained in (28).
This way, the computational time is minimized by carrying out the calculation of weights
within each cluster rather than the entire image.

Grewenig et al. applied moment invariants to enhance block matching that only
improved the matching capability of NLM within a spatial neighbourhood centred around
the target patch. In our case, the matching candidates for a given patch are defined from a
set of different patches that originate from the entire image. In order to improve the weight
calculation in the NLM filtering based on block matching, the rotation angle between two
patches has to be estimated from its moment invariants (Figures S3 and S4). The invariant
moment of order, p, q, required to evaluate the feature vectors is given by Equation (12):

µp,q = ∑
y∈F

∑
x∈F

(x− xC)
p(y− yC)

q (12)

where x, y ∈ F denotes the x and y coordinates of all pixels of a feature F. Moreover,
p, q ∈ N are different powers for the two dimensions, and xc and yc are the centroid
coordinates where µ1,0 = µ0,1 = µ1,1 = 0. Furthermore, µ0,0 is the number of pixels, which is
area of the shape. Hu et al. [30] have defined seven feature metrics, φ1 through φ7, that are
rotation-invariant and are defined as Equations (13)–(19).

φ1 = µ2,0 + µ0,2 (13)

φ2 = (µ2,0 − µ0,2)
2 + 4µ2

1,1 (14)

φ3 = (µ3,0 − 3µ1,2)
2 + (3µ2,1 − µ0,3)

2 (15)

φ4 = (µ3,0 + µ1,2)
2 + (µ2,1 + µ0,3)

2 (16)

φ5 = (µ3,0 − 3µ1,2) (µ3,0 + µ1,2)
[
(µ3,0 + µ1,2)

2 − 3(µ2,1 + µ0,3)
2
]

+(µ2,1 + µ0,3)(µ0,3 + µ2,1)
[
3(µ1,2 + µ3,0)

2 − (µ2,1 + µ0,3)
2
] (17)

φ6 = (µ2,0 − µ0,2)
[
(µ1,2 + µ3,0)

2 − (µ2,1 + µ0,3)
2
]

+4 µ1,1(µ3,0 + µ1,2)(µ0,3 + µ2,1)
(18)

φ7 = (3µ2,1 − µ0,3) (µ1,2 + µ3,0)
[
(µ1,2 + µ3,0)

2 − 3(µ2,1 + µ0,3)
2
]

+(3µ2,1 − µ3,0)(µ2,1 + µ0,3)
[
3(µ1,2 + µ3,0)

2 − (µ2,1 + µ0,3)
2
] (19)
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The seventh moment of Hu, φ7, is used to check whether two patches are mirrored
images of each other because the sign of φ7 changes only under mirroring, and is invariant
to rotation or the presence of noise.

The process of RIBM is summarized as follows. Given that patch Nj is a mirrored form
of Ni, (i.e., the signs of φ7 for Nj and Ni are not same), then we can mirror Nj at an arbitrary
axis to obtain N′j ; else, Nj is the same as N′j .

• Estimate the rotation angle between Ni and Nj;
• For each pixel in Ni, find the corresponding pixel in Nj via rotation by the estimated angle;
• The sum of the intensity differences in pixels Ni and corresponding pixels Nj is the

required distance.

Then, the patch centroid is calculated in Equation (20). We have Nj, which is a noisy as
well as a rotated patch with respect to the patch Ni. For defining the centroid, we suppose
that the pixels within a patch are controlled by a coordinate system that has its center at the
patch’s center.

ci :=


∫

i xb ·v(xb , yb) dxb dyb∫
i v(xb , yb) dxb dyb∫

i yb ·v(xb , yb) dxb dyb∫
i v(xb , yb) dxb dyb

 (20)

where v(xb, yb) denotes the intensity value of the patch Ni, and
→
ci denotes the normalized

vector of the centroid of Ni. In the numerator of the above equations, the intensity, v(xb, yb),

is weighted by the values of its coordinates, xb or yb, to obtain the centroid, ci =

(
cx
cy

)
.

To carry out the rotation prior to block matching, we define the rotation matrix from
the elements of the centroid, ci and cj, of block i and j, respectively. Since mirroring has to
be compensated, we define a vector, mi,j(u), expressed as in Equation (21):

mi,j(u) :=



(
−ux

uy

)
, if φ7(i)·φ7(j) < 0(

ux

uy

)
, else

(21)

Suppose the patch i, j, exhibits mirroring; then, mi,j(u) changes the sign of ux, i.e., the
x component; else, the components of u are used as they are.

To rotate and align the candidate patches to the target patch, Ni, it is necessary to esti-
mate the rotation angle between Ni and each candidate, Nj ∈ (Nk,1, Nk,2, · · · , Nk,l−1, Nk,l),
that is present within the same cluster, k. Every pixel of a block can be represented as a
vector from the block’s center; thus, the entire block or its corresponding vectors should be
rotated by an equal angle. Therefore, the rotation angle between two blocks’ centroids

→
ci

and
→
cj has to be estimated to rotate the block itself. The rotation matrix required to rotate

the candidate block, j, to align with the target block, i, is given by Equation (22):

Ri,j = R−1
→
ci
·R

mi,j(
→
cj )

(22)

The rotation matrices on the right-hand side are defined as in Equation (23):

Ru :=
(

u1 − u2
u2 u1

)
(23)

Using Equations (20) and (23), we can explicitly write, R−1
→
ci

as in Equation (24):

R−1
→
ci

:=
(

cx − cy
cy cx

)−1

(24)
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And using Equations (21) and (23), we write R
mi,j(

→
cj )

as in Equations (25) and (26) for

mirrored and non-mirrored cases:

R
mi,j(

→
cj )

:=
(
−cx − cy
cy − cx

)
, if mirrored (25)

R
mi,j(

→
cj )

:=
(

cx − cy
cy cx

)
, if non−mirrored (26)

Subsequently, the corresponding point, qi, defined as any point in patch Nj, is rotated to
a corresponding point, qj, in another patch Nj, using the rotation matrix as in Equation (27):

qj = mi,j
(

Ri,j·qi
)

(27)

The resultant vector that comes out of the product of Ri,j·qi is again compensated for
the mirroring effect using the mirror function, mi,j(.), in Equation (21).

Lastly, the similarity term that replaces the Euclidean metric ‖νN(i)− νN(j)‖2
2,α in the

conventional NLM weights can be computed by Equation (28):

dR(i, j) = dR(i, j) = ∑
qi∈i

(
vi(qi)− In

(
vj, qj

))2 (28)

In defines the bilinear interpolation. The interpolation is required because, after rotation of
the Nj, the intensity at non-integral pixel values needs to be evaluated for patch comparison,
so extrapolation of the intensities from the integer pixel values to non-integer pixel values
is required.

2.2. Experimental Setup and Materials

For the purpose of evaluating the proposed method against state-of-the-art filters for
speckle noise reduction, the switching bilateral filter (SBF) [34], the non-local-means filter
(NLMF) [20], and an optimized non-local means filter (ONLMF) [27] were employed on
publicly available ultrasound images and private images.

The image dataset used for this study was obtained from the publicly available Mende-
ley dataset composed of 250 breast ultrasound images, of which 150 are malignant cases,
and 100 are benign cases [35]. This study also utilized a private dataset with 6 images of
patients who had breast imaging and a biopsy carried out at Black Lion Hospital (BLH),
Ethiopia. The ultrasound images were acquired using the SonoScape Ultrasound (S60
model, SonoScape Medical Corp, Shenzhen, Guangdong, China) diagnostic unit equipped
with a 7.5 MHz transducer.

The RIBM-NLM method was implemented using MATLAB software (MATLAB 2017a,
MathWorks, Natick, MA, USA), and the experiments were performed on a personal com-
puter that runs on a 2.5 GHz Intel(R) Core (TM) i3 (HP 15-dw model, Hewlett-Packard
company, Palo Alto, CA, USA) processor.

This study develops a clustering method based on moment invariants. The conven-
tional K-means clustering requires three main parameters to be decided: the type of distance
measurement used, the number of clusters to be assigned, and the size of the vectors to
be used in the NLM based framework. For measuring the distance between two feature
vectors, we implement the Euclidean based distance as in [29]. We define the patch size to
be 15 × 15 as in [36]. The changing trends of PSNR and MSE are roughly the same: when
K (the number of clusters) becomes larger, there are more clusters representing different
types of details. However, if K is too high, some clusters will not have enough candidates,
and that degrades the image to be reconstructed. As a result, the PSNR and MSE decrease
after the climax. Therefore, if complexity is not a concern, we can choose the optimal value
of K depending on the size of the input noisy image. With this hypothesis, we performed a
preliminary experiment to choose the optimal K value for our method. When K increases,
the rates of change of PSNR and MSE reach a maximum and start to decline (Figure 2).
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When the value of K is much larger, then clusters with insufficient number candidates
result, which degrades the quality of the reconstructed image. This results in a poor score
for PSNR, which starts to decrease after a maximum is reached, as shown in Figure 2.
Therefore, we have to choose an optimal value for K, which is sub-optimal in terms of the
PSNR value. In Figure 2, even though the K value corresponding to the maximal PSNR
score is 800, we set K = 675, which is a sub-optimal value. This value of K is chosen by
considering the image size used for the study, which is 225 × 225, and the number of
candidates that are supposed to be in one cluster. Additionally, the computational time
taken for processing the images when K = 800 is 1.8 times greater than when K = 675.
Time is the important constraint in our study because one of our targets is to decrease the
processing time.
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Figure 2. Peak signal-to-noise ratio (PSNR) vs. number of clusters K.

In our experiment, we use a Gaussian blur with standard deviations σ of 10, 20, and
50. The smoothing parameter, h, is kept at 12σ to allow a fair comparison of all methods.
The σ in Equation (1) is fixed to 0.5 × σ, and the radius of the block size is set to m = 4.

Three widely used quantitative metrics are applied to evaluate the performance of
the proposed speckle reduction method against the others. These are structural similarity
index (SSIM), peak signal-to-noise ratio (PSNR) and mean squared error (MSE).

The SSIM is defined as in Equation (29):

SSIM(x, y) =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) (29)

Here, x and y are two non-negative images, i.e., the initial noisy image and the
de-noised image, respectively. µx and µy are the mean intensities of the image x and y,
respectively. σ2

x and σ2
y are the variances of the intensities of images x and y, respectively;

σxy is the co-variance computed from the intensities of images x and y. C1 and C2 are
constants introduced to avoid the instability of dividing by zero in the denominator factors
of Equation (29) when µ2

x + µ2
y and σ2

x + σ2
y are too close to zero. Values of SSIM range from

zero to one, and a higher value indicates a better de-noising effect.
The PSNR is defined as in Equation (30):

PSNR = 10 log10

(
L2

D
MSE

)
(30)

Here, LD is the magnitude of the difference between the maximum and the minimum
intensity value, and MSE is the mean squared error between the original and the recon-
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structed images. The PSNR is a measure of the signal-to-noise ratio variations within an
image. A higher value of PSNR indicates a better de-noising performance.

The mean squared error (MSE) is defined as in Equation (31). The smaller the MSE,
the better the quality of image is.

MSE =
∑row

i=1 ∑column
j=1 (x(i, j)− y(i, j))2

Row× Column
(31)

The root mean squared error (RMSE), which is the square root of the mean squared
error, is calculated for each image.

Furthermore, processing time in seconds, t(s), is used to evaluate the computational
speed of the proposed method relative to the other three methods.

Moreover, the statistical significance of the results obtained using the proposed method
compared to the-state-of-the-art methods is evaluated for the above three metrics (SSIM,
PSNR, and MSE) using the t-test p-value pair-wise comparison method [37].

3. Results
3.1. Private Dataset Image Results

Figure 3 shows the visual performance of our method compared to the switching
bilateral filter (SBF), the NL-means filter (NLMF), and an optimized non-local means filter
(ONLMF) at σ = 20. It can be observed that the visual quality of the RIBM-NLM method
(Figure 3b) is superior relative to the SBF (Figure 3e), retaining sharp boundaries with fewer
artifacts. The NLMF (Figure 3d) and the ONLMF (Figure 3c) methods, on the other hand,
show significant distortion in the image with a reduction in the speckle and background
noises. Thus, the RIBM-NLM method shown in Figure 3b performs better in terms of
preserving edges and speckle noise suppression compared to other methods.
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block matching based non-local means filter; NLMF, non-local means filter; ONLMF, optimized
non-local means filter; SBF, switching bilateral filter.

From Table 1, it can be inferred that the RIBM-NLM method has the highest value of
SSIM (0.8915, compared to 0.7594 for ONLMF, 0.7284 for NLMF, and 0.8271 for SBF), which
demonstrates that the proposed method’s performance is better than the other methods
in terms of speckle reduction. Therefore, the RIBM-NLM method generates images with
better structural similarity compared to the other three methods.
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Table 1. SSIM values for several algorithms using database images. NLMF, non-local means filter;
ONLMF, optimized non-local means filter; SBF, switching bilateral filter; SSIM, self-similarity index
metrics; σ, Gaussian blur standard deviation.

Metric Proposed ONLMF NLMF SBF

SSIM, at σ = 20 0.8915 0.7594 0.7284 0.8271

Figure 4 shows (see Tables S1 and S2) that the RIBM-NLM method scores the highest
PSNR value and the smallest MSE, as well as the fastest time, when compared to the
other three methods. Particularly, the PSNR value of the RIBM-NLM method is 3 dB
higher than that of SBF method for noisy images whose σ is less than 50 (Figure 4a).
Furthermore, the MSE value of the proposed method is the smallest compared to the other
three methods, with a p-value of less than 0.001 (Figure 4b). Similarly, the proposed method
provided a better RMSE value than the other three methods (see Figure 4c). Regarding
the computational run time, the NLMF, ONLMF, SBF, and RIBM-NLM methods consume
an average of 179 s, 138 s, 130 s, and 82 s, respectively, at a noise factor of 20 (Figure 4d).
The processing time for the RIBM-NLM is the fastest, with a p-value of less than 0.001
relative to other methods; this is the result of the K-means clustering implemented in the
pre-classification stage.
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bilateral filter; PSNR, peak signal-to-noise ratio; MSE, mean squared error; RMSE, root mean squared
error; t(s), time in seconds; σ, Gaussian blur standard deviation.
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3.2. Private Dataset Image Results

Evaluations were also carried out on private breast cancer images obtained via ultra-
sound. Figure 5a is the original image obtained from the private dataset. Figure 5b–e shows
the results obtained by the RIBM-NLM, ONLMF, NLMF and SBF methods, respectively. It
can be observed that the pixel intensity of the image filtered by our algorithm is smoother
than those of the other three methods. The better performance of the RIBM-NLM method
is evident from the improved edges and the effective smoothening of the speckle noise in
the private ultrasound image.
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Figure 5. Visual results for clinical data. Performance of the four methods at σ = 20. (a) Original
image; (b) RIBM-NLM method; (c) ONLMF; (d) NLMF; (e) SBF. RIBM-NLM, rotationally invariant
block matching based non-local means filter; NLMF, non-local means filter; ONLMF, optimized
non-local means filter; SBF, switching bilateral filter.

Table 2 shows the superiority in performance of the RIBM-NLM method in terms of
visual quality; our method has the highest SSIM value at 0.8307.

Table 2. SSIM values for several algorithms using clinical images. NLMF, non-local means filter;
ONLMF, optimized non-local means filter; SBF, switching bilateral filter; SSIM, self-similarity index
metrics; σ, Gaussian blur standard deviation.

Method Proposed ONLMF NLMF SBF

SSIM, at σ = 20 0.8307 0.7241 0.6963 0.8148

From Figure 6 (see Table S3), it can be observed that the PSNR values of the RIBM-
NLM filter for all the clinical images (blurred with different levels of noise factor) are higher
than those of the other filters. This demonstrates the robustness of the RIBM-NLM filter
method in the presence of different noise levels. The PSNR value for the RIBM-NLM filter
is 3% higher than that of the other filters and retains maximum edge details in the images
(Figure 6a). The MSE values for the RIBM-NLM method at different noise levels are smaller
than that of NLMF, ONLMF, and SBF methods (Figure 6b). It has been observed that the
RIBM-NLM filter produces an MSE value 6% less than that of the SBF filter with a minimal
degradation in the image quality. The same is also true for the RMSE values (see Figure 6c).
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Additionally, the RIBM-NLM method has the shortest processing time compared to the
other methods when processing clinical images, as shown in Figure 6d.
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The PSNR, MSE, RMSE, and t(s) scores obtained for the different clinical images
processed using the RIBM-NLM method are shown in Table 3. It can be easily shown that
the proposed method provides consistent results in terms of PSNR, MSE, and time for all
the images.
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Table 3. Averaged quantitative de-noising results for six clinical images using the proposed method.
CI1, clinical image 1; CI2, clinical image 2; CI3, clinical image 3; CI4, clinical image 4; CI5, clinical
image 5; CI6, clinical image 6; Av., average; PSNR, peak signal-to-noise ratio; MSE, mean squared
error; RMSE, root mean squared error; t(s), time in seconds; σ, Gaussian blur standard deviation.

Image

σ

σ=10 σ=20 σ=50

PSNR MSE RMSE t(s) PSNR MSE RMSE t(s) PSNR MSE RMSE t(s)

CI1 71.3869 0.003314 0.057567 81.003529 66.9903 0.016732 0.129352 82.858238 55.146 0.282528 0.531533 83.405858

CI2 72.8369 0.00339 0.058223 80.160006 66.0016 0.011358 0.106573 82.474946 55.8126 0.269671 0.519298 84.678944

CI3 71.594 0.003678 0.060646 82.375192 65.2058 0.015101 0.122886 82.564148 55.0384 0.236662 0.486479 83.601501

CI4 72.7233 0.003046 0.055190 82.34266 66.9023 0.019146 0.138369 83.244738 54.2856 0.228034 0.477529 84.899632

CI5 72.177 0.003978 0.063071 80.703136 65.7659 0.016782 0.129545 82.174985 54.7928 0.20081 0.448118 81.204046

CI6 72.1992 0.003072 0.055425 82.167858 66.7179 0.014479 0.120328 83.648587 54.4104 0.237003 0.486829 84.764421

Av. 72.15288 0.003413 0.058354 81.4587301 66.263966 0.0155996 0.124509 82.827607 54.9143 0.2424513 0.491631 83.759067

4. Discussion

In this study, a combination of clustering-based pre-classification and rotationally
invariant block matching for non-local means filtering is proposed for speckle reduction
in breast ultrasound images. In doing so, the focus is on developing a better de-speckling
method that is simple in clinical applications with less computing complexity and a short
execution time while preserving the details of the image. Our method achieves promis-
ing results, outperforming the state-of-the-art methods by providing better SSIM, PSNR,
and MSE scores. This is mainly because our approach applies filters in both the spatial
and frequency domains by including block matching on top of the non-local means filter.
The clustering algorithm, on the other hand, enables us to identify proper candidates
within a short period of time; additionally, the application of block matching preserves the
details needed for further processing. Equipped with these advantages, the NLM filter
performs better at reducing speckle. Our approach provides the NLM method with the
right candidates to replace every pixel with the weighted average of other pixels with
similar neighborhoods. The most time-consuming part of the NLM filter is the weight
calculation, where many of the available methods try to identify and eliminate dissimi-
lar patches before weighted averaging. RIBM-NLM overcomes this challenge by using
clustering-based pre-classification that minimizes the time required for finding the can-
didates that are used in the weight calculation. The main difference between the NLM
method and other spatial approaches is that the weights in the NLM filter do not de-
pend on the spatial distance between the target patches and the candidates, but depend
mainly on the difference in intensity values. Previous studies that applied moment invari-
ants to enhance block matching only improved the matching capability of NLM within a
spatial neighborhood that is centered on the target patch. In our case, the matching candi-
dates for a given patch are defined from a set of different patches that originate from the
entire image.

Speckle noise affects the quality of ultrasound images quite significantly and is dif-
ficult to remove. This study is of practical significance because it reduces speckle noise
in ultrasound images, resulting in ultrasound images with less noise interference and
improved quality, preserving the necessary structures and resolvable details.

In this study, the parameters of the non-local means filter were fixed and used as
a non-adaptive filter while processing images. Additionally, analysis was performed
only on a small number of private images due to a limitation in the availability of data.
Therefore, future studies will include adaptive filters applied to large datasets to improve
the performance of the analysis.
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5. Conclusions

In this paper, we proposed a rotationally invariant block matching (RIBM-NLM)
method for de-speckling breast ultrasound images. The reduction in speckles achieved
using the proposed method on breast ultrasound images obtained from public and private
databases was compared with other methods such as ONLMF, NLMF, and SBF using SSIM,
PSNR, and MSE. Results show that the RIBM-NLM method effectively reduces speckle
while retaining finer details, as indicated by the MSE value that is 6% less than the state-of-
the-art methods. RIBM-NLM also shows superior performance in terms of de-speckling
compared to the existing filters, as indicated by the PSNR value, which is 3 dB higher,
especially for the images of poor quality with a large σ value. Finally, the computation
time consumed by the RIBM-NLM method is small compared to the ONLMF, NLMF, and
SBF methods, with a duration 1.6 times shorter than that of SBF. This work is of significant
importance for breast cancer early diagnosis in low resource settings where ultrasound is
used as a primary means of breast cancer diagnosis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12040862/s1, Figure S1: Illustration of blurring with
Gaussian noise σ = 20; Figure S2: Clustering-based pre-classification; Figure S3: Moment invariants;
Figure S4: Illustration of rotation angles calculated; Table S1: Average PSNR, MSE, RMSE, and t(s) for
several algorithms using public database images; Table S2: Averaged quantitative de-noising results
for public database images; Table S3: Average PSNR, MSE, RMSE, and t(s) for several algorithms
using private image dataset.
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