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Abstract: Despite the potential of hydrogel-based localized cancer therapies, their efficacy can be
limited by cancer recurrence. Therefore, it is of great significance to develop a hydrogel system
that can provoke robust and durable immune response in the human body. This study has devel-
oped an injectable protein-polymer-based porous hydrogel network composed of lysozyme and
poly(ε-caprolactone-co-lactide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone-co-lactide (PCLA) (Lys-
PCLA) bioconjugate for the active recruitment dendritic cells (DCs). The Lys-PCLA bioconjugates are
prepared using thiol-ene reaction between thiolated lysozyme (Lys-SH) and acrylated PCLA (PCLA-
Ac). The free-flowing Lys-PCLA bioconjugate sols at low temperature transformed to immovable gel
at the physiological condition and exhibited stability upon dilution with buffers. According to the
in vitro toxicity test, the Lys-PCLA bioconjugate and PCLA copolymer were non-toxic to RAW 263.7
cells at higher concentrations (1000 µg/mL). In addition, subcutaneous administration of Lys-PCLA
bioconjugate sols formed stable hydrogel depot instantly, which suggested the in situ gel forming
ability of the bioconjugate. Moreover, the Lys-PCLA bioconjugate hydrogel depot formed at the inter-
face between subcutaneous tissue and dermis layers allowed the active migration and recruitment of
DCs. As suggested by these results, the in-situ forming injectable Lys-PCLA bioconjugate hydrogel
depot may serve as an implantable immune niche for the recruitment and modification of DCs.

Keywords: thermo-responsive copolymers; sol-gel phase transition; injectable hydrogels; protein-
polymer conjugation; immune cell recruitment; dendritic cells

1. Introduction

Hydrogels, as water-swollen three-dimensional amphiphilic or hydrophilic polymer
networks, are used for the encapsulation and controlled release of chemotherapeutic drugs,
therapeutic proteins as well as peptides, nucleic acid and cells [1–4]. Owing to these fea-
tures, hydrogels are actively exploited in immunotherapy and regenerative medicine [5,6].
In fact, the hydrophilic and porous nature of hydrogels has provided oxygen, metabolites
and nutrients permeability to network [7–9]. Their high swelling nature provides flexibility
to the hydrogels, yet they are water-insoluble at the implantation site [10]. Numerous
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techniques have been explored to prepare hydrogels with distinct characteristics includ-
ing pore size, mechanical strength, and biodegradation [11–13]. In addition, the choice
of polymer and the density of physical and chemical cross-linking certainly control the
biocompatibility, biodegradation and more importantly the release kinetics of the hydro-
gel network [14,15]. In addition, synthetic polymers provide structural flexibility and
enhanced mechanical properties to the hydrogel network [16,17]. However, the improved
physical properties are limited by poor cell adhesion, biocompatibility, and hydrolytic
and enzymatic degradability [18]. Interestingly, the natural polymers are the choice of
interest with minimal inflammatory response and ability to stimulate specific immune
response [19]. Hydrogels prepared using natural polymers such as chitosan, zein and
gelatin by cross-linking exhibited good stimuli-responsive characteristics and controlled
release characteristics [20–23]. In addition, poly(caprolactone)-based synthetic hydrogels
showed sharp sol-to-gel phase transition and prolonged the release of therapeutics [24].

It has been found that the implantation of hydrogels into the body is a suitable strategy
to cure various kinds of acute and chronic diseases [25], but the implantation of preformed
hydrogels to the body requires surgery that is limited by its high cost and poor patient
compliance [26]. Therefore, polymers sols that could transform into an in-situ cross-linked
hydrogel network upon exposure to the physiological stimuli (e.g., pH and temperature)
have received much attention due to their sharp phase transition [27,28]. Unlike the
conventional materials that required organic solvents to load therapeutic agents, the in situ
forming hydrogel precursors could effectively imbibe drugs, proteins, nucleic acids or cells
by simple mixing [29–31].

In recent years, injectable hydrogels and scaffolds have been explored in a wide range
of immunological applications [32–34]. Generally speaking, the in situ implanted hydrogels
containing appropriate antigens or cytokines effectively recruit, migrate, and activate
immune cells in human body [35,36]. This is unlike ex vivo immune modulation of cancer
patients that requires complex designs, in which patients’ own immune cells are isolated
and activated ex vivo [37]. Through the use of injectable hydrogels, the free-flowing sols
could be injected into the patient of interest and could generate antigen-specific immune
response via the introduction of appropriate antigens [38,39]. The release of antigens
from the microporous hydrogel network can stimulate antigen-presenting cells, including
dendritic cells (DCs), macrophages, and B cells [33,40]. Owing to the unique features of
DCs, such as superior ability to take up, process and present antigens on both MHC II
and MHC I molecules to CD4+ and CD8+ cells, respectively, they are considered as the
key regulators in initiating the immune response [41]. Hence, hydrogels that enhance
antigen uptake and trigger the maturation of DCs for cancer immunotherapy have received
much attention.

This study proposed a thermosensitive poly(ε-caprolactone-co-lactide)-b-poly(ethylene
glycol)-b-poly(ε-caprolactone-co-lactide (PCLA-PEG-PCLA) (hereafter referred as PCLA)
conjugated lysozyme (Lys-PCLA) bioconjugate for the active recruitment and modulation
of dendritic cells (DCs) (Scheme 1). Lysozyme (Lys), as a 14.4 kDa molecular weight stable
and abundant protein found in the living organisms [42], maintains its three-dimensional
structure in a range of pH from five to nine. Compared with its unmodified natural
counterpart, the polymer modified Lys showed improved pharmacokinetics [43]. In ad-
dition, the presence of abundant amine functional groups on the surface of Lys allows
chemical modification or physical assembly with polymers for further processes [44]. Lys
exhibits antiviral properties by catalyzing the hydrolysis of β-1,4 glycosidic bonds between
N-acetylglucosamine and N-acetylmuramic acid in the cell wall of bacteria [45]. In this
research, the Lys was chemically conjugated with PCLA copolymer by the thiol-ene chem-
istry. Beyond that, the in situ gelation ability and in vitro toxicity of Lys-PCLA injectable
hydrogel were studied by exposing it to RAW 263.7 cells. Sprague-Dawley (SD) rats were
used to examine an in vivo in situ gel formation. Furthermore, the active recruitment of
immune cells to Lys-PCLA-based bioconjugate network was investigated after subcuta-
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neous implantation of the depot onto the back of mice, and the recovery of the hydrogel
was analyzed three days after injection.
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hydrogel depot, which allowed the recruitment of host cells and their subsequent maturation of cells.

2. Materials and Methods
2.1. Materials

Lys from chicken egg white, tris(2-carboxyethyl)phosphine hydrochloride salt (TCEP),
PEGs (Mn = 1500 g/mol), DL-lactide (LA), ε-caprolactone (CL), triethyl amine (TEA), acry-
loyl chloride, and stannous octoate (Sn(Oct)2) were supplied by Sigma-Aldrich (St. Louis,
Mo, USA).

2.2. Preparation of Lys-PCLA Bioconjugates

The Michael reaction between acrylated PCLA (PCLA-Ac) and thiolated Lys (Lys-SH)
was used to prepare Lys-PCLA bioconjugate. Meanwhile, the synthetic route to obtain
Lys-PCLA bioconjugate is shown in Figure 1.

Preparation of PCLA copolymer: The PCLA copolymer was synthesized by following the
previously reported procedure [46]. Briefly speaking, PEG (10 g, 6.1 mmol) and Sn(Oct)2
(0.1 g, 0.25 mmol) were placed and stirred for 3 h at 110 ◦C. Afterwards, the temperature
was decreased to 60 ◦C. Subsequently, CL (19.5 mL, 166 mmol) and LA (7.5 g, 52 mmol)
were added and allowed to polymerize at 130 ◦C for 18 h. One day after the reaction,
chloroform was added to reduce the viscosity of the reaction mixture and the product was
precipitated using the n-hexane and diethyl ether mixture (1:1, v/v). Yield: 79%.
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Figure 1. Synthesis of Lys-PCLA conjugate.

Preparation of PCLA-Ac: Hydroxyl chain-end of the PCLA copolymer reacted with
acryloyl to introduce acrylate groups. Briefly speaking, PCLA (1 mmol) was dissolved
in toluene in the presence of TEA (3 mmol). Apart from that, the solution was stirred at
0 ◦C. Acryloyl chloride (3 mmol) in toluene was added dropwise and then stirred for 48 h.
Furthermore, the PCLA-Ac copolymer was obtained by precipitating the reaction mixture
in diethyl ether. Yield: 89%.

Preparation of Lys-SH: Lys was dissolved in 2 M urea containing PBS buffer solution at
a concentration 5 mg/mL under the nitrogen environment. Afterwards, TCEP (14 eq.) was
added adjusted to 8.0 in terms of pH and stirred at 0 ◦C for 1 h. The Lys-SH was obtained
by passing it through a PD-10 desalting column and then the product was stored at 0 ◦C.
Yield: 92%.

Preparation of Lys-PCLA bioconjugates: The Lys-PCLA bioconjugate was prepared using
the Michael-addition reaction between Lys-SH (1 mmol) and PCLA-Ac (3 mmol). In brief,
PCLA-Ac was dispersed in PBS at 0 ◦C (10 wt.% concentration). Subsequently, Lys-SH was
added and stirred at 0 ◦C. After two days, the reaction mixture was moved to the cellulose
membrane (MWCO: 3500 kDa) and extensively dialyzed against deionized water for three
days. In order to avoid the Lys-PCLA bioconjugate aggregation, the dialysis was performed
at 0 ◦C. Finally, Lys-PCLA bioconjugate was acquired by lyophilization. Yield: 76%.

2.3. Characterization
1H NMR analysis: The chemical structure and number-average molecular weight

(Mn) of copolymers were confirmed using 1H NMR spectra (Varian Unity Inova 500 SNB,
Palo Alto, CA, USA). In order to record 1H NMR, the PLCA copolymer or PLCA-Ac
copolymer (1 wt.%) had been dissolved in CDCl3.

FT-IR: FT-IR spectra of the copolymer and bioconjugate were obtained using an
FT-IR instrument (Termo Scientifc, Waltham, MA, USA) within the scanning range of
400–4000 cm−1.
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Scanning electron microscope (SEM): The surface morphology of hydrogels was observed
using SEM (SEM, JEOL JSM-6390, Austin, TX, USA). After hydrogel samples were placed
on SEM stubs, samples were sputter-coated with platinum to make them conductive.

Gel permeation chromatography (GPC): The number-average molecular weight (Mn)
and polydispersity index (PDI) of PCLA copolymers were measured using Waters GPC
(Milford, MA, USA) using polystyrene standards.

2.4. Sol-Gel Phase Transition Behavior

The tube inversion method was adopted to investigate the flow (sol) and non-flow
(gel) behavior of PCLA copolymers and Lys-PCLA bioconjugates [47]. In order to obtain a
sol-gel phase diagram, different weights of copolymers in PBS (pH 7.4) were placed in a
4 mL vial and stirred at 0 ◦C for 12 h. After preparation of the homogenous suspension, the
vials were placed in a thermo-sensitive water bath and the temperature was increased at
a constant rate (2 ◦C increment with 20 min interval). Apart from that, the flow (sol) and
non-flow (gel) nature of the copolymers had been confirmed by inverting the tube. The
copolymers were considered as gel when there was no flow after 2 min. The water contact
angle was measured using a previously reported procedure [48].

2.5. Rheology Measurement

In order to examine the mechanical strength of hydrogels prepared from PCLA copoly-
mers and Lys-PCLA bioconjugates, the mechanical properties including viscosity, storage
modulus (G′), and loss modulus (G′′) were measured using a Bohlin Rotational Rheometer
equipped with a parallel steel plate (40 mm) and a Peltier system to control the tempera-
ture. For the rheological measurement, 22.5 wt.% of either PCLA copolymer or Lys-PCLA
conjugate was prepared, as described in the previous section, and the samples were placed
between the parallel plates with a plate gap of 0.25 mm.

The gelation temperature (Tgel) was determined by raising the temperature from 10 ◦C
to 60 ◦C at a constant frequency (1 Hz) and shear stress (0.4 pa) with a heating rate of
2 ◦C/min. The G′ and G′′ were measured as a function of temperature and the Tgel was
determined from the intersection point of the curves. The complex viscosity was also
measured without changing the measurement parameters.

In order to determine the linear viscoelastic region (LVER) and observe the point
at which the hydrogel structure begin to deteriorate, the strain sweep experiments were
performed from 1% to 100% at a constant frequency (1 Hz) and temperature (37 ◦C). The
frequency sweep test was also conducted from 0 to 50 Hz within the LVER.

2.6. In Vitro Cytotoxicity and Imaging Cell Viability

The RAW 263.7 cells were purchased from Korean Cell Line Bank (KCLB) and cultured
in a DMEM supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin (1%,
(w/v)). Beyond that, the cell flasks were incubated at 37 ◦C in a humidified 5% CO2-95%
air atmosphere.

In order to determine the biocompatibility of copolymers and bioconjugates, the RAW
263.7 cells, at a density of 104 cells, were cultured with various concentrations of copolymers
in a 96-well plate. After 2 days, 20 µL of MTT solution (from 5 mg/mL stock solution)
was added and incubated for 3 h at 37 ◦C. At the same time, the purple crystals were
dissolved in DMSO and the viability was examined with a Microplate reader by measuring
the absorbance at 490 nm. The RAW 263.7 cells cultured with only fresh culture medium
were taken as the control.

2.7. In Situ Gelation In Vivo

In order to investigate the in situ gelation properties of hydrogels, six-week-old SD
rats with an average weight of 225 g were employed. In vivo gelation was confirmed
by subcutaneously administering 300 µL (22.5 wt.%) of PCLA copolymers or Lys-PCLA
conjugate solutions into the back of SD rats. Shortly before use, the hydrogel precursors
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were transferred to a hypodermic syringe equipped with a 26G needle and kept in an ice
bath to avoid early gelation. In addition, the injection site of the SD rats was shaved and
sterilized using 70% ethanol. Ten minutes after the injection, the SD rats were sacrificed.
The injection site was cut-open to recover the hydrogels recovered and photographed.
Afterwards, the recovered hydrogels were frozen and freeze-dried. The freeze-dried
products were cross-sectioned and coated with platinum using a spin coater and then the
porous structure was visualized using SEM.

2.8. In Vivo Cell Recruitment by Hydrogels

In order to analyze the recruitment of the cell in the hydrogel network, either Lys-
PCLA solution or PCLA solution (200 µL, 22.5 wt.%) was subcutaneously injected to
BALB/c mice and allowed to recruit cells for 3 days. Thereafter, the hydrogel nodules
were collected and the cells were counted by digesting hydrogels with collagenase type II
solution. Furthermore, the hydrogels debris was filtered by a 20 µm cell trainer and
subsequently washed twice with a buffer. Afterwards, FcR blocking reagent was adopted
to count and stain the cells. Subsequently, the cells were stained using mouse monoclonal
antibodies against CD11c and CD11b in a FACS buffer followed by flow cytometry analysis.

All the animal experiments were followed according to the Sungkyunkwan Univer-
sity standards protocols and the Institutional Committees of Sungkyunkwan University
approved all the animal experiments performed in this study.

2.9. Statistical Analysis

The statistical significance between the groups is analyzed using a two-tailed Student
t-test.

3. Results and Discussion

The design of injectable hydrogels that could recruit and modulate immune cell
response has been a hot spot of research [49]. Among them, the thermo-responsive
copolymers that exhibit sharp phase transition have been a polymer of interest in various
biomedical applications [50]. Thermo-responsive polymers, such as pluronic, poly(N-
isopropylacryamide) and polyphosphazene, have often been studied because of their sharp
transition properties [51]. In our group, we extensively studied the polyester-based PCLA
copolymer as a thermo-responsive copolymer due to its sharp transition, good biocom-
patibility and controlled biodegradability without toxicity at the implanted site [52–54].
Herein, we conjugated the PCLA copolymers to the Lys to recruit immune cells into the
microporous network.

3.1. Synthesis and Characterization of Lys-PCLA Bioconjugate

The synthesis route to prepare the Lys-PCLA bioconjugate is shown in Figure 1. Firstly,
the PCLA copolymer was prepared by ring-opening polymerization of CL and LA with
a PEG macroinitiator. In addition, the PCLA copolymer formation and structure was
confirmed using 1H NMR spectra. 1H NMR spectra show the PCLA copolymer featuring
characteristics peaks of PEG, CL and LA components (Figure 2A). The characteristic PEG
methylene protons (-O-CH2-CH2-O-) appeared at 3.63 ppm, whereas the methylene proton
next to the carbonyl appeared at 2.29 ppm. At the same time, the methine proton that
originated in lactide units appeared at 5.13 ppm. The molar composition and Mn of the
PCLA copolymer was calculated by comparing the characteristic peaks of PEG at 3.63 ppm
with CL and LA characteristic peaks at 2.29 ppm and 5.13 ppm, respectively. Then, PCLA-
Ac was prepared by acrylation of chain-end hydroxyl functional groups in the presence
of triethylamine base. 1H NMR shows the appearance of new peaks at 5.76 to 6.66 ppm
corresponding to the characteristic peaks of acrylate, which indicates successful acrylation
of PCLA copolymers (Figure 2B). GPC trace in Figure 2C also confirmed the successful
PCLA copolymer synthesis. From the 1H NMR spectra and GPC trace, it is confirmed
that CL/LA ratio and PDI of PCLA copolymer was found to be 2.37 and 1.38, respectively
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(Table 1). Furthermore, FT-IR spectra of PCLA copolymer confirm the successful synthesis
and the presence of characteristic functional groups (Figure 2D).
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Table 1. Physicochemical characteristics of PCLA copolymer.

Copolymer Design 1H NMR Spectra a GPC b

PCLA-PEG-PCLA
Mn (g mol−1) CL/LA (mol−1) Mn (g mol−1) PDI

2170-1500-2170 2.37 1912-1500-1912 1.38
a Calculated using 1H NMR spectra. b Obtained from GPC analysis.

In the second step, the Lys was reacted with mild reducing agent TCEP to obtain
Lys-SH that allows the effective conjugation with PCLA. In general, the native chicken egg
white Lys contains eight cystein residues (i.e., four disulfide bridges) [55]. The presence of
disulfide bonds in the Lys plays an important role in maintaining the protein structure and
the hydrophobic cavities within the protein [56]. In this study, for effective conjugation of
Lys amphiphilic PCLA copolymer, the disulfide bond in the Lys was reduced with TCEP.
Apart from that, the reduction of Lys allows the unfolding of the polypeptide chain and
increases the water solubility [18]. The reduction of Lys was confirmed using Ellman’s
test. The presence of free thiol concentration increased with the increasing concentration of
TCEP (data not shown). Then, the conjugation of Lys-PCLA bioconjugate was obtained by
reacting Lys-SH and PCLA-Ac via the Michael addition reaction.

3.2. Sol-to-Gel Phase Diagram

The classical tube inversion method was used to determine the phase diagram of
PCLA copolymer and Lys-PCLA bioconjugate in aqueous solutions [47]. As shown in
Figure 3A, both polymers exhibit sol-to-gel phase transition with increasing temperature
and polymer concentrations. This is because the amphiphilic PCLA copolymers alone or
in the bioconjugates formed flower-like micelles when the concentration in the medium
increased over the critical micelle concentration. The poly(caprolactone-co-lactide) block
is hydrophobic, while the PEG block is hydrophilic in the copolymer that induces micelle
formation. It is noteworthy that PEG also exhibited mild hydrophobic interactions with
increasing temperature driven by the loss of orientational entropy in which the ordered
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interaction between PEG and water molecules was disordered. This not only resulted in en-
tropy change (DS > 0), but also led to the hydrophobic aggregation. Thus, with the increase
of the temperature, the hydrophobic aggregation was strengthened and under certain con-
ditions such as concentrations, hydrophobic and hydrophilic balance, and medium PCLA
and other poly(ester)-based copolymer underwent sol-to-gel phase transition (Scheme 2).
The sol-to-gel phase transition temperature of the PCLA copolymer and Lys-PCLA biocon-
jugate from the phase diagram was found to be 16.25 wt.% and 17.25 wt.%, respectively.
Meanwhile, both materials exhibited good sol-to-gel phase transition and the gel window
covered the body temperature, implying that the prepared thermo-responsive hydrogels
are suitable for in vivo in situ gelation. At the low temperatures, the thermo-responsive
sols could be mixed with therapeutic agents and injected into the body to form gel depot
for the sustained release of therapeutic agents.
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The representative sol-to-gel phase transition photograph of Lys-PCLA bioconjugate
hydrogels prepared at 22.5 wt.% concentration is shown in Figure 3B. The PCLA copolymers
induced the self-assembly in water at a low temperature and turned into immovable gel
depot due to aggregation and the formation of clustered micelles at the physiological
condition. More importantly, the formed hydrogel depots retained their stability after
incubation with PBS over a period of 24 h, indicating the stability of Lys-PCLA hydrogels
(Figure 3C). Therefore, Lys-PCLA hydrogel can be a suitable candidate for in vivo hydrogel
depot for drug delivery and other biomedical applications.

Hydrophilic properties of hydrogels could influence the behavior of hydrogels in
biomedical applications. Therefore, the hydrophilic properties of hydrogels were inves-
tigated by measuring the water contact angle. The water contact angle of PCLA and
Lys-PCLA hydrogels is shown in Figure 4. As expected, conjugation of Lys in the hydrogels
slightly increased the hydrophilic characteristics of the gels.
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3.3. Rheological Properties of Hydrogels

Rheological properties of hydrogels play an important role in in vivo and in vitro
injectability. In order to ascertain viscosity and critical gelation temperature (Tgel) of PCLA
and Lys-PCLA hydrogels, the complex viscosity and modulus (G′ and G′′) of hydrogels at
different temperatures have been examined. As expected, at 22.5 wt.%, both PCLA and
Lys-PCLA bioconjugates changed in viscosity with the increase of temperature (Figure 5A).
At a low temperature, the viscosity of both samples showed a linear trend until 20 ◦C.
Thereafter, the viscosity steadily increased and reached a maximum above 30 ◦C, indicating
that Lys-PCLA bioconjugate formulations could be injected into the warm-blooded animal
models for in situ hydrogel depot formation. When the temperature increased to about
40 ◦C, the viscosity of the PCLA hydrogels started decreasing due to the expulsion of
the water from the hydrogel network and ultimately led to the contraction of the gels.
Interestingly, the viscosity values attained a plateau for Lys-PCLA hydrogels, indicating
that the Lys in the hydrogel network firmly holds the networks and maintains the integrity
of the networks. This is mainly due to the stability of Lys protein at a higher temperature.
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The Tgel was determined by the point at which temperature of the storage modulus
(G′) and loss modulus (G′′) crossover occurred. Figure 5B,C displays the typical elastic
behavior at a higher temperature, verifying that G′ was always higher than G′′. Such a
behavior indicates the dominance of the elastic nature rather than the viscous nature of
materials. As shown in the graph, the Tgel of Lys-PCLA and PCLA hydrogels was found
to be 20.50 ◦C and 24.10 ◦C, respectively. The slightly low temperature gelation from Lys-
PCLA hydrogels was due to non-covalent cross-linking between Lys and PCLA copolymers,
which accelerated the gelation process. The mechanical properties of hydrogels are the key
characteristics in tissue engineering and controlled delivery applications. In particular, the
G′ of both Lys-PCLA and PCLA hydrogels was higher than the G′′ when the temperature
was raised over 20 ◦C, which implies that elastic modulus was higher at this temperature.
The G′ value of Lys-PCLA at 37 ◦C was close to 10,000 Pa which showed the good stiffness
of the gel similar to other reported hydrogel formulations [21].

Furthermore, oscillatory strain-sweep and frequency-sweep measurements were car-
ried out as a function of shear strain and frequency, so as to determine the LVER and
robustness of the hydrogels. The oscillatory strain-sweep test was performed on a pre-
formed hydrogel at a constant frequency of 1 Hz at 37 ◦C from 1% to 100% strain amplitude.
As shown in Figure 6A,B, both Lys-PCLA and PCLA hydrogels exhibit higher G′ values
than G′′ at lower shear strain, which further signifies that the hydrogels are predominantly
elastic rather than viscous. However, both G′ and G′′ decreased after certain shear strain,
indicating the gel-sol transition. Interestingly, Lys-PCLA hydrogels could withstand a
higher strain than PCLA hydrogels, which indicates the enhancement of their mechanical
properties after conjugation with Lys. The frequency sweep test of the hydrogels was
conducted at a fixed 4% strain, which is good enough to maintain the 3D structure of
the hydrogel network. As shown in Figure 6C,D, the G′ of hydrogels was dependent on
frequency, it slowly increased at a lower frequency, and elevated at a higher frequency,
implying the presence of non-covalent interactions. Notably, the G′ of Lys-PCLA hydrogels
was higher than PCLA hydrogels. This is mainly because the presence of Lys in the network
effectively solvates and makes a inter- and intra-molecular hydrogen bonding network.
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in viscosity between 0 ◦C and 20 ◦C, which indicates the Newtonian flowing of hydrogels.
Interestingly, when the temperature was raised over 20 ◦C, the viscosity started increasing
gradually and reached a maximum close to the physiological temperature. This suggested
the non-Newtonian flowing of the hydrogels. Furthermore, the oscillatory temperature-
sweep, strain-sweep and frequency-sweep tests are often employed to investigate the
viscoelastic property of a hydrogel. In Figure 6, both G′ and G′′ exhibit dependent tem-
perature, with the appearance of a transition point from a viscous liquid-like state to a
gel-like solid when G′ is crossed over G′′. In addition, G′ and G′′ also show strain and
frequency dependence. Summarily, these gel-like materials reveal characteristics of a
non-Newtonian liquid.

3.4. In Vitro Biocompatibility of Hydrogels

Non-toxicity of a hydrogels is an essential factor for biomaterials in in vivo appli-
cations. To examine biocompatibility, different concentrations of PCLA copolymers or
Lys-PCLA bioconjugates were exposed to RAW263.7 macrophages and their viability was
evaluated with an MTT assay. Figure 7 shows the cell viability of RAW263.7 macrophages
after co-culture with hydrogels. Both samples showed a high viability (>80%) even at
2000 µg/mL concentration, indicating the biocompatibility of the hydrogels.
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In general, hydrogels exhibit numerous interesting properties such as non-toxicity,
self-healing, biocompatibility, and biodegradability. Among them, biocompatibility is an
important prerequisite for any hydrogels injected into the living body. Therefore, these
characteristics are frequently demanded and the hydrogels with such properties are given
attention in medical applications. When the hydrogels are applied into the body, the
biocompatibility possible toxic effect of degraded byproducts need to be considered. In
situ forming injectable hydrogels developed in this study are based on biodegradable
poly(ester), such as PCLA. The PCLA-based hydrogels developed in this study show little
or no toxicity at high concentrations (1000 µg/mL). This result was in agreement with
our previous report based on PCLA hydrogels [57]. It should be noted that PCLA-based
hydrogels implanted into the back of SD rats exhibited controlled degradation and no
inflammation was found at the implantation site. In addition, the Lys used in this study
is a naturally occurring protein found in the living organisms. Tan et al. developed PEG-
lysozyme and this showed good biocompatibility and effectively sealed blood leakage in a
rabbit trachea [44].



Pharmaceutics 2022, 14, 709 12 of 17

3.5. In Vivo In Situ Gelation

With the promising phase transition and good biocompatibility in vitro, the in situ
gel formation was examined in warm-blooded animals. The in situ gel formation was
investigated by locally injecting the Lys-PCLA bioconjugate sols or PCLA copolymer
sols (300 µL, 22.5 wt.%) into the subcutaneous layer of SD rats using a 26 G hypodermic
needle. The rats were sacrificed 10 min after injection and the injection site was cut
open to investigate the gelation. As observed in Figure 8A,B, the free-flowing sols were
effectively transformed into a hydrogel depot in the subcutaneous layers and showed
effective adhesion and integration with the tissues. More importantly, the peeled gel from
the tissues presented good stability and retained the structures for a few hours. Redness or
bleeding at the injection site was also not observed, because the rapid gelation covers the
hole formed during injection.
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jection, the nodules were retrieved to count the number of recruited cells and categorize 
the type of recruited cells by FACS analysis. From the quantitative analysis results, it was 
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Figure 8. In situ gel formation in vivo. (A) Subcutaneous injection of 300 µL of Lys-PCLA conjugates
(22.5 wt.%). (i) opening of the hydrogel nodule, (ii) recovery of the hydrogel, and (iii) separating
the gels from subcutaneous tissues that shows the stability retainment. (B) PCLA hydrogel depot
implanted using 300 µL of PCLA copolymers (22.5 wt.%). SEM images showing the microporous
network of (C) Lys-PCLA and (D) PCLA hydrogels recovered after subcutaneous implantation.
(i,ii) are for the low and high magnification images.

The subcutaneously formed hydrogels were recovered and subjected to SEM imaging
to confirm surface morphology, porosity, and diffusivity of the hydrogels. The SEM images
of both Lys-PCLA and PCLA hydrogels are shown in Figure 8C,D. According to the SEM
micrographs, hydrogels are porous and show a compact mesh-like network. Particularly,
the Lys-PCLA hydrogel shows a relatively homogenous porous structure, as opposed to
PCLA hydrogels in which the pores are irregular and relatively less porous than Lys-PCLA
hydrogels. The distinct porous pattern of Lys-PCLA hydrogels can be explained by the
presence of cationic protein that induces electrostatic repulsion and allows the formation of
uniform pores. The classical porous structural properties allow the intrusion of immune
cells as well as the transport of nutrients and metabolites.
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3.6. In Vivo Recruitment of Host Cells by Hydrogels

As shown in Scheme 1, the aim of this hydrogel is to develop an injectable depot to
invite DCs and intruded cells into the microporous network which can be activated by
introducing appropriate antigens [39,58]. The ability of immune cells to intrude into the
microporous network was examined in vivo by subcutaneous administration of PCLA
copolymer or Lys-PCLA bioconjugate sols to form a hydrogel depot. Three days after
injection, the nodules were retrieved to count the number of recruited cells and categorize
the type of recruited cells by FACS analysis. From the quantitative analysis results, it was
found that huge numbers of cells were migrated to the porous network in both formulations
(Figure 9A). Both hydrogels showed recruitment of over a hundred million cells, implying
that porous hydrogel networks are a good scaffold for host cell recruitment. Notably,
Lys-PCLA hydrogels recruited more cells than the PCLA hydrogel. This is because the
presence of the hydrophilic protein in the Lys-PCLA hydrogels induced a larger pore and
thus allowed room to recruit more immune cells. Antigen presenting cells tend to bridge
the adaptive and innate response. Hence, we analyzed the presence of CD11c+ DCs in
the porous hydrogel network. As shown in Figure 9B, Lys-PCLA hydrogels recruited
over 10 million CD11c+ DCs which is significantly higher than that of PCLA hydrogels.
According to the in vivo cell recruitment results, the in situ forming injectable hydrogel
provides a suitable microenvironment for the infiltration of host immune cells. The thermo-
responsive smart materials were utilized to spontaneously assemble into a microporous
hydrogel depot, which not only bypassed the ex vivo synthesis of the scaffold but also
minimized the constraints associated with the preformed hydrogels.
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by PCLA and Lys-PCLA hydrogels three days after the hydrogel implantation, (ii) % of DCs in the
total number of cells in (i), (iii) total number of DCs in (i), and % of macrophages collected in (i).
(B) Flow cytometry analysis of CD11b+ macrophages and CD11c+ DCs in PCLA and Lys-PCLA
hydrogel three days after injection. *** p < 0.001 versus PCLA hydrogel.

Numerous locally injectable hydrogels have been developed for tumor immunother-
apy. In particular, gelatin-based hydrogels are widely used in various biomedical appli-
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cations because their properties often mimic the natural properties of the extracellular
matrix. Various gelatin-based cell adhesive and degradable hydrogels have been devel-
oped and were shown to have good cell attachment, proliferation, and survival properties.
Koshy et al. developed injectable porous gelatin cryogels and they were found to be
minor host responsive following subcutaneous injection [59]. Controlled release of the
granulocyte-macrophage colony-stimulating factor from gelatin hydrogels demonstrated
effective infiltration of immune cells. It should be noted that, the Lys-PCLA hydrogels
developed in this study show effective infiltration of immune cells without any adjuvants.

4. Conclusions

This study developed an in situ forming injectable Lys-PCLA bioconjugate hydrogel
for the in situ recruitment of DCs. The presence of natural Lys protein in the hydrogel
network endows a good porous mesh-like network. The Lys-PCLA hydrogel is non-toxic
to macrophages even at 1000 µg/mL concentrations. Lys-PCLA hydrogels exhibited good
sol-to-gel phase transition and good mechanical properties. The hydrogel endows a good
in situ gel forming ability into the back of rats. Subcutaneous administration of Lys-
PCLA bioconjugate sols into the back of mice spontaneously forms a hydrogel network.
Owing to the porous properties, various immune cells including DCs and macrophages
migrated to the porous network. The cells are modulated by the introduction of appropriate
antigens, which can control the antitumor immunity. As suggested by the results, Lys-PCLA
conjugate is a powerful alternative to therapies that require host cell modulation or the in
situ reprogramming of host cells.
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