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This letter introduces a novel integrated framework for simultaneous
localization and mapping (SLAM) tailored for general agricultural ap-
plications. The framework combines a cutting-edge SLAM method,
LIO-SAM, with covariance intersection for sensor fusion. Agricultural
robots often operate in unstructured environments with sparse feature
points and encounter repeated similar information, such as trees. There-
fore, a fusion framework based on 3D SLAM augmented with addi-
tional information, such as feature-independent GPS data, becomes es-
sential. This study proposes an integrated SLAM framework by intro-
ducing a convergence strategy based on covariance analysis, incorpo-
rating a state-of-the-art 3D SLAM technique. The convergence meth-
ods, namely “dynamic weight assignment” and “winner takes all”, are
presented alternatively, tailored to seamlessly integrate with the pro-
posed framework. Evaluations using a public dataset and an experiment
demonstrate the effectiveness of the approach through numerical anal-
ysis and visual representation. The results illustrate that this method
surpasses conventional approaches in accurately estimating the robot’s
position. In the future, this research will focus on automating crop cul-
tivation and harvesting by integrating the proposed system with robot
arm control.

Introduction: Agriculture is rapidly transforming into a technology-
intensive sector, thanks to advancements in 3D sensor technology [1].
Particularly, significant progress is being made through the integration of
robotic technology with outdoor simultaneous localization and mapping
(SLAM) technologies [2]. Notably, 3D LiDAR-based SLAM techniques
have recently advanced, with noteworthy contributions from algorithms
like LOAM, as described in reference [3]. LOAM effectively extracts
features from point clouds, ensuring the accuracy of geometric con-
straints remains challenging. In such cases, solving non-linear optimiza-
tion often results in divergent outcomes [4]. Subsequent enhancements,
such as LeGO-LOAM, incorporate point cloud clustering and ground
segmentation to improve registration [5]. Additionally, in reference [6],
LIO-SAM integrates LiDAR and inertial measurements, enabling real-
time motion estimation and precise map-building by integrating various
measurement types in a factor graph framework.

However, outdoor agricultural environments pose unique challenges
due to their unstructured nature, sparse feature points, and repeated,
similar information [2]. In these environments, 3D LiDAR information
can lead to matching failures caused by inconsistent features. Repeated
matching failures result in divergent estimation outcomes, characterized
by a significant increase in covariance. To address this challenge, GPS,
providing absolute location information, becomes a crucial sensor.

Hence, this study introduces a fusion structure that integrates LIO-
SAM with GPS information. While LIO-SAM-based approaches have
included GPS information in their factor graph [6, 7], it is difficult to
utilize covariance appropriately. In contrast, the proposed approach em-
ploys covariance intersection (CI) as a covariance-based convergence
technique to combine the two sets of information in the back-end stage.
It determines the most appropriate weight for fusion at each stage, which
ensures consistent and accurate estimation of the robot’s position even in
agricultural environments.

The contributions of this study are summarized as follows:

1. Two CI-based fusion approaches are formulated that are alternatively
performed and combined with LIO-SAM to demonstrate powerful
3D SLAM performance.

2. The proposed approach, based on covariance minimization, effec-
tively manages the uncertainty of the robot’s position by keeping it
low.

3. Tests using a public dataset and the self-designed experiment clearly
demonstrate the outstanding performance of the proposed approach.

Covariance intersection based 3D LiDAR SLAM with GPS—Winner
takes all: In the general SLAM mechanism, estimated states and ac-
quired measurements each have their respective covariances. In our ap-
proach, PLIO,t represents the covariance of the estimated robot pose using
3D LiDAR with an inertial measurement unit (IMU), while PGPS,t signi-
fies the covariance of the GPS measurements at time t. Both covariances
are updated according to the rules of CI. Similarly, xLIO,t stands for the
robot pose estimated at time t through LIO-SAM optimization. Addi-
tionally, xGPS,t denotes the GPS measurement obtained at the same time.
The fused covariance and robot states are calculated using CI as follows:

PF,t = (
ω(PLIO,t )

−1 + (1 − ω)(PGPS,t )
−1)−1

, (1)

xF,t = PF,t (ω(PLIO,t )
−1xLIO,t

+ (1 − ω)(PGPS,t )
−1xGPS,t ),

(2)

where PF,t represents the fused covariance. xF represents the fused robot
state. The parameter ω signifies the weight assigned to the fusion of
estimated results. The quality of the results varies based on the value of
ω. Here, we adopt two specific rules for fusion: the “winner takes all”
approach and the dynamic weight algorithm outlined in reference [8].
They are combined alternatively.

Here, the “winner takes all” fusion is referred to as WTA fusion. It is
implemented by setting ω to either 1 or 0. The rule is defined as follows:

w =
{

1, if tr(PLIO,t ) ≤ tr(PGPS,t )

0, otherwise
(3)

where tr(·) represents the trace of a matrix. The WTA fusion rule com-
putes PF by selecting the covariance matrix with a relatively smaller
trace. Choosing information with low uncertainty is a rational approach.
Consequently, xF,t is determined as the state corresponding to the previ-
ously selected covariance matrix among the two states xLIO,t and xGPS,t .

Covariance intersection based 3D LiDAR SLAM with GPS—Dynamic
weight algorithm: Here, the dynamic weight algorithm is referred to as
DWA fusion outlined in reference [8]. DWA fusion serves as the primary
fusion algorithm. However, if DWA fails to produce a weight within the
range of 0 to 1, WTA is employed instead of DWA. The DWA process
is elaborated in detail below. First off, a diagonal matrix with the eigen-
values of PLIO,t on its diagonal and corresponding eigenvector should
be computed. Those can be represented by DLIO and VLIO, respectively.
Now a matrix, TLIO, to transform PLIO,t can be computed as follows:

TLIO =
(√

DLIO

)−1
(VLIO)T , (4)

P′
GPS = TLIOPGPS (TLIO)T , (5)

where P′
GPS is the transformed matrix of PGPS . P′

GPS is decomposed into
its eigenvector, V ′

GPS and eigenvalue matrix, D′
GPS . As a diagonal matrix,

d̄ is defined as the inverse of D′
GPS . Based on it, d̃ is represented as

follows:

d̃i = d̄i

1 − d̄i
, for 1 ≤ i ≤ n (6)

where n is the number of elements in the fused state.
A diagonal matrix, a, can be computed using the multiplication of

V ′
GPS , DLIO and

(
V ′

GPS

)T
. Lastly, p and q for the construction of a weight

matrix, W , are computed as follows:

p = a1d̃2(1 + d̃1) + a2d̃1(1 + d̃2)

a1(1 + d̃1) + a2(1 + d̃2)
, (7)
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Fig. 1 Proposed 3D simultaneous localization and mapping (SLAM) frame-
work with LIO-SAM and covariance intersection (CI)-based fusion. In our
proposed 3D SLAM framework, we integrate LIO-SAM with CI-based fusion.
Utilizing the LIO-SAM framework as the foundation, LIO-SAM odometry is
fused with GPS odometry using DWA or WTA. These two fusion strategies
operate alternatively to calculate an appropriate weight

q = a1d̃2
2 (1 + d̃1) + a2(d̃1)2(1 + d̃2)

a1(1 + d̃1) + a2(1 + d̃2)
, (8)

where a1 and a2 are the first and second diagonal elements of a, respec-
tively. Likewise, d̃1 and d̃2 are the first and second diagonal elements
of d̃, respectively. Finally, we can obtain the weight W of each state as
follows:

W =
⎡
⎣−p +

√
p2 − q 0

0 −p +
√

p2 − q

⎤
⎦ , (9)

where each diagonal element of W should be involved in [0, 1]. If the
aforementioned condition is not met, for instance, if q exceeds p2, then
the rules of WTA are applied instead.

Proposed SLAM framework: Figure 1 illustrates the proposed inte-
grated SLAM framework employing the fusion mechanism based on
CI. The fundamental framework employed here is the LIO-SAM ap-
proach. Its cloud information undergoes processing through modules:
“imageProjection”, “featureExtraction”, and “mapOptimization”. In the
“mapOptimization” step, mapping accuracy is improved by aligning
point clouds, estimating LiDAR odometry for precise robot tracking,
and refining motion trajectories through graph optimization. Addition-
ally, the “imuPreintegration” module refines motion estimation using
IMU and LiDAR odometry data, ensuring accurate mapping by remov-
ing point cloud distortions and enhancing initial value estimation. The
LIO-SAM odometry is fused using two fusion strategies, namely DWA
and WTA, specifically when GPS odometry is acquired. Although DWA
and WTA represent different fusion methods, WTA is employed com-
plementarily in the DWA-based fusion process.

The GPS cycle operates at a rate 10 times slower than the LIO-SAM
odometry cycle. Therefore, if GPS data is not received, it is fused with
a weight (w = 1). Additionally, it is essential to note that the coordinate
systems of GPS and LIO-SAM differ. Consequently, a coordinate sys-
tem transformation matrix is necessary between them. To calculate this
transformation matrix, singular value decomposition-based optimiza-
tion [9] is performed using the initial three consecutive pairs of each
set of information. From the optimal Rrotation and ttrans matrices derived
from these results, the transformation matrix (TGPS,LIO) is obtained as
follows:

TGPS,LIO =
[

Rrotation ttrans

0 1

]
, (10)

where TGPS,LIO is the 3x3 matrix. According to TGPS,LIO, the state and
covariance of original GPS information for fusion are transformed as
follows.:

xGPS,t = TGPS,LIOxOGPS,t , (11)

Fig. 2 Public dataset. (a) The designed robot and equipped sensors. (b) The
robot trajectory. S and E represent the start and end points, respectively.
More details can be found in reference [10]

PGPS,t = TGPS,LIOPOGPS,t T
−1

GPS,LIO, (12)

where xOGPS,t and xOGPS,t are 3x1 state vector and 3x3 covariance matrix
regarding original GPS information, respectively. The results are trans-
formed state and covariance. xGPS,t is a 3x1 state vector, but because the
last element is 1, it was employed as a 2x1 vector in the formulation.

Public dataset: The CitrusFarm dataset [10] is a comprehensive agricul-
tural robotics dataset that covers various aspects of farming. It includes
both multi-spectral images and navigational sensor data, making it valu-
able for tasks such as localization, mapping, and crop monitoring. This
dataset was gathered during the summer of 2023 by a wheeled mobile
robot at the agricultural experimental station of the university of Califor-
nia, Riverside, which is shown in Figure 2. It includes data from wheel
odometry, LiDAR, IMU, and GPS-RTK(Real Time Kinematic), all mea-
sured along the robot’s trajectory depicted in Figure 2b.

Performance evaluation of public dataset: In this dataset, the robot’s
position obtained from RTK GPS is set to the true value. Therefore, to
demonstrate the fusion performance of GPS and SLAM methods, which
is an advantage of this study, we additionally created noisy GPS data
with noise added to the RTK GPS and used it for fusion. The equation is
as follows:

xGPS,t = xGPS,t + v, (13)

where v is zero-mean white noise with covariance matrix R = σ 2
v ∗ I .

For quantitative performance evaluation, the norm of a vector is cal-
culated as the difference between xtrue,last obtained from the final posi-
tion of RTK GPS and xest,last estimated from each method, which is as
follows:

Epose =
√

(xtrue,last − xest,last )T (xtrue,last − xest,last ), (14)

where xest,last can be either xLIO,last resulted from the LIO-SAM or xF,last

obtained by the proposed method.
Since we proposed the covariance fusion-based 3D SLAM frame-

work, PF,t is one of the evaluation factors. It is important to demonstrate
that the proposed approach exhibits lower covariance when compared to
the covariances of GPS and LIO-SAM. It is clear that tr(PF,t ) remains
consistently lower than tr(PLIO,t ) and tr(PGPS,t ).

Tests and analysis: Tests were conducted using the dataset. Figure 3
shows the robot trajectories estimated by LIO-SAM, GPS odometer,
LIO-SAM with the WTA fusion, and the proposed method. The pro-
posed method outperforms other methods by fusing each step consis-
tently. This integration is highlighted further in Figure 4. The results of
the covariance traces were compared over time. The fused trace of co-
variance of the proposed approach denoted as tr(PF,t ), is significantly
lower than those of other methods. This is because the proposed method
is a covariance-based fusion technique. Table 1 provides a comparison
of the final position error, Epose. Our proposed CI-based fusion SLAM
approach shows the minimum error compared to conventional meth-
ods. This implies that the estimated and fused location information is
converging closer to the true value by reducing the covariance. Table 2
shows the average processing time per cycle in the CitrusFarm dataset.
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Fig. 3 Estimated robot poses in CitrusFarm dataset. This figure shows the
robot trajectories estimated by LIO-SAM, GPS odometry, LIO-SAM with the
WTA fusion, and the proposed method. The proposed method outperforms
other methods because it integrates GPS information while fusing each step
consistently

Fig. 4 Trace of covariance over time in CitrusFarm dataset. The traces of co-
variances obtained from each method are depicted and compared over time.
The fused trace of covariance of the proposed approach, denoted as tr(PF,t ),
is significantly lower than those of other methods

Table 1. Final position error in CitrusFarm dataset (unit: meter)

xtrue,last xest,last Epose

Noisy GPS 0.5078, 0.1512 -0.6643, 0.07008 1.1749

LIO-SAM (without GPS) 0.5078, 0.1512 -0.2861, 0.2797 0.8042

LIO-SAM (with GPS) 0.5078, 0.1512 2.2642, 0.471551 1.7854

LIO-SAM (with WTA) 0.5078, 0.1512 3.745, 0.3356 3.2424

Proposed method 0.5078, 0.1512 0.5502, 0.8882 0.7382

Table 2. Average processing time per cycle (unit: ms)

Average
processing time

LIO-SAM (without GPS) 139.14

LIO-SAM (with GPS) 141.01

LIO-SAM (with WTA) 141.08

Proposed method 142.18

Fig. 5 Experimental environment. Panel (a) depicts the top view of the ex-
perimental environment. Red lines indicate the guided robot trajectory. Panel
(b) shows the robot under experimentation and its surrounding environment

Fig. 6 Robot platform. The robot platform is equipped with sensors including
a 3D LiDAR sensor, an inertial measurement unit (IMU) sensor, and a GPS
sensor

Our approach results in a slight increase in computational time attributed
to matrix operations. Nevertheless, this increment in computational load
is minimal, accounting for about 2% of the overall runtime.

Experimental setup and performance evaluation: An experiment was
also conducted in an orchard located in Goesan-gun, Chungcheongbuk-
do, South Korea as shown in Figure 5. Figure 5 shows a top view of the
environment where the experiment was conducted and a photo of the in-
ternal orchard. The robot moved along the fruit trees, and at this time, it
ran in shape such as �. The collected data is publicly available on [11]
and called the orchard dataset. Figure 6 shows Wego’s ST MINI robot,
which has four-wheel differential drive and independent suspension and
can reach speeds of up to 10 km/h. The dimensions of the robot are
612 × 580 × 245 mm. Sensors onboard the robot include a 3D LiDAR
sensor, an IMU sensor, and a GPS sensor. The model of the equipped
LiDAR sensor is Velodyne VLP-16, which is one of the popular outdoor
3D LiDAR sensors. It supports a range of 100 m, 16 channels, up to
300,000 points/s, a 360◦ horizontal field of view, and a 30◦ vertical field
of view with +/- 15◦ up and down. IntelliThings iAHRS was the model
of IMU sensor utilized, which has a 9-Degree of Freedom (DoF) con-
sisting of an accelerometer, gyroscope, and magnetometer. As the GPS
sensor, MRP-2000 Real-time kinematic GPS was used. These sensors
have been used to effectively perform outdoor 3D SLAM. For perfor-
mance evaluation in the experiment, the same performance evaluation
formula described in Equation (14) is employed. Since the robot’s ar-
rival position is controlled to be the same as the origin, xtrue,last becomes
[0,0].

Experiment and analysis: Experiments were conducted in the afore-
mentioned environment. The sensor data acquired by the robot were
employed in both LIO-SAM and the proposed method. Figure 7 displays
the estimated test environment from different perspectives. Particularly,
Figure 7a is detailed in Figure 8, showing the robot trajectories estimated
by LIO-SAM, GPS odometer, LIO-SAM with the WTA fusion, and the
proposed method. The proposed method outperforms other methods be-
cause it integrates GPS information while fusing each step consistently.
This integration is highlighted further in Figure 9, where the results
of the covariance traces were compared over time. The fused trace of
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Fig. 7 Estimated 3D environment. Panel (a) shows the top view of the esti-
mated environment, featuring the estimated robot trajectory represented by
the green line. Panel (b) shows a front view of the estimated environment

Fig. 8 Estimated robot poses in orchard dataset. This figure shows the robot
trajectories estimated by LIO-SAM, GPS odometry, LIO-SAM with the WTA
fusion, and the proposed method. The proposed method outperforms other
methods because it integrates GPS information while fusing each step con-
sistently

Fig. 9 Trace of covariance over time. The traces of covariances obtained
from each method are depicted and compared over time. The fused trace
of covariance of the proposed approach, denoted as tr(PF,t ), is significantly
lower than those of other methods

covariance of the proposed approach, denoted as tr(PF,t ), is significantly
lower than those of other methods. In other words, the robot’s trajectory
does not deviate beyond the uncertainties of the GPS and LIO-SAM.
Table 3 provides a comparison of the final position error, Epose. It can
be observed that the proposed CI-based fusion SLAM approach shows
improvements compared to conventional methods. This implies that
the estimated and fused location information is converging closer to
the true value due to the reduction in covariance. Table 4 presents the
average processing time per cycle within the orchard dataset. Similar to
the CitrusFarm dataset, our method slightly increases the computation

Table 3. Final position error (unit: m)

xtrue,last xest,last Epose

LIO-SAM (without GPS) 0.0, 0.0 0.2619, 0.0082 0.2620

LIO-SAM (with GPS) 0.0, 0.0 -0.7223, -0.2645 0.7692

LIO-SAM (with WTA) 0.0, 0.0 1.0665, 0.2978 1.1073

GPS odometry 0.0, 0.0 1.50315, 0.67912 1.6494

Proposed method 0.0, 0.0 -0.1165, 0.03222 0.1209

Table 4. Average processing time per cycle (unit: ms)

Average
processing time

LIO-SAM (without GPS) 135.36

LIO-SAM (with GPS) 137.97

LIO-SAM (with WTA) 139.08

Proposed method 139.26

time due to matrix operations. However, this increase in computational
load is negligible.

Conclusion: This letter introduces an integrated SLAM framework
tailored for challenging agricultural environments. By combining the
cutting-edge technique known as LIO-SAM and supplementing it with
feature-independent GPS data, our approach presents an alternative con-
vergence strategy based on DWA and WTA. Through comprehensive
numerical and graphical evaluation, the proposed approach exhibited
a high level of accuracy in estimating the robot’s position in both the
dataset and outdoor experiment. In the future, our research aims to rev-
olutionize agricultural practices by seamlessly integrating this system
with robot arm control by paving the way for automated crop cultivation
and harvesting.
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