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A B S T R A C T

Deep learning (DL)-based automatic modulation classification (AMC) is a primary research field for identifying
modulation types. However, traditional DL-based AMC approaches rely on hand-crafted features, which can be
time-consuming and may not capture all relevant information in the signal. Additionally, they are centralized
solutions that are trained on large amounts of data acquired from local clients and stored on a server,
leading to weak performance in terms of correct classification probability. To address these issues, a federated
learning (FL)-based AMC approach is proposed, called FL-MP-CNN-AMC, which takes into account the effects of
multipath channels (reflected and scattered paths) and considers the use of a modified loss function for solving
the class imbalance problem caused by these channels. In addition, hyperparameter tuning and optimization
of the loss function are discussed and analyzed to improve the performance of the proposed approach. The
classification performance is investigated by considering the effects of interference level, delay spread, scattered
and reflected paths, phase offset, and frequency offset. The simulation results show that the proposed approach
provides excellent performance in terms of correct classification probability, confusion matrix, convergence and
communication overhead when compared to contemporary methods.
1. Introduction

The number of wireless devices is rapidly increasing, and the types
of modulation schemes are diversifying as a result of the astound-
ing improvements in wireless communication technology, producing
an increasingly complex communication environment. As a result, it
becomes increasingly important to be able to identify and catego-
rize communication signals rapidly and automatically. In order to
improve spectrum use and management, automatic modulation classi-
fication (AMC) has lately been considered a solution to communication
problems such as spectrum monitoring and link adaption [1].

According to [2–4], likelihood-based classifiers (LBC) and feature-
based classifiers (FBC) make up the majority of traditional modulation
classifiers. LBC first calculates the likelihood of the received signals un-
der various modulation assumptions, and then uses the maximum like-
lihood (ML) to confirm the modulation scheme [5]. Although the LBC
methods theoretically ensure that the classification outcome satisfies
the Bayes minimum misclassification cost criterion, these AMC meth-
ods are challenging to implement quickly and with high performance
due to several drawbacks: lack of prior knowledge in non-cooperative
communication, sensitivity of model adaptation, and the complexity of
the likelihood ratio function with unknown parameters. As opposed to
this, FBC extracts and compares properties of the input signals, such as
higher-order statistics, to decide the categorization, [6,7].
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1.1. Federated learning (FL) key advantages

∙ The federated learning (FL) framework divides model training
among clients, and each client group independently updates the gra-
dient to reflect the learning model based on their local training data.
∙ FL provides data privacy and security, which is another amazing
feature due to the fact that only the model parameters are updated
during the training process and no original data is transmitted. ∙ FL
could be implemented with the use of edge computing tools, given the
ongoing development of big data and edge computing. This makes it
possible to utilize different types of data at the edge fully without the
requirement for a centralized and efficient data center. ∙ Additionally,
because the model is trained on the user terminal, no local data is
transferred from the local server, which lowers communication latency
and communication costs related to initial data transfer.

These factors make FL a popular topic, and several scholars have
authored numerous articles about it. Some of them, including but
not limited to those specifically related to wireless communication,
are discussed. In [8], the FL-based minimization of energy and time
consumption for job computation and transmission in mobile-edge
computing-enabled balloon networks is examined. For 5G millimeter-
wave (mm-wave) and 6G terahertz (THz) scenarios, [9] proposed a
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FL-aided decentralized resource allocation approach to maximize the
sum capacity and reduce overall power consumption while guarantee-
ing the quality of service (QoS) requirements of both cellular users
and device-to-device (D2D) users. [10] proposed the FL framework for
resource allocation in wireless networks with multiple systems. In order
to balance the learning accuracy of FL and the energy consumption of
the IoT device, a resource allocation challenge for privacy-preserving
edge computing-based Internet of Things (EdgeIoT) was put up by [11].
A federated deep reinforcement learning algorithm to coordinate multi-
ple independent x-applications (xAPPs) in an open radio access network
(O-RAN) for network slicing was proposed by [12].

GNU Radio comes equipped with a comprehensive set of tools
essential for constructing a robust dataset in this domain. It provides
a range of modulators, encoders, and demodulators, along with an ex-
tensive collection of channel simulation modules specifically crafted for
applying simulated channel propagation models to signals generated
synthetically. In essence, we seamlessly combine these logical modules
within GNU Radio to formulate our dataset [13,14].

Class imbalance refers to a situation where the distribution of sam-
ples in the different classes of a dataset is uneven or imbalanced [15].
In the context of modulation classification, class imbalance occurs
when the dataset used to train a machine learning model contains an
uneven distribution of samples across different modulation schemes.
This occurs due to a variety of reasons, such as variations in the
signal caused by multipath channels, the use of certain modulation
schemes more frequently than others, or errors in the data collection
process. Class imbalance can pose a challenge for machine learning
algorithms as they may be biased towards the more prevalent class,
resulting in poor performance in the minority class. In the context of
modulation classification, this can result in inaccurate identification
of the modulation scheme used to transmit a signal, which can lead
to errors in demodulation and decoding [16]. Thus, class imbalance
refers to the situation where the number of samples in different classes
is not balanced, thereby leading to biased performance measures and
classification results.

1.2. Motivation and contribution

Signal modulation classification is an essential task in wireless
communications, which involves identifying the modulation scheme
used to transmit a signal. However, in the presence of multipath
channels, where a signal takes multiple paths to reach the receiver,
the received signal can suffer from class imbalance due to variations
in the signal caused by scattered and reflected paths. This can lead to
poor classification accuracy and suboptimal performance of machine
learning algorithms trained on the dataset. Thus, FL based approach is
proposed, called FL-MP-CNN-AMC, that addresses the challenges posed
by class imbalance in modulation classification caused by multipath
channels. Along with that, instead of a fixed weighting scheme, the
assigned weights self-adapt their scale based on the prediction difficulty
of the data instance. This approach allows the model to assign greater
importance to samples that are more difficult to classify, which can
improve the performance of the model on imbalanced datasets.

Moreover, traditional machine learning methods for modulation
classification are limited in their ability to handle class imbalance
caused by multipath channels. This is because the distribution of sam-
ples in the classes is often uneven due to the varying strengths of the
different paths taken by the signal. This class imbalance can result in
biased models that perform poorly in the minority class. To address
this limitation, a FL based approach is proposed that allows the data
and deep learning models to be stored and trained locally on clients,
while only sharing knowledge learned from the data with the server.

The proposed approach, FL-MP-CNN-AMC, leverages FL in con-
junction with a modified focal loss function to automatically learn to
extract features from a multipath channel. A modified loss function is
2

formulated to address class imbalance by assigning higher weights to
the minority class samples. By doing so, the loss function gives more
importance to correctly classifying the minority class, which improves
the overall performance of the classifier on imbalanced datasets. Thus it
addresses both class imbalance and reliability in terms of the predicted
probabilities accurately reflecting the true probabilities of the classes in
the dataset. For in-depth analysis of the proposed approach 8 scenarios
are considered, with each scenario have different combination of mod-
ulation signals percentage wise, thus creating further class imbalance.
Along with it, FL-MP-CNN-AMC is also evaluated against different
fading models, [17–19] in terms of correct classification probability
(CCP).

The proposed approach is extensively evaluated in comparison to
traditional and contemporary AMC methods. The results show that
the proposed FL-MP-CNN-AMC approach outperforms traditional and
contemporary methods in terms of class imbalance and noise robust-
ness. Specifically, the proposed approach not only shows improved
performance in terms of interference level, confusion matrices, CCP,
convergence and communication overheads, but also when compared
with asynchronous FL (AFL) for the metrics: CCP, misclassified samples,
convergence and communication overhead, proposed approach out
performs it. This highlights the effectiveness of the proposed approach
in addressing the challenges posed by class imbalance in modulation
classification caused by multipath.

Along with it, the proposed approach is evaluated in terms of CCP
against a standard synthetic signal dataset of 12 different modula-
tions, [20], which have the multipath characteristics. In along with it,
the proposed approach for in depth evaluation is also evaluation against
another standard data set, ML2018.01 A [21] which consists of a wider
range of modulation signal with 25 in numbers.

1.3. Overview of contemporary AMC methods used for comparison

(1) TD-AMC [22]: This approach analyzes the performance of typi-
cal modulations in feature-based approaches to determine which
modulation results in higher performance for a specific feature.
In these tests, they utilized a support sector machine (SVM)
classifier in combination with cyclostationary features and an
S-transform. But SVMs are sensitive to the choice of kernel func-
tion, computational expense, sensitivity to outliers, and limited
applicability to binary classification.

(2) FL-CNN-AMC [23]: A CNN-based FL approach that consisted of
only 4 clients and a class imbalance training data set ranging
from 1000 to 6000 samples was considered. Along with this,
balanced class entropy (BCE) is introduced to address the class
imbalance. Moreover, a test dataset of 20,000 IQ samples for
the SNR range of −10 dB to 10 dB was also prepared. The
major drawbacks of their proposed approach are loss of in-
formation, sensitivity to class distribution, overfitting, reduced
discriminatory power, and limited applicability to multiclass
problems.

(3) FL-DP-CNN-AMC [24]: A FL-based CNN approach is used for
the MC, wherein the number of training devices considered was
10, and the data trained by each device includes all modulation
types. But their approach had increased communication over-
head, heterogeneous data, limited control over training data,
limited availability of devices.

(4) CNN-DC-AMC [25]: A decentralized, separable CNN-based ap-
proach was considered for AMC, trained on a collection of four
sub-datasets, with no class imbalance problem. Moreover, it also
has some potential disadvantages, such as dependence on edge
devices and complexity of model consolidation.

(5) CNN+LSTM-AMC [26]: A dual-stream structure based on the
combination of CNN and LSTM was proposed, in which one
stream (CNN) is to extract the local raw temporal features
from raw signals and the other stream (LSTM) is to learn the
knowledge from amplitude and phase information. DL-based
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approaches, such as CNN-LSTM-based dual-stream structures,
have shown promise for AMC, they also have some poten-
tial disadvantages, such as dependence on large amounts of
data, computational expense, sensitivity to hyperparameters,
and limited applicability to known modulation schemes.

1.4. Organization

The rest of the paper is organized as follows: related works are
discussed in Section 2, Section 3 presents signal portraiture and the
proposed approach, Section 4 provides prelude to the FL and AMC,
Section 5 explains the simulation results, and finally, the conclusion
is presented in Section 6.

2. Related works

Some aspects of AMC have previously been investigated but not
limited to, such as, higher order cumulants [27], cyclostationarity-
based [28], instantaneous features [29], wavelet transforms [30]. Un-
fortunately, these techniques have shown to take a lot of time, due
to the fact that they typically rely on the extraction of handmade
features that demand in-depth engineering and domain understanding.
Given that such classifiers’ assumed signal model may be inaccurate
in the novel situation, the above classifiers confront the difficulty of
having to be adjusted to another channel, a different noise state, or a
different environment. Along with that, even though these classifiers
might be able to handle a more complicated signal model, increasing
the number of unknown parameters makes parameter estimation more
computationally complex. In addition, data-driven modulation classi-
fication (MC): random forests [31], K nearest neighbor (KNN) [32],
support vector machines (SVM) [33], easily adaptable to new situations
provided that signals identified with their modulation schemes can be
gathered. These methods are based on traditional machine learning,
which has the advantages of simple technological ideas, strong algorith-
mic feasibility, and excellent performance but necessitates challenging
feature extraction.

One of the current most promising approaches for classification
and regression applications is deep learning (DL). It has shown signif-
icant potential in various domains including resource allocation [34],
joint antenna selection and beam forming [35], and mmWave-MIMO
systems [36]. Additionally, it has been demonstrated that DL-based
AMC is highly effective, largely as a result of its potent automatic
feature extraction capacity [37,38]. Recently, several modulation clas-
sifiers have been developed using deep neural networks (DNN), which
have a more complicated architecture and more advanced models like
recurrent neural networks (RNN) and convolutional neural networks
(CNN), which are used to automatically extract features from raw
data [39–41]. The authors of [42] proposed a neural architecture search
(NAS)-based automatic modulation recognition (AMR) method to au-
tomatically adjust the structure and parameters of a DNN and find the
optimal structure under the combination of training and constraints. A
multisignal frequency domain detection and recognition method was
proposed by [43] in which the frequency spectrum of the time-domain
overlapping signal is obtained through the fast Fourier transform (FFT)
and the frequency spectrum is segmented based on the signal energy
detection method and thus a complex CNN is constructed for the
identification of signal spectrum information.

However, the vast majority of DL-based algorithms, including that
for AMC, rely on massive amounts of data saved on a centralized server
that are gathered from a variety of local clients (devices) and are known
as centralized learning (CL). For instance, in [44] for improved perfor-
mance and increased resilience, a large amount of modulation signals
uploaded from diverse clients is used to train the DL-based CL-AMC.
But this upload can lead to the streaming of the user’s information that
is stored in modulation signals. Thus, this leads to a major challenge
in terms of leakages, i.e., data leaks associated with CL, and it faces a
3

Fig. 1. Elucidation of system model.

significant hurdle in terms of privacy breach. In addition, AMC at the
level of local devices leads to inadequate classification robustness and
accuracy.

A CNN-based AMC was first proposed by [45], in which analog
and digital modulation signals were classified with high accuracy in
comparison to a traditional-based AMC. A hybrid model was proposed
by [46], in which residual neural networks (RNN) and long short
term memory (LSTM) are combined for AMC, wherein they demon-
strated the RNN + LSTM approach having greater performance than
the feature-based AMC approach. Furthermore, it was demonstrated
by [47] that CNN-based AMC approaches have higher inference speeds
than likelihood-based AMC techniques. [48] presented a lightweight
AMC approach in which asymmetric convolution structures are used in
the proposed model to reduce computational complexity. The vanishing
gradient problem is resolved using the skip connection method, which
also boosts calculation speed while improving classification accuracy.
Although, as mentioned above, AMC provided good accuracy and faster
computation, the noise environment considered by them is additive
white Gaussian noise (AWGN) along with in-phase quadrature (IQ)
training samples. A more realistic scenario with white non-Gaussian
noise is considered by [49] for AMC using CNN, but also with IQ sam-
ples. In [50], they used CNN-based models: AlexNet and GoogLeNet,
thereby converting IQ samples into constellation diagrams for AMC
and achieving excellent performance in terms of classification. The
above-mentioned AMC approaches use a single information modality.

In order to implement AMC based on deep residual networks
(Resnet) for the classification of higher order digital modulation types,
[51] made use of the waveform spectrum multimodal fusion (WSMF)
method. The classification results, particularly for higher-order digital
modulation types, were excellent. The visualization of different types
of modulation signals was proposed by [52], by extracting radio
features, thereby indicating that short radio samples lead to misclassi-
fications. Since the majority of DL AMC approaches have been studied
for single-input and single-output (SISO) systems, [53] suggested a
CNN-based zero-forcing (ZF) equalization AMC (CNN/ZF-AMC) method
for multiple-input and multiple-output (MIMO) systems, based on ZF
equalization AMC. These methods discussed CNN-based AMCs with
admirable classification accuracy, but they are centralized approaches,
and they fail to consider decentralized (distributed) scenarios. A fed-
erated learning (FL)-based AMC approach, called as FL-DP-CNN-AMC,
was proposed by [24], where data privacy and security are maintained
while the recognition rate is acceptable. But they only considered
AWGN as a noise environment. The FL based AMC along with the noise
imbalance approach was proposed by [23], called as FL-CNN-AMC,
in which good accuracy of classification is obtained with low risk of
data leakage, but used only 4 clients. They also introduced balanced
cross entropy (BCE) as a loss function for solving the noise imbalance
problem, but the fundamental flaw with BCE, however, is that it solely
takes into account class label errors.

3. Signal portraiture and proposed approach

A basic proposed system model is shown in Fig. 1, which consists of
a transmitter which mainly constitutes a modulator and the receiver is
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equipped with signal processing and classifier (AMC) for demodulation.
The main server, 𝑀𝑠, is connected with local clients, 𝑈 , which process
he data at the local level and only share outcomes (biases, weights,
nd gradients) with 𝑀𝑠. The modulation scheme can be chosen from a
onsolidated listing: BPSK, QPSK, 8PSK, 16QAM, 64QAM, PAM4, GFSK,
PFSK, [54–56].

The channel impulse response is a complex-valued function that
escribes the multipath fading and the frequency-selective nature of the
ireless channel. One commonly used model for the channel impulse

esponse is the Saleh–Valenzuela model [57], which can be expressed
s:

𝑖(𝑡) =
𝐿
∑

𝑗=1
𝑎𝑖𝑗 𝑒

−𝑗2𝜋𝑓𝑑𝑗 𝑡𝑒−𝑗𝜙𝑖𝑗 𝛿(𝑡 − 𝜏𝑖𝑗 ), (1)

here 𝑖 is the index of the path, 𝑗 is the index of the delay element, 𝐿
s the number of delay elements, 𝑎𝑖𝑗 is the amplitude of the 𝑗th delay

element for the 𝑖th path, 𝑓𝑑𝑗 is the Doppler frequency for the 𝑗th delay
lement, 𝜙𝑖𝑗 is the phase shift for the 𝑗th delay element of the 𝑖th path,
nd 𝜏𝑖𝑗 is the delay for the 𝑗th delay element of the 𝑖th path.

The received signal with 𝑁 paths can be expressed as:

(𝑡) =
𝑁
∑

𝑖=1
ℎ𝑖(𝑡)𝑠𝑖(𝑡 − 𝜏𝑖) + 𝑛(𝑡), (2)

here ℎ𝑖(𝑡) is the complex-valued channel impulse response for the 𝑖th
ath, 𝑠𝑖(𝑡) is the complex-valued baseband signal for the 𝑖th path, 𝜏𝑖
s the delay of the 𝑖th path, and 𝑛(𝑡) is the additive white Gaussian
oise. The complex-valued baseband signal 𝑠𝑖(𝑡) is expressed as 𝑠𝑖(𝑡) =
𝑖𝑒𝑗(𝜙𝑐+𝛥𝜙𝑖(𝑡)), where 𝐴𝑖 is the amplitude of the 𝑖th path, 𝜙𝑐 is the carrier

phase, and 𝛥𝜙𝑖(𝑡) is the phase offset.
The received signal 𝑟(𝑡) can be used to extract features for modula-

tion classification. One common approach is to use the time–frequency
representation of the received signal, such as the spectrogram or the
continuous wavelet transform, as the input to a deep learning model.

The basic focal loss equation is given as [58]

FL(𝑝𝑡) = −𝛼𝑡(1 − 𝑝𝑡)𝛾 log(𝑝𝑡), (3)

where 𝑝𝑡 is the predicted probability of the true class label at time
𝑡, 𝛼𝑡 is the weight assigned to the sample at time 𝑡, and 𝛾 is the
focusing parameter that controls the degree of down-weighting for well-
classified signals. The term (1−𝑝𝑡)𝛾 is the focal factor, which reduces the
weight of easy signals and emphasizes the weight of hard signals. The
parameter 𝛾 controls the degree of down-weighting for well-classified
signals. The weight 𝛼𝑡 is a scalar that can be used to assign different
weights to different samples in the training data. It is typically defined
as:

𝛼𝑡 =

{

𝛼 if 𝑦𝑡 = 1
1 − 𝛼 otherwise,

(4)

where 𝑦𝑡 is the true class label at time 𝑡, and 𝛼 is a hyperparameter
that controls the degree of weighting. The 𝛼 parameter is a single scalar
value that is used to assign a somewhat higher weight to the minority
class. However, this uniform weighting does not differentiate between
hard signals and easy signals within the minority class. All minority
class signals receive the same weight, regardless of their hardness.
Hardness in this context refers to how difficult or easy the signal is
for the model to classify correctly.

Therefore, modified focal loss (𝐿𝐶𝐹𝐿) is proposed to address two
main challenges that arise in the context of modulation classification:

1. Class Imbalance in Modulation Classification: AMC is in-
dispensable in contemporary wireless communication systems, tasked
with identifying the modulation scheme employed by incoming signals.
However, a practical challenge known as the class imbalance problem
complicates AMC due to the dynamic and diverse nature of real-world
communication scenarios.
4
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Wireless networks strategically employ various modulation schemes
based on factors like signal strength, channel conditions, and applica-
tion requirements. This strategic selection results in an uneven distri-
bution of modulation classes, contributing to class imbalance. Further-
more, the impact of channel conditions, particularly in multipath chan-
nels and fading environments, exacerbates class imbalance, affecting
the prevalence of certain modulation schemes.

Addressing class imbalance in AMC is crucial for optimizing system
performance. A balanced model is essential for robust performance
across all modulation classes. An imbalanced model, biased towards
prevalent classes, can compromise accuracy, particularly for less com-
mon modulation types, impacting communication performance and
QoS standards.

Moreover, the adaptability of AMC systems to dynamic environ-
ments is hindered by class imbalance. A robust AMC system should
dynamically adjust to the prevalence of modulation types in real-
time, aligning with variations in the communication environment. In
essence, class imbalance is not just a theoretical concern but a practical
challenge deeply embedded in the dynamic nature of wireless commu-
nication scenarios, necessitating solutions for accurate, adaptable, and
reliable AMC systems in real-world applications.

2. Channel Effects in Modulation Classification: Modulation clas-
sification often occurs in wireless communication signals, influenced
by the quality of the wireless channel. The channel-aware weight
function in the modified focal loss considers the wireless channel’s
quality, assigning varying weights to samples based on their channel
conditions. This approach aims to diminish the impact of samples with
poor channel conditions on the loss function, ultimately enhancing the
model’s overall performance in the modulation classification task. The
consideration of channel effects is crucial in ensuring the robustness
and reliability of the AMC model, especially when operating in diverse
and challenging wireless communication environments.

Therefore, balancing parameter, a class-aware weight factor, 𝛼 in
the modified focal loss helps to mitigate this problem by adjusting
the weights assigned to the samples in the minority and majority
classes, thereby reducing the impact of the majority class on the loss
function and improving the overall performance of the model on the
minority class, i.e. it uses a vector of 𝛼 values, with a separate 𝛼
value assigned to each signal based on its class and difficulty. The
𝛼 values are determined based on both the class imbalance and the
individual hardness. Thus higher 𝛼 values are assigned to signals from
the minority class to compensate for the lower number of samples.
Within the minority class, higher 𝛼 values are given to hard signals
that are likely to be misclassified. Lower 𝛼 values are assigned to
signals from the majority class and to easy signals that are likely to
be classified correctly. Therefore, modified focal loss uses a vector of 𝛼
values, individually tuned for each signal based on class and difficulty.

Thus, the modified focal loss 𝐿𝐶𝐹𝐿 is proposed for addressing the
challenges of class imbalance and multipath channels in the context of
modulation classification and is expressed as

𝐿𝐶𝐹𝐿(𝑦, 𝜈) = −
𝐶
∑

𝑖=1

[

𝛼𝑖(1 − 𝑦𝑖)𝛾 log(𝑦𝑖)

+(1 − 𝛼𝑖)𝑦
𝛾
𝑖 log(1 − 𝑦𝑖)

]

, (5)

where 𝑦 is the predicted probability vector for the input sample, 𝜈
is the true class label vector for the input sample, 𝐶 is the number
of classes, 𝛼𝑖 is the class-aware weight factor for class 𝑖, and 𝛾 is the
ocusing parameter of the loss function. The class-aware weight factor
𝑖 serves as a scalar value representing the weight assigned to class 𝑖
ithin the loss function. The computation of 𝛼𝑖 involves the utilization
f the weight function, expressed as: 𝛼𝑖 =

1
∑𝜛

𝑗=1 𝑤(𝑟(𝑡)𝑗 ,𝑡𝑖)
. Here, 𝜛 denotes

he total number of samples in the dataset, 𝑟𝑗 signifies the received
ignal for sample 𝑗, and 𝑡𝑖 represents the time instant corresponding

o class 𝑖. The weight function 𝑤(𝑟𝑗 , 𝑡𝑖) intricately assigns a weight to
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each sample, taking into account its received signal and the time instant
corresponding to its true class label and is given as

𝑤(𝑟(𝑡), 𝑡) = exp

(

−
(𝑡 − delay(𝑟(𝑡)))2

2𝜎2𝑡

)

exp

(

−
|𝑟(𝑡)|2

2𝜎2𝑟

)

𝑤𝑐 (𝑡), (6)

In Eq. (6), the tuning parameters 𝜎𝑡 and 𝜎𝑟 play a crucial role in
shaping the behavior of the weight function. These parameters control
the contribution of the delay and amplitude components, respectively,
influencing the assignment of weights to samples. The term delay(𝑟(𝑡))
represents the delay associated with the received signal 𝑟(𝑡). The careful
tuning of 𝜎𝑡 and 𝜎𝑟 allows for the customization of the weight function,
tailoring it to the specific characteristics of the dataset. Adjusting these
parameters enables helps in the emphasis or de-emphasis of the impact
of temporal delay and signal amplitude, providing a flexible mechanism
to adapt the model’s sensitivity to different aspects of the input data.
The inclusion of the term 𝑤𝑐 (𝑡) further adds a temporal weight compo-
nent, enhancing the adaptability of the weight function across different
temporal instances. Thus, the weight function in Eq. (6), guided by
the tuning parameters 𝜎𝑡 and 𝜎𝑟, empowers the model to dynamically
adjust the importance assigned to individual samples based on their
temporal characteristics and received signal properties. The tunability
of these parameters ensures versatility in addressing diverse datasets
and varying temporal dynamics.

The delay factor delay(𝑟(𝑡)) is given as delay(𝑟(𝑡)) = argmax𝑡 |𝑟(𝑡)|
2,

which represents the time delay associated with the received signal
power 𝑃𝑟 given as 𝑃𝑟 =

1
𝑇 ∫ 𝑇

0
|

|

|

∑𝑁
𝑖=1 ℎ𝑖(𝑡)𝑠𝑖(𝑡 − 𝜏𝑖) + 𝑛(𝑡)||

|

2
𝑑𝑡

= 1
𝑇 ∫ 𝑇

0
|

|

|

∑𝑁
𝑖=1 ℎ𝑖(𝑡)𝐴𝑖𝑒𝑗(𝜙𝑐+𝛥𝜙𝑖(𝑡))𝛿(𝑡 − 𝜏𝑖) + 𝑛(𝑡)||

|

2
𝑑𝑡

= 1
𝑇 ∫ 𝑇

0
|

|

|

∑𝑁
𝑖=1 ℎ𝑖(𝜏𝑖)𝐴𝑖𝑒𝑗(𝜙𝑐+𝛥𝜙𝑖(𝜏𝑖)) + 𝑛(𝜏𝑖)

|

|

|

2
𝑑𝜏𝑖. Assuming delay 𝜏𝑖 is con-

tained in the delta function, expanding the square and taking the
expectation over the noise 𝑛(𝑡), we get,
𝐸[|𝑟(𝑡)|2] = 𝐸

[

|

|

|

∑𝑁
𝑖=1 ℎ𝑖(𝜏𝑖)𝐴𝑖𝑒𝑗(𝜙𝑐+𝛥𝜙𝑖(𝜏𝑖)) + 𝑛(𝜏𝑖)

|

|

|

2
]

=
∑𝑁

𝑖=1 |ℎ𝑖(𝜏𝑖)|
2
|𝐴𝑖|

2+

[|
|

𝑛(𝜏𝑖)||
2] + 2Re

{

∑𝑁
𝑖=1 ℎ𝑖(𝜏𝑖)𝐴𝑖𝑒𝑗𝜙𝑐 E

[

𝑒𝑗𝛥𝜙𝑖(𝜏𝑖)
]

}

, and 𝑤𝑐 (𝑡) is the class-

aware weight factor, given as 𝑤𝑐 (𝑡) =
𝑁majority
𝑁minority

×⊮minority(𝑡)+⊮majority(𝑡),
here 𝑁majority and 𝑁minority are the number of samples in the majority
nd minority classes, respectively, ⊮minority(𝑡) and ⊮majority(𝑡) are indica-
or functions that return 1 if the sample at time 𝑡 belongs to the minority
r majority class, respectively.

Moreover, Re ⋅ and Im ⋅ denote the real and imaginary parts, referred
o as the in-phase (I) and quadrature (Q) component: IQ component,
nd are merged with the sample for training and testing of the proposed
pproach thus 𝑟(𝑡) is written as I(𝑡) = Re 𝑟(𝑡) =

∑𝑁
𝑖=1 Reℎ𝑖(𝑡)𝑠𝑖(𝑡 − 𝜏𝑖) +

e 𝑛(𝑡) and Q(𝑡) = Im 𝑟(𝑡) =
∑𝑁

𝑖=1 Imℎ𝑖(𝑡)𝑠𝑖(𝑡 − 𝜏𝑖) + Im 𝑛(𝑡).

4. Prelude: Federated learning

A wireless multi-user system with just one primary server (𝑀𝑠) is
taken into consideration and 𝑈 number of users (clients), where in
each participating client 𝑢 stores its data with size 𝑑𝑢, locally, such
that the total data size 𝐷 is given as 𝐷 =

∑𝑈
𝑢=1 𝑑𝑢, where a set of

input–output pairs can be used to define as a collection of data samples
𝑑𝑢, as {𝑥𝑗 , 𝑦𝑗}

𝑑𝑢
𝑗=1, where 𝑥𝑗 ∈ R𝑑 is a sample input vector with 𝑑

characteristics, and 𝑦𝑗 ∈ R is the labeled output value for the sample
𝑥𝑗 .

For a sampled data pairs of {𝑥𝑗 , 𝑦𝑗}, for 𝑥𝑗 the input, the task
is to find the global model parameter 𝑚 that is able to characterize
output 𝑦𝑗 . This characterization of the output with a loss function
𝑙(𝑓𝑗 (𝑚)) can be represented in the forms: for linear regression: 𝑙(𝑓𝑗 (𝑚)) =
1
2

(

𝑥𝑇𝑗 𝑚 − 𝑦𝑗
)2

, 𝑦𝑗 ∈ R and for support vector machine: 𝑙(𝑓𝑗 (𝑚)) =
{

0, 1 − 𝑦 𝑥𝑇𝑚
}

, 𝑦 ∈ {−1, 1}, where, 𝑥𝑇𝑚 is linear mapping function.
5

𝑗 𝑗 𝑗 𝑗 a
Then, the global optimization problem can be represented for the model
parameter 𝑚, as

𝑚𝑖𝑛
𝑚∈R𝑑

𝐽 (𝑚) =
𝑈
∑

𝑢=1

𝑑𝑢
𝐷

𝑙(𝐽𝑢(𝑚)), (7)

Thus, for the user 𝑢 the local loss function is given as 𝑙(𝐽𝑢(𝑚)) =
1
𝑑𝑢

∑

𝑗=𝑑𝑢 𝑙(𝑓𝑗 (𝑚)), and the loss function 𝑙(𝑓𝑗 (𝑚)) captures the error of
he model parameter 𝑚 on the input–output pair {𝑥𝑗 , 𝑦𝑗}.

.1. FL based modulation classification explication

Iterative based approach is used by FL for solution of Eq. (7) and
ach iterative round is indexed by 𝑡. Therefore, in iteration 𝑡: the server
elects clients 𝑆𝑑𝑡 and distributes the current global model 𝑚𝑡−1 and
ach client 𝑢 computes local gradient updates to minimize, 𝑙(𝐽𝑢(𝑚)) =
1
𝑑𝑢

∑

𝑗=𝑑𝑢 𝐿𝐶𝐹𝐿(𝑦𝑗 , 𝜈𝑗 ). The server aggregates local gradients to obtain a
ew global model 𝑚𝑡, the process repeats with 𝑚𝑡 distributed for the

next iteration 𝑡 + 1 and it consists of three steps: (1) Scheduling of
participants: The main server 𝑀𝑠 selects the initial model parameters
𝑚𝑝, and schedule 𝑆𝑑 for its training, and then broadcast these details
o each client participant 𝑈𝑝𝑖 , 𝑖 ∈ 1, 2..𝑁𝑐 where 𝑁𝑐 are the number of
lients for an iterative round 𝑡. For each round of training, the server
𝑠 selects a subset of clients 𝑆𝑑𝑡 ⊆ 𝑈 to participate in the training

rocess. During the scheduling process, the server 𝑀𝑠 also broadcasts
he current global model parameter, 𝑚

𝑆𝑑𝑡−1
𝑝𝑡−1 , to each selected client 𝑈𝑝𝑖 .

his model parameter is the result of the previous round of training,
nd it serves as the starting point for the current round. In the modified
ocal loss approach, each client 𝑈𝑝𝑖 has its own local dataset, and uses
he gradient descent algorithm to update its local model parameter,
̃ 𝑝 ∈ 𝑚𝑝 for a learning rate of 𝜇. Once the clients have completed
heir local updates, they upload their parameters to the server 𝑀𝑠 for
ggregation. The server 𝑀𝑠 then aggregates the local parameters using
weighted average to obtain a new global model parameter, which

s then used as the starting point for the next round of training. (2)
chedule sharing: Each 𝑈𝑝𝑖 has its own local dataset, and uses the
radient descent algorithm to update its local model parameter, �̃�𝑝 ∈
𝑝 for a learning rate of 𝜇, using the modified focal loss. For a mini-
atch 𝑑𝑈𝑝

⊆ 𝐷𝑈𝑝
of 𝑈𝑝 ∈ 𝑢 data samples, the estimate of the gradient

𝑓𝑗
(

𝑚𝑝(𝑡)
)

is given as ∇̃𝑓𝑗
(

𝑚𝑝(𝑡)
)

= 1
|

|

|

𝑑𝑈𝑝
|

|

|

∑

𝑗∈𝑑𝑈𝑝
∇𝐿𝐶𝐹𝐿(𝑦𝑗 , 𝜈𝑗 ), where

𝑗 is the predicted probability distribution for a given class, 𝜈𝑗 is a
ne-hot encoded vector representing the true class label at time 𝑡 for
he 𝑗th data sample. The modified focal loss function 𝐿𝐶𝐹𝐿 computes
he loss for each data sample, which incorporates the channel-aware
eight function 𝑤(𝑟𝑗 (𝑡), 𝑡) to handle the effects of multipath in terms of

he received power 𝑃𝑟. The exchange of the local model parameter is
cheduled and repeated 𝜚 times, represented as 𝑓𝑗 (𝑚𝑝(𝜚)) is uploaded
nd shared to 𝑀𝑠. The server 𝑀𝑠 then aggregates the local model
arameters from all the selected clients using a weighted average to
btain a new global model parameter, 𝑚𝑝(𝑡 + 1). The evaluation is
erformed on the global model parameter 𝑚𝑝(𝑡+1) after the completion
f each round of training. The training process continues for a fixed
umber of rounds or until convergence is achieved. The convergence
s determined by monitoring the change in the global model parameter
fter each round of training. If the change is below a certain threshold,
he training process is terminated. (3) Update global model: Weighted
verage combination of the local parameters received is carried out by
he server 𝑀𝑠, which aggregates them to obtain a new global model

arameter, 𝑚𝑝(𝑡 + 1), given as 𝑚𝑝(𝑡 + 1)𝑆𝑑𝑡 =
∑

𝑈𝑝𝑖∈𝑆𝑑𝑡
𝑤(𝑟𝑖(𝑡),𝑡)�̃�𝑝(𝑡+1)

𝑆𝑑𝑡
∑

𝑈𝑝𝑖∈𝑆𝑑𝑡
𝑤(𝑟𝑖(𝑡),𝑡)

,

where �̃�𝑝(𝑡 + 1)𝑆𝑑𝑡 is the local model parameter for client 𝑈𝑝𝑖 after
he completion of the training process, 𝑤(𝑟𝑖(𝑡), 𝑡) is the channel-aware
eight function that incorporates the delay and amplitude components
f the received signal for client 𝑈𝑝𝑖 , and 𝑆𝑑𝑡 is the set of selected clients
or round 𝑡. The resulting global model parameter, 𝑚𝑝(𝑡 + 1), is used
s the starting point for the next round of training. Thus, the server
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𝑀𝑠 aggregates the local model parameters received from the selected
lients by using a weighted average with the modified focal loss and the
hannel-aware weight function. The resulting global model parameter
s used as the starting point for the next round of training.

Therefor, proposed approach exhibits the potential for enhanced
ccuracy compared to centralized approaches. In AMC, diverse modu-
ation schemes are prevalent, and FL leverages the decentralized nature
f training across devices to capture a broader spectrum of modulation
atterns. By preserving local insights on devices without sharing raw
ata, FL ensures that the model benefits from the collective intelligence
f the distributed network. This approach is particularly advantageous
n scenarios with class imbalance and varying channel conditions, al-
owing the model to adapt more effectively to the intricacies of wireless
ommunication signals. Thus, the collaborative learning framework of
L positions it favorably for achieving improved accuracy in AMC tasks
ompared to traditional centralized approaches.

.2. Problem formulation and objective function

In FL, communication overheads refer to the amount of data that
eeds to be exchanged among the clients and the server during the
raining process. This includes the data used to update the model
arameters, as well as the control information used to coordinate
he training process. The accumulated communication rounds (ACR)
efer to the total number of times that the clients and the server
eed to exchange data during the training process i.e. defined as the
otal number of communication rounds made by the local clients in 𝑡

iterations. The number of communication rounds is closely related to
the communication overheads, as each communication round involves
the exchange of data and control information, which contributes to
the overall communication overheads. In general, the more communi-
cation rounds required, the higher the communication overheads will
be. As the number of communication rounds increases, the amount
of data exchanged among the clients and the server also increases,
which results in higher communication overheads. This can have a
significant impact on the overall performance of the FL system, as the
communication overheads can consume a significant portion of the
available resources. As already discussed FL clients upload data to the
main servers, i.e., client updates throughout the entire training process.

Thus, specifically for FL, the communication overhead can be jux-
taposed to the number of times the model parameters are transmitted
between the local clients and the server. Lowering the communication
overhead means minimizing the ACR. The ACR for 𝑡 iterations can be
written as:

𝜍𝑡 =
𝐶𝑅𝑡
∑

𝑖=1

|

|

𝑆𝑡,𝑖
|

|

, (8)

where 𝑆𝑡,𝑖 is the set of local clients selected for the 𝑖th communication
round (𝐶𝑅) in iteration 𝑡.

To minimize the communication overhead while optimizing the
model with the updated focal loss, the optimization problem is formu-
lated as

min
𝜍𝑡

𝜆𝐿𝐶𝐹𝐿(𝐳𝑡,𝐗𝑡, 𝐲𝑡; 𝛼𝑡, 𝜁) + 𝜇fairness(𝐳𝑡)

+𝜁 |
|

𝐳𝑡 − 𝐳𝑡−1||
2 + 𝛽 |

|

𝑓 (𝐳𝑡,𝐗𝑡, 𝐲𝑡) − 𝑓 (𝐳∗𝑡 ,𝐗𝑡, 𝐲𝑡)||
2 , (9)

where 𝐳𝑡 represents the local model parameters at iteration 𝑡, 𝐳∗𝑡 is the
optimal local model parameter at iteration 𝑡, 𝐗𝑡 is the input dataset
at iteration 𝑡, 𝐲𝑡 is the corresponding output labels, and 𝜆, 𝜇, 𝛽, and
𝜁 are weighting factors that balances the trade-off between minimizing
the communication cost, optimizing the model, promoting fairness, and
minimizing the difference between the local model parameters and the
optimal local model parameter. The term |

|

𝑓 (𝐳𝑡,𝐗𝑡, 𝐲𝑡) − 𝑓 (𝐳∗𝑡 ,𝐗𝑡, 𝐲𝑡)||
2

measures the distance between the local model parameters at iteration
𝑡 and the optimal local model parameter at iteration 𝑡 in terms of the
loss function, encouraging the local model parameters to be closer to
6

the optimal local model parameter. The term |

|

𝐳𝑡 − 𝐳𝑡−1||
2 represents the

communication cost of transmitting the local model parameters from
the previous iteration to the current iteration. The term |𝑧𝑡 − 𝑧𝑡−1|

2 in
the optimization problem acts as a surrogate for the communication
cost associated with transmitting local model parameters from the
previous iteration (𝑡 − 1) to the current iteration (𝑡) in FL. Motivated
by the Euclidean distance concept, where |𝑧𝑡 − 𝑧𝑡−1|

2 quantifies the
squared distance between the local model parameters at the current and
previous iterations, it serves as a measure of change in the model. In the
context of FL, transmitting the entire model incurs a communication
cost, and this choice captures the cost by considering the squared
Euclidean distance between local model parameters in consecutive
iterations. A smaller squared distance indicates less significant changes,
minimizing communication cost. Therefore, utilizing |𝑧𝑡 − 𝑧𝑡−1|

2 aims
to balance accurate model updates with the objective of minimizing
communication overhead during FL.

The optimization problem is subject to constraints on the val-
ues of the variables, which ensure that the solution is non-negative
and bounded by upper limits 𝑢𝑖 for each variable 𝑧𝑖. Specifically, the
constraints are:

0 ≤ 𝑧𝑖 ≤ 𝑢𝑖 for all 𝑖. (10)

The optimization problem is solved using the Karush–Kuhn–Tucker
(KKT) conditions [59], which provide a set of necessary conditions
for optimality. The optimization problem, along with its constraints,
is written as

(𝜍𝑡,𝝀,𝝁, 𝝂, 𝜸,𝜶, 𝜷) =

𝜆𝐿𝐶𝐹𝐿(𝐳𝑡,𝐗𝑡, 𝐲𝑡; 𝛼𝑡, 𝜁) + 𝜇fairness(𝐳𝑡) + 𝜁 |
|

𝐳𝑡 − 𝐳𝑡−1||
2

+𝛽 |
|

𝑓 (𝐳𝑡,𝐗𝑡, 𝐲𝑡) − 𝑓 (𝐳∗𝑡 ,𝐗𝑡, 𝐲𝑡)||
2 +

𝑛
∑

𝑖=1
𝛼𝑖(𝑧𝑖 − 𝑢𝑖)

+
𝑛
∑

𝑖=1
𝛽𝑖(−𝑧𝑖) + 𝝀𝑇 (𝐳𝑡 − 𝐳𝑡−1) + 𝝁𝑇 𝐳𝑡 + 𝝂𝑇 𝑓 (𝐳𝑡,𝐗𝑡, 𝐲𝑡) + 𝜸𝑇 𝐳𝑡, (11)

where 𝝀,𝝁, 𝝂, 𝜸,𝜶 and 𝜷 are the Lagrange multipliers (LM) associated
with the non-negativity and upper bound constraints, respectively.

The optimization problem subject to these constraints using the KKT
conditions, the KKT conditions are modified as
𝜕
𝜕𝜍𝑡

= 𝜆
𝜕𝐿𝐶𝐹𝐿
𝜕𝜍𝑡

+ 𝜇 𝜕fairness
𝜕𝜍𝑡

+ 2𝜁 (𝐳𝑡 − 𝐳𝑡−1)

+2𝛽(𝑓 (𝐳𝑡,𝐗𝑡, 𝐲𝑡) − 𝑓 (𝐳∗𝑡 ,𝐗𝑡, 𝐲𝑡))
𝜕𝑓 (𝐳𝑡,𝐗𝑡, 𝐲𝑡)

𝜕𝜍𝑡

𝝀 + 𝝁 + 𝝂
𝜕𝑓 (𝐳𝑡,𝐗𝑡, 𝐲𝑡)

𝜕𝜍𝑡
+ 𝜸 + 𝜶 − 𝜷 = 0, (12)

The modified KKT condition for the partial derivative of the Lagrangian
() with respect to 𝜍𝑡. The Eq. (12) combines the derivatives of the
objective function 𝐿𝐶𝐹𝐿 and the fairness term, along with other terms
related to the optimization process and the LM.
𝜕
𝜕𝝀

= 𝐳𝑡 − 𝐳𝑡−1 = 0, (13)

where, the partial derivative of  with respect to LM, 𝝀 encapsulates
the essence of continuity between current iteration’s variable values 𝐳𝑡
and those of preceding iteration 𝐳𝑡−1.
𝜕
𝜕𝝁

= 𝐳𝑡 = 0, (14)

where, it sets a stringent mandate by equating the partial derivative
of the  with respect to 𝝁 to the current iteration’s variable values 𝐳𝑡.

his condition dictates that the variable values at the present iteration
lign precisely with the expectations encapsulated by the LM, 𝝁. The
nforcement of equality, Eqs. (13) ∼ (14), with zero implies a strict
dherence to the optimization process and underscores the importance
f maintaining equilibrium between the variables and the LM.
𝜕 = 𝑓 (𝐳 ,𝐗 , 𝐲 ) − 𝑓 (𝐳∗,𝐗 , 𝐲 ) = 0, (15)

𝜕𝝂 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡
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where, the partial derivative of  with respect to the LM, 𝝂 is linked
intricately to the discrepancy between the function evaluations at
the current iteration and the optimal scenario by ensuring that the
difference in the function values, as dictated by the 𝝂, converges to
zero. Thus, it ensures the equality between the function evaluations
𝑓 (𝐳𝑡,𝐗𝑡, 𝐲𝑡) and 𝑓 (𝐳∗𝑡 ,𝐗𝑡, 𝐲𝑡).
𝜕
𝜕𝜸

= 𝐳𝑡 = 0, (16)

where, this condition asserts a stringent equality constraint, compelling
the variable values at the current iteration 𝐳𝑡 to be precisely zero. This
mposition of zero is critical in the optimization landscape, signifying
hat the influence exerted by the LM, 𝜸 aligns the variable values
ith the condition of nullity. Thus, it imposes the equality constraint
etween the current iteration’s variable values 𝐳𝑡 and zero.

𝑖(𝑧𝑖 − 𝑢𝑖) = 0 for all 𝑖, (17)

where, this encapsulates the complementary slackness condition for
the LM, 𝛼𝑖 associated with non-negativity constraints. Thus, it reflects
that when a variable is non-negative (𝑧𝑖 ≥ 0), the corresponding
LM can be zero, indicating that the non-negativity constraint is not
actively influencing the optimization process, and ensures that either
the variable value 𝑧𝑖 is zero or 𝛼𝑖 is zero for all 𝑖.

𝛽𝑖𝑧𝑖 = 0 for all 𝑖, (18)

Eq. (18), represents the complementary slackness condition for the LM,
𝛽𝑖 associated with upper-bound constraints. Similar to the previous
condition, it ensures that for each variable 𝑧𝑖, either the variable value
𝑧𝑖 is zero or 𝛽𝑖 is zero. This condition underscores the duality between
the upper-bound constraints and their respective LM, emphasizing that
the constraint is either satisfied or its associated LM becomes inactive.

𝑧𝑖 ≥ 0 for all 𝑖, (19)

𝑧𝑖 ≤ 𝑢𝑖 for all 𝑖, (20)

𝑖 ≥ 0 for all 𝑖, (21)

𝑖 ≥ 0 for all 𝑖. (22)

here, Eq. (19) ensures that each variable 𝑧𝑖 must be non-negative,
q. (20) imposes an upper bound constraint on each variable 𝑧𝑖, en-
uring that 𝑧𝑖 does not exceed its prescribed limit 𝑢𝑖, Eq. (21) enforces
on-negativity for the LM 𝛼𝑖, Eq. (22) similarly imposes non-negativity
or the LM 𝛽𝑖. Collectively, these conditions define the boundaries and
elationships that the solution must satisfy, contributing to the robust-
ess and feasibility of the optimization process. They strike a balance
etween variable values and LM, ensuring adherence to constraints
hile optimizing the objective function.

The complementary slackness condition, combines the complemen-
ary slackness conditions for non-negativity and upper bound con-
traints. It states that either the variable value 𝑧𝑖 is zero or LM, 𝛼𝑖 and
𝑖 are zero for all 𝑖 and is given as

𝑖(𝑧𝑖 − 𝑢𝑖) = 𝛽𝑖𝑧𝑖 = 0, (23)

Sequential quadratic programming (SQP) [60] is used to find the
ptimal solution for the decision variables 𝜍𝑡 that satisfy the constraints
n the variable values, where in the solution obtained satisfies the
omplementary slackness conditions for the non-negativity and upper
ound constraints. If the complementary slackness conditions are not
atisfied, the LM are adjusted until they are satisfied. The resulting
olution will be the optimal solution to the optimization problem
ubject to the constraints.

.3. Proposed federated CNN description

In this study, CNN is used as the DL model for AMC because it has
emonstrated strong classification performance even for PSK and QAM
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ignals, [1,6,61]. g
Table 1
CNN Description.

Structure Number of Layers

Input (samples, categories) –
Conv1D(128,16)+ ReLU+ BN + Dropout (0.1) 2
AveragePool 1
Conv1D(64,8)+ ReLU+ BN + Dropout (0.1) 1
Fully Connected 1
Dense (1024) + Softmax +Dropout (0.5) 1

The CNN consists of total 6 layers, in Table 1, including 3 convo-
lution layers (Conv1D),1 average pool layer, 1 fully connected (FC)
and 1 Dense layer. In each Conv1D, batch normalization (BN) and
rectified linear unit (ReLU) is applied along with Dropout which avoids
overfitting problem. For last layer (Dense) Softmax activation function
is used along with Dropout. Additionally, the output is a probability
distribution that contains the probability of each type of modulation,
with the input being the dataset (samples and categories).

The real and imaginary components of a complex vector 𝑦 are sep-
arated to convert it into actual data. For instance, at the first Conv1D,
𝑐𝑙 = 1, the input vectors are presented as 𝑥𝑐𝑙 = 𝑦 ∈ R

[

𝑁𝑐𝑙−1×𝑉𝑐𝑙−1
]

,
where 𝑁 and 𝑉 are the dimensions and vector number, respectively.
Convolution layer 𝑐𝑙 with 1 dimension, have 𝑐𝑙−1 input and 𝑐𝑙 output
vectors, thereby giving 𝑐𝑙 × 𝑐𝑙−1 convolution kernels and 𝑐𝑙 biases, for
a kernel size of 𝑘𝑐𝑙 . The current layer’s output vector for the results
of the previous layer 𝑥𝑐𝑙−1𝑖 , 𝑖 ∈

{

1,… , 𝑁𝑐𝑙−1

}

is written as 𝑥𝑐𝑙𝑖 =

𝑓
(

∑𝑁𝑐𝑙−1
𝑗=1 𝑥𝑐𝑙−1𝑗 ∗ 𝑘𝑐𝑙𝑖,𝑗 + 𝑏𝑐𝑙𝑖

)

, where ReLU is the non-linear activation
unction: 𝑓 (𝑥) = 𝑚𝑎𝑥(0, 𝑥) and the convolution operation is represented
s ∗. Average pooling layer reduces the dimensionality by aggregating
he average value of the elements present in the vector, thus for the 𝑖𝑡ℎ
utput vector, 𝑥𝑐𝑙+1𝑖 = 𝑑𝑜𝑤𝑛(𝑥𝑐𝑙𝑖 ). Then the output vectors are packed
nd restricted into a vector by the fully connected layer. After that,
dense layer 𝑑𝑙 encodes the input vector 𝑥𝑑𝑙−1 into a output vector

extracted high level information) given as 𝑥𝑑𝑙 = 𝑓
(

𝑊 𝑑𝑙𝑥𝑑𝑙−1 + 𝑏𝑑𝑙
)

,
here 𝑊 𝑑𝑙 ∈ R𝑁𝑑𝑙×𝑁𝑑𝑙−1 and 𝑏𝑑𝑙 ∈ R𝑁𝑑𝑙 . After that, the dense layer
ith Softmax activation function gives normalized likelihood vector
̂ 𝑁 =

[

�̂�𝑁
1 ,… �̂�𝑁

𝑙
]

, where �̂�𝑁
𝑖 = 𝑒𝑥𝑖

∑𝑙
𝑗=1 𝑒

𝑥𝑗 . Thus providing a final

output as �̂�𝑁 = F (𝑦, 𝜚), where 𝜚 is the network parameter and F(⋅) is
overall CNN-based AMC. Thus, the final classification of the modulation
�̂�𝑚 is based on the predicted probability distribution 𝒫 (𝑊 ; 𝐼𝑄) and
is given as �̂�𝑚 = 𝑎𝑟𝑔 𝑚𝑎𝑥

𝐶𝑚∈𝑀
𝒫 (𝑊 ; 𝐼𝑄), where the projected modulation

type is the modulation type with the highest likelihood. By doing this,
a one-hot vector will be generated automatically from each category
found in the dataset. A probability that an signal corresponds to any of
the categories will be output by the model by learning to predict each
one-hot vector, which can be thought of as a probability distribution.

5. Simulation results

The specified IQ sample distribution across local clients is shown
Table 2, which are applied for training purpose. Additionally, an inde-
pendent testing dataset was prepared for evaluating the performance
of the modulation classification model. The testing dataset consists of
25,000 IQ samples for each modulation type, ensuring a comprehen-
sive evaluation across the different modulation schemes as shown in
Table 3, with SNR range from −12 dB to 12 dB.

The training parameters: batch size = 128, maximum iterations
(epochs) = 1000 and learning rate = 0.001. The raw IQ domain of the

modulation signals that are used for the analysis and comparison are
hown in Fig. 2.

The analysis and comparison is carried out under two broad cate-

ories:
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Table 2
IQ training samples across local clients.

Modulation Scheme BPSK QPSK 8PSK 16QAM 64QAM PAM4 GFSK CPFSK

Local Clients (LC) IQ Training Samples

LC1 10000 5000 5000 2000 2000 2000 10000 2000
LC2 5000 10000 5000 2000 5000 10000 2000 2000
LC3 5000 5000 5000 10000 2000 2000 10000 2000
LC4 2000 5000 5000 2000 10000 2000 5000 10 000
LC5 2000 10000 10000 5000 2000 5000 2000 5000
LC6 5000 2000 2000 10000 5000 10000 5000 2000
LC7 10000 2000 2000 5000 10000 2000 5000 5000
LC8 2000 5000 5000 10000 5000 2000 2000 10 000
Table 3
Data set description.

Number of Modulations 8

Modulation Type BPSK, QPSK, 8PSK, 16QAM,
64QAM,
PAM4, GFSK, CPFSK

SNR (𝐸𝑠∕𝑁𝑜) Range −12:2:12 dB

Channel Specifications Multi reflected and scattered paths,
Carrier frequency offset,
Phase offset,
Doppler shift,
AWGN

Fig. 2. IQ time domain for 8 modulation signals.

1. Parametric influence analysis, in which proposed approach is
rationalized in terms of: different number of samples, delay spread,
phase and frequency offset, classification error.

2. Comparative analysis, in which comparison is made between
the proposed and contemporary approaches in terms of: confusion
metrics, effect of level of interference, correct classification probability
and communication overheads. For analysis and comparison multipath
channel is taken into consideration unless other wise specified.

The correct classification probability (CCP) is used to mark the
classification performance which is given as 𝐶𝐶𝑃 𝑖 = 𝑁 𝑖

𝑐
𝑁𝑠

at 𝑆𝑁𝑅 =
𝑖 𝑑𝐵, 𝑖 ∈ {−12,−10,… , 12}, where 𝑁 𝑖

𝑐 and 𝑁𝑠 are number of correct
classification at respective 𝑖 𝑑𝐵 and total number of test samples,
respectively.

1. Parametric Influence Analysis: Proposed approach is evaluated
for different number of samples (l), presented in Fig. 3(a), in which with
the increase in the number of samples, CCP increases with improvement
in the value of SNR.

Delay spread (DS) also relates to the different levels of multipath
channels and its effect, illustrated in Fig. 3(b), along with AWGN. As
SNR (𝐸𝑠∕𝑁𝑜) improves, CCP increases consistently and as the value of
DS increase there is only marginal drop in the CCP, i.e. the proposed
model is able to maintain high value of CCP ≈ 0.93 for DS = 2.0 at SNR
= 12 dB.

Normal and acceptable range of the phase is between 0◦ and 90◦

and where as the frequency offset is only few Hertz [62]. They causes
rotation of the signal constellation, which can degrade CCP. Fig. 3(c),
shows the behavior of CCP for the proposed scheme for frequency offset
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varying from 0 to 0.001 (Hz) and corresponding phase offset, from 0◦ to
maximum rotation of 90◦. The performance of the proposed method is
acceptable at the frequency offset value <0.0075 (Hz) and phase offset
<75◦. But for higher phase and frequency offset CCP decreases.

Classification error (CE) for different numbers of 𝑆 and 𝑅 is shown
in Fig. 3(d), in which the increase in CE can only be seen at higher
value (≈ 90) of 𝑅 and 𝑆. Herein, CE is the measure of the performance
of a modulation classifier and is calculated by dividing the number of
incorrectly classified modulations by the total number of modulations.
The robust performance of FL-MP-CNN-AMC, against phase and fre-
quency offset, 𝑆 and 𝑅 can be attributed to CNNs compactness along
with extending the modified loss function which helps in eliminating
the singularities thus providing more stable and convergent network,
thus it avoids exploration of more features space thereby making it less
vulnerable to perturbations.

2. Comparative Analysis: The confusion matrix (CM) of the pro-
posed approach is compared with contemporary methods, as in Fig. 4,
at the SNR=10 dB. Among the FL based approaches: FL-MP-CNN-
AMC, FL-CNN-AMC, and FL-DP-AMC, the proposed approach exhibits
consistent performance in the identification of the modulation signal
even for higher orders such as 16QAM and 8PSK. In contrast, the
performance of the other two FL based methods degrades. Similarly, in
the case of the two AMC methods: CNN-DC-AMC and CNN-LSTM-AMC,
the performance is low even for the low-order modulation signal BPSK,
and for 16QAM and 8PSK, it is significantly lower. The performance
further deteriorates to the lowest level for TD-AMC, indicating that fea-
ture extraction using traditional means is inadequate. This significant
difference in performance between FL-MP-CNN-AMC and other AMC
approaches underscores the compelling results achieved through the
formulation of the modified loss function, which mitigates the impact of
𝑅 and 𝑆. It is worth noting that for 16QAM and 64QAM, the observed
challenge is expected, as each frame carries only 128 symbols and 16-
QAM is a subset of 64-QAM, as illustrated in Fig. 5. This partially
explains the network’s difficulty in correctly classifying these two types.

The performance of the proposed model is evaluated for different
level of interference presented in Fig. 6, in which proposed approach
not only starts with highest value of CCP, but also is able to sustain
consistent CCP value as the interference level increases. Even at the
maximum interference level, CCP for FL-MP-CNN-AMC is still highest
as compared to other algorithms, this performance can be accredited
to better extraction of the features which are robust to interference.

The CCP of FL-MP-CNN-AMC is best even in the presence of the
multiple reflected and scattered paths in comparison to other FL and
CNN based approaches, as shown in Fig. 7. The traditional approach,
TD-AMC, shows the lowest CCP because of the feature extraction using
traditional (manual) method. Moreover, other approaches also in the
presence of multipath channels are not able to maintain a consistent
CCP.

To conduct a comprehensive evaluation of the proposed approach,
it was tested on a standard dataset. The results shown in Fig. 8(a)
indicates that the proposed approach exhibits classification accuracy,
which increases exponentially and approaches 1 as 𝐸𝑠∕𝑁0 improves.

For a comprehensive assessment of the proposed approach, it is also
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Fig. 3. Effect of parametric variations on FL-MP-CNN-AMC.
Fig. 4. Confusion matrix at SNR = 10 dB.
Fig. 5. Erudition of 16QAM and 64QAM.

Fig. 6. Comparison of interference level effect.

subjected against a set encompassing 25 diverse modulation signals.
Across this extensive range of signals, the CCP exhibits a noteworthy
performance, displaying a substantial improvement with increasing
9

Fig. 7. CCP comparison.

𝐸𝑠∕𝑁0, presented in Fig. 8(b). The observed exponential enhancement
in CCP reinforces the robustness and efficacy of the proposed approach.
These evaluation demonstrates the robustness and ability of the pro-
posed approach to effectively handle the broad spectrum of modulation
signals.

Comparison of the convergence of the proposed approach is made
with the contemporary approaches, in Fig. 9. Each iterative round
in the proposed approach consists of 1000 iterations. In this study,
convergence is defined as the functional convergence of the defined
optimization problem, where the objective function approaches a min-
imum value, indicating an optimal solution. The proposed approach
not only starts at the lowest value but also reaches the optimal solu-
tion faster compared to other contemporary approaches. This can be
attributed to the federated structure, along with the optimized solution
provided by the KKT transformation for the objective function.

For further in-depth analysis of the proposed approach, 8 scenarios
are considered. Herein, scenarios are defined as the combination within
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Table 4
Distribution of the modulation types for different scenarios.
Scenarios Balanced Imbalanced Skewed Random Overrepresented Underrepresented Partially Sequential

Modulation Types

BPSK 12.50% 40% 5% 15% 30% 5% 25% 0.39%
QPSK 12.50% 10% 5% 10% 10% 15% 25% 0.78%
8PSK 12.50% 10% 5% 20% 10% 15% 25% 1.56%
16QAM 12.50% 10% 5% 8% 10% 15% 25% 3.13%
64QAM 12.50% 10% 5% 12% 10% 15% 15% 6.27%
PAM4 12.50% 5% 5% 5% 10% 15% 15% 12.54%
GFSK 12.50% 5% 5% 18% 10% 15% 35% 25.09%
CPFSK 12.50% 10% 65% 12% 10% 5% 35% 50.18%
Fig. 8. CCP for standard data set (a) [20] and (b) [21].

Fig. 9. Convergence comparison.

which 8 modulation types are having different weight-age percentage
wise in Table 4 as:

Balanced distribution: equal percentage are assigned to each mod-
ulation scheme. Partially balanced distribution: modulation schemes
are divided into two groups with a balanced distribution within each
group. While there is an imbalance between two groups (group 1:
10
Fig. 10. Performance analysis of proposed approach against different scenarios.

Fig. 11. CCP for different fading models.

BPSK, QPSK, 8PSK, 16QAM. group 2: 64 QAM, PAM4, GFSK, CPFSK),
where group 1 is balanced and group 2 is imbalanced. Sequential dis-
tribution: higher percentages are assigned to consecutive modulation
schemes, introducing a sequential pattern. Random distribution: this
scenario assigns percentages randomly. Overrepresented modulation
scheme: one modulation scheme is assigned a higher percentage. Im-
balanced distribution: significantly different percentages are assigned
to modulation schemes, resulting in an imbalanced representation.
Underrepresented modulation scheme: one modulation scheme is as-
signed a lower percentage, and Skewed distribution: one modulation
scheme is assigned a significantly higher percentage.

From Fig. 10, the consistency of CCP remains remarkably robust
across all scenarios, as evidenced by the consistent ‘‘scenario average’’
behavior. Despite the diverse range of scenarios, the proposed approach
demonstrates exceptional efficiency, adeptly adapting to each scenario
and maintaining a consistently high level of performance. This un-
equivocally establishes the proposed approach as the optimal choice for
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Fig. 12. Communication overhead comparison.
Fig. 13. Comparison between asynchronous FL (AFL) and proposed approach.
attaining reliable and efficient results across a spectrum of challenging
scenarios.

In a comprehensive analysis, the proposed approach undergoes
scrutiny across a spectrum of channel conditions, encompassing var-
ious fading models such as spatially correlated, Log-normal, Weibull,
Nakagami, Rayleigh, Rician, and Nakagami-m, as depicted in Fig. 11.
Remarkably, the CCP remains consistently high across all these models.
Notably, even in the face of challenging channel conditions posed
by spatially correlated, Log-normal, and Weibull fading models, the
CCP exhibits resilience and consistency. This robust performance un-
derscores the proposed approach’s capacity to navigate through ad-
verse channel conditions, substantiating its capability to deliver a
consistently high CCP.

The communication overhead in terms of data exchanged (modu-
lation classes) between clients and server for FL approaches is shown
in Fig. 12, as a heatmap, between number of clients and modulation
classes. The color of each cell in the heatmap represents the commu-
nication overhead of each FL approach for average of 20 rounds. For
the proposed approach in Fig. 12A, the communication overhead is
consistently low for all the clients across all the modulation classes as
compared to Fig. 12B (FL-CNN-AMC) and Fig. 12C (FL-DP-CNN-AMC).
This clearly substantiate that the communication overheads in the
modulation classification problem is improved by utilizing a modified
loss function. The modified loss function handles the class imbalance
and improve the overall accuracy of the model. Moreover federated
approach optimizes the communication rounds between clients and
the server. These two techniques worked together to effectively reduce
communication overheads and improve the efficiency and accuracy of
the proposed approach.

Proposed approach is compared with AFL in Fig. 13. The proposed
approach consistently outperforms AFL in terms of CCP, misclassified
samples, convergence, and communication overhead. With the increase
in the number of clients, the proposed approach demonstrates only
marginal reduction in CCP, showcasing its robustness. In stark con-
trast, AFL experiences an almost exponential reduction in CCP as the
client count increases. The proposed approach maintains its efficacy
even as the client base expands. Notably, the comparison extends to
misclassified samples and communication overhead, revealing a modest
increase for the proposed approach with a growing number of clients.
AFL, on the other hand, exhibits a substantial and nearly exponential
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surge in misclassified samples and communication overhead, emphasiz-
ing its limitations in scalability. Furthermore, the examination delves
into the convergence aspect, encompassing 100 iterative rounds, each
comprising 1000 iterations. The proposed approach demonstrates rapid
and consistent convergence throughout, underscoring its efficiency. In
contrast, AFL grapples with convergence issues, further highlighting the
superior performance and adaptability of the proposed approach. The
time complexity for the proposed approach is given as 𝑂(1) + 𝑂(𝑇 ) +
𝑂(𝑁𝑐 ⋅𝐷 ⋅𝑓 )+𝑂(𝑁𝑐 ⋅𝐷)+𝑂(𝑁𝑐 ⋅𝜌)+𝑂(𝑇 ⋅ℎ), where, 𝑂(1) is broadcasting
initial model parameters and schedule details, 𝑂(𝑇 ) is selecting a subset
of clients for each training round, 𝑂(𝑁𝑐 ⋅𝐷 ⋅𝑓 ) is gradient computation
for each data sample, 𝑂(𝑁𝑐 ⋅𝐷) is local model parameter update using
gradient descent, 𝑂(𝑁𝑐 ⋅𝜌) is local model parameter upload and sharing,
and 𝑂(𝑇 ⋅ ℎ) is aggregating local parameters using weighted average.
The time complexity of the proposed approach is consistently low in
comparison to AFL. This further substantiates the efficiency of the
proposed approach.

6. Conclusion

The proposed method FL-MP-CNN-AMC addresses the issues faced
by traditional DL-based AMC approaches by using federated learning
and incorporating the effect of multipath channels in the modulation
classification process. The use of federated learning reduces the risk of
data loss and enables the model to be trained on a diverse set of data
from local clients. Additionally, the proposed method addresses the
class imbalance problem caused by multipath channels by introducing
a modified loss function. Through extensive simulation results, we have
demonstrated that the proposed approach provides excellent perfor-
mance in terms of CCP, convergence and communication overhead,
significantly outperforming existing FL-based AMC, CNN-based AMC
methods and also AFL. The proposed approach also takes into account
various parameters such as interference level, delay spread, scattered
and reflected paths, phase and frequency offset, and reflects the true
nature of the communication channel.
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